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Abstract—Landmark correspondence is one of the key steps 
in Statistical Shape Model (SSM) building. In this paper, a 
non-rigid iterative closest point surfaces registration method 
is introduced to seek proper corresponded landmarks in the 
multi-organ surface meshes. Surfaces of four abdominal 
organs are used in the experiment to build SSM from 
landmarks corresponded by five different registration 
strategies. The proposed method of individually non-rigid 
registration of single organs shows the least errors measured 
by Hausdorff distance and the best model quality of 
generalization ability, specificity, and compactness. 
 
Index Terms—multi-organ, statistical shape model, surface 
registration, landmark correspondence 
 

I. INTRODUCTION 

Statistical Shape Model (SSM) is a widely developed 
and applied tool for medical image analysis tasks, 
including segmentation, reconstruction of object organs or 
tissue [1], [2]. The processed data and information in SSM 
can be used in Computer-Aided Diagnosis (CADx), 
surgical planning and navigation, medical education, and 
so on fields. The SSM is composed of Point Distribution 
Models (PDM), where the deformation patterns of the 
object shape are learned from the special varieties of 
corresponding landmarks in a group of aligned meshes 
represented by vertices and faces in a training set. The 
landmarks are a certain number of vertices picked from 
each of the dense surface meshes from different patients, 
which represent vertices with the same anatomic structure 
of shape. The correspondence of landmarks is an essential 
procedure in the SSMs building to accurately extract the 
information of variation in the surface mesh data. 
Although manually landmark corresponding is realizable 

for two-dimensional (2-D) shapes with a limited number 
of vertices and cases, it is difficult to find corresponding 
landmarks from three-dimensional (3-D) surfaces due to 
the increasing quantity of candidate vertices and 
complexity of the geometric shape. Thus, automatic 
correspondence methods are more favorable for relevant 
tasks. 

The problem of landmark correspondence can be cast as 
a combination of shape correspondence and landmark 
prototype building. The correspondence of shapes is 
usually stated as a problem of finding proper mappings 
between their elements (ordinarily vertices) and referred to 
as registration, alignment, or matching problems [3], [4]. 
According to the completeness of the mapping, i.e., 
whether a full correspondence for each of the elements 
from the moving shape to the fixed shape is required, the 
correspondence problem can be classified into dense 
correspondence or sparse correspondence. The difficulties 
are almost the same because the searching space still 
covers the whole shape to find proper and meaningful 
correspondence, to ensure the quality of SSM built. 

A fundamental distinguishment of the shape registration 
methods is the form of deformation, which can be roughly 
classified as rigid or non-rigid registration. The geometric 
deformation that matches one shape to another is 
differently chosen when adapted to shapes from different 
sources or for different tasks. One of the typical 
applications of rigid registration is the surface 
reconstruction from multiple point clouds partially 
scanned in different viewpoints of an identical object. 
Since the surfaces to be aligned are obtained from one 
object, only rigid deformation, i.e., translation, orientation, 
and scale are required in consideration. In rigid registration 
problems, noise, outlier, and the limited amount of 
overlapping are the main difficulties [5]. However, in the 
scope of biomedical surfaces, surface meshes are 
generated from medical images obtained from different 
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patients, and some of the conditions and characteristics of 
the object surfaces are distinctive from those of ordinary 
surfaces. Thus, rigid deformation is not enough to describe 
the deformation of the organs or tissue surfaces and non-
rigid registration is required to match the surfaces of 
individual differences. 

 
Figure 1.  Flow chart of the proposed architect of NICP-based 

landmark corresponding and SSMs building. 

Davies et al. [6] proposed an automatic landmark 
corresponding method that used the Minimum Description 
Length (MDL) principle to find the optimal 
parameterization of training shape. Three properties of the 
built shape model: generalization ability, specificity, and 
compactness are introduced as quantitative measures of 
model quality. In our previous research [7], the 
correspondence of landmarks is conducted across 
parameterized surfaces obtained from spherical conformal 
mapping and Demon registration. The parameterization 
that maps each of the original surfaces in the training set 
to spherical surfaces decreases the complexity of finding 
identity landmarks while preserving relevant information 
among vertices in the original organ surfaces to a certain 
extent. After a dense matching of the whole training set, 
landmarks with geometrical and anatomical 
representativeness are chosen from the original surface. In 
our previous methods, surface simplification using quadric 
error metrics and k-means clustering is implemented in 
one of the original surface mesh in the training set to obtain 
a set of reference landmarks. Ravikumar et al. [8] 
introduce a group-wise similarity registration using 
Student’s t-mixture model for landmarks corresponding. 

In the field of medical image analysis, more attention is 
paid to multi-organ models instead of organ-, and disease-
specific methods [9]. The combination of inter-organ 
relations, including spatial, functional, and physiological 
relations, provides more accurate human anatomy 
information and benefits many medical procedures, 
including diagnosis, therapeutic assistance, radiotherapy 
planning, surgery simulation, or injury severity prediction. 
However, the jointed structure of multiple organ surfaces 

is unable to be parameterized into one single surface and 
the following spherical registration could not be conducted. 
Therefore, to extend our SSM building scheme and make 
it available for multi-organ models, a non-
parameterization-based registration method is introduced 
and applied in the proceeding of landmark correspondence. 

In the paper, a non-rigid iterative closet point method is 
introduced for automatic surface registration of 3-D multi-
organ surface meshes. Different strategies of single organ 
and multi-organ combination are compared in the 
registration scheme on four abdominal organs from 
different patients. 

II. METHOD 

In our research, a Non-rigid Iterative Closest Point 
(NICP) method is applied to landmark correspondence for 
multi-organ SSMs building from 3-D volume data of 
medical images. The flow chart of the proposed architect 
is shown in Fig. 1. In the first step, a series of preprocesses 
are necessary to obtain suitable surface meshes for 
landmarks correspondence from medical images. A 
marching-cubes algorithm is applied to the manually 
segmented voxel data, which is a process that transformed 
the labeled medical image of organs to triangular surface 
meshes. The following surface filtering is performed to 
improve the smoothness of the transformed rough surfaces. 
To decrease the computational amount of the following 
processes on surface meshes, a surface simplification 
algorithm is applied on the smoothed organ meshes. In the 
second step, a reference mesh of landmarks is prepared by 
a k-means clustering procedure which is performed on a 
chosen surface. Then, the chosen surface is regarded as the 
target surface and the other surfaces in the rest of the 
training set are registered to it. The landmarks of the other 
cases can be corresponded by finding the nearest vertices 
on the target surface from the deformed surfaces. After the 
correspondence, an SSM can be generated from the 
aligned landmarks by principal component analysis (PCA). 
A series of surface deformation patterns are learned from 
the set of landmarks of human organ surfaces. 

A. Construction of Surface Data 

In our research, the original data of multiple organs are 
obtained from manually labeled CT (computed 
tomography) scans by experts. In the 3-D CT images, the 
organs are expressed by connected cubic voxels. To extract 
the surface of organs, the Marching Cubes (MC) algorithm 
is applied to the labeled voxels. In the algorithm using the 
divide and conquer strategy, eight pixels from two adjacent 
slices form a cube and the key is to find a surface 
intersection in the cube. 14 patterns from all 256 cases of 
possible intersection ways are precalculated to 
approximate the linear interpolations and output the 
triangular surface meshes. The algorithm traversed all 
cubes and produces a triangular surface mesh. For multiple 
organs, the marching cubes are performed organ by organ 
to avoid merging extremely closing organs to one the same 
surface. 

As the original data from medical images are obtained 
from the imaging system under certain resolutions, the 
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naturally smoothing human organs and tissues are 
inevitably transformed to discrete voxels data and the 
discreteness remains in the triangular surfaces obtained 
from the MC algorithm. To decrease the roughness of the 
surface and recover the smoothness in general, a Gaussian 
filter is applied to the surfaces. The smoothing procedure 
can also remove the noise of cube edges and benefic the 
following registration procedures. In surface registration, 
the similarity is a basis to find the correspondence. 
However, some of the similarities in local voxel structures 
are produced from the MC algorithm but not from the 
original anatomical features of human organs. The 
smoothing can reduce the effect of the MC and restore the 
basic anatomical contours of the organs.  

Although the quality of the surfaces is improved in the 
smoothing procedure, the quantity of vertices and faces on 
the surface remains the same and it is more than required. 
The vertices originated from MC are generated cube by 
cube and redundant vertices that describe the same 
geometry structures can be simplified to decrease the 
computational amount of the following processes on 
surface meshes. Thus, a quadric matrices surface 
simplification algorithm that can rapidly approximate the 
original surface is applied to the smoothed organ meshes. 

B. Generation of Landmarks Prototype 

Before the registration and correspondence, it is 
necessary to prepare a set of standard landmarks. A set of 
ideal landmarks should be representative of the anatomical 
structure of the object organ surface with a small ratio of 
the vertices and faces in the original surface. Also, as the 
final aim of landmark corresponding is to build an SSM, it 
is important to capture the varieties that existed in the 
identical positions of landmarks from different patients. A 
set of satisfied reference landmarks is the first step of 
building an SSM of high quality. 

First, one of the surface cases is randomly chosen from 
the training set of surface meshes obtained before. Then, a 
k-means clustering based surfaces simplification method 
proposed in our previous research [7] is performed to 
extract representative vertices from the chosen surface as 
the reference landmarks. Given a required number of 
landmarks 𝑘 and a surface with 𝑛 vertices, for each of 
the vertices, a set of spatial and geometrical feature vector 
𝒗 is extracted, and the vertices are divided into 𝑘 clusters 
as 𝑫 = {𝐷ଵ , 𝐷ଶ, … , 𝐷}  with 𝒄  the center of the 𝑖 th 
cluster. The clustering is equal to find a stable division 𝑫 
with minimal Within-Cluster Sum of Squares (WCSS): 

arg min
𝑫

∑ ∑ ‖𝒗 − 𝒄‖
ଶ

𝒗∈𝑫


ୀଵ          (1) 

In the initial step of the algorithm, a set of 𝑘  initial 
clustering centers is chosen, and an initial clustering is 
obtained by Voronoi diagram division. Then the algorithm 
turns into iterations where new centers 𝒄 are updated by 
the new divisions 𝑫  until it converges (the division is 
fixed). The finally obtained centroids of the vertices in 
each of the 𝑘 clusters are regard as reference landmarks. 
The faces of the landmarks could be generated by spherical 
Delaunay triangulation which is performed on the sphere 
mapped from the chosen surface mesh. The landmarks 

from clustering-based simplification method possess 
better global representativeness, compared with local 
surface simplification methods, due to the operation of 
clustering is applied to all vertices at the same time within 
each iteration. 

C. Registration and Correspondence 

Surfaces in the training set are extracted and 
reconstructed from CT images acquired from different 
patients and the sates of body positions, which produces 
large diversity of identical organ and tissues and makes 
landmarks corresponding more difficult. Such differences 
could not be described and deformed within rigid 
registration and non-rigid surface registration method is 
required. In this paper, we introduce a NICP registration to 
match surfaces to the chosen reference surface throughout 
the training set. 

Given two points sets 𝑷௦ = {𝒑
௦, 𝑖𝜖1, … , 𝑁௦}  of 𝑁௦ 

vertices and 𝑷௧ = {𝒑
௧ , 𝑖𝜖1, … , 𝑁௧}  of 𝑁௧  vertices 

represent the source mesh and the target mesh respectively, 
a series of pairwise registration operations is described on 
them. At first, a rigid Iterative Closest Point (ICP) 
algorithm using Nearest Neighbor (NN) are searched in the 
iterations. For each vertex 𝒑

௦  in the source mesh, one 
forward corresponding vertex and one or more backward 
corresponding vertex (vertices) can be corresponded in the 
target mesh. The bidirectional displacements from the 
vertices to each corresponding vertex of forward and 
backward are used to find rigid transforms of translation, 
rotation and scaling and get the new displacement 𝜹(𝒑

௦). 
After the rigid registration, a non-rigid deformation from 
the source mesh to the target mesh is approximated by a 
sum of 𝑁  Gaussian Radial Basis Functions (G-RBF) 
with centers 𝒄𝒋 and appropriate coefficient 𝝎 [10]: 

𝑟(𝒑
௦) = ∑ 𝝎𝜌(𝒑

௦ − 𝒄𝒋) ே

ୀଵ with 𝜌 = 𝑒ି(ఓฮ𝒑
ೞฮ

మ
) (2) 

which is subject to the constraints as: 

𝜹(𝒑
௦) = ∑ 𝝎𝜌(𝒑

௦ − 𝒄𝒋)ே

ୀଵ , 𝑖 = 1, … , 𝑁    (3) 

The number 𝑁  is smaller than the vertices in the 
whole surface. The 𝝎 can be solved by minimizing: 

∑ ‖𝑟(𝒑
௦) − 𝜹(𝒑

௦)‖ଶே

ୀଵ + 𝜀‖𝒄‖ଶ       (4) 

The additional Tikhonov L2-regularization term 𝜀‖𝒄‖ଶ 
is introduced in case of instability or ill-condition 
situations. The optimal deformation coefficients 𝝎∙  are 
obtained given displacement 𝜹(𝒑∙): 

𝝎∙ = (𝜣்𝜣 + 𝜀𝑰)ିଵ𝜣்𝜹(𝒑∙)with 𝜃, = 𝜌(𝒑
௦ − 𝒄𝒋) (5) 

The above registration focuses on single-to-single 
surface situation and the complexity increases when 
applied to a multi-organ structure surface. In this structure, 
the organs are jointed as a whole, and the candidates of 
deformation are increased as well, which makes the 
registration more difficult. To verify the feasibility of 
applying the non-rigid registration algorithm to landmarks 
corresponding of multiple organs, we designed a series of 
strategies employing the non-rigid registration to the 
single or multiple surfaces. The registration can be 
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performed directly on the multi-organ structure, 
individually between single organs, or their combination. 

D. Statistical Shape Model Building 

The SSM is a deformable shape model, where the 
deformation patterns are learning by statistical analysis 
from a training set consist of corresponded landmarks. The 
SSM describes the distribution of vertices of the shape is 
consist of a mean shape and deformations upon the mean 
shape. When applied to image segmentation tasks, the 
SSM is introduced as Active Shape Model (ASM), and an 
Active Appearance Model (AAM) that describes the 
density feature around the vertices of the model is required 
to guide the deformations by matching the model to the 
images via the appearance feature. In this research, we 
focus on the building of multi-organ SSMs from the 
corresponded landmarks. 

An initial alignment of the training shapes is required to 
remove the global linear difference of translation, rotation 
and scaling among the shapes by the Procrustes analysis. 
This process concentrates the shapes obtained from 
different images to a unified space and helps preserve the 
actual varieties of shape counters instead of their spatial 
distribution in the images. 

In the training set of SSMs containing 𝑁 instances, the 
𝑖th landmark shape 𝒙 is composed of 𝑛 vertices 𝒙 =
(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)் ∈ ℝଷ, and the training set 
is 𝑿 = (𝒙ଵ, 𝒙ଶ, … , 𝒙ே) . To capture the deformation 
patterns, Principal Component Analysis (PCA) is 
employed to the training set. The mean shape 𝒙ഥ  and 
covariance matrix 𝑺 is firstly calculated: 

𝒙ഥ =
ଵ

ே
∑ 𝒙

ே
ୀଵ                (6) 

𝒔 =
ଵ

ேିଵ
∑ (𝒙ഥ − 𝒙)(𝒙ഥ − 𝒙)

𝑻ே
ୀଵ         (7) 

And the eigenvectors 𝚽 = (𝝓ଵ, 𝝓ଶ, … , 𝝓 ) and their 
corresponding eigenvalues 𝝀 = (𝜆ଵ, 𝜆ଶ, … , 𝜆 ), where 
𝑚 = max ( (𝑠 − 1), 3𝑛). The eigenvalues are sorted and 
the largest 𝑐 eigenvalues and eigenvectors are retained to 
move noise of the data. A proportion 𝛿 (usually ranged 
from 0.95 to 0.995) is used to obtain 𝐶 by: 

∑ 𝜆

ୀଵ ≥ 𝛿 ∑ 𝜆


ୀଵ             (8) 

III. EXPERIMENTAL RESULT 

A. Data Preparation 

In the experiment, 30 cases of manually labeled 3-D 
volume data of human abdominal organs are included in 
the training from the “Multi-atlas labeling beyond the 
cranial vault-workshop and challenge”. Four of the organs: 
the spleen, right kidney, left kidney, and liver is regarded 
as basic single organ element of the multi-organ SSMs. 
The rest of the labeled organs are remarked as background. 
The surfaces of the organs are generated from the volume 
data using the surface reconstruction method mentioned in 
Section II.A. 30 cases of surface mesh under four 
simplification levels are used in the registration. 

B. Surface Registration 

The registration of multiple surfaces can be merged into 
one joint surface or decomposed into matchings between 
surfaces of single organs. To verify the effectiveness of 
NICP performed on multi-organ structures, five surface 
registration strategies are implemented in the experiment. 
In method 1, the classical rigid ICP is performed to the 
jointed multi-organ surface, which is also a basic step 
among all the rest methods. In method 2, a NICP described 
in [10] is directly performed to the multi-organ structure. 
In method 3, after rigid ICP registration, a NICP 
registration is firstly applied to the multi-organ structure 
and the single organs are individually registered. The flow 
in method 4 is similar to method 3, except for the 
procedure, where single organ registration is advanced 
before multi-organ. In method 5, only single organ 
registration is retained after the global rigid ICP. 

Another variate is the simplification level of the 
surfaces. The deeper the simplification is, the fewer 
vertices left, and fewer computing resources are required. 
We prepared four simplification level 𝛼 ∈ {1,2,3,4} , 
which retains a ratio of 2ି(ఈିଵ)  vertices after the 
simplification. 

To evaluate the registration result, the Hausdorff 
distance is introduced in the paper. Given two pointsets 
𝑨 = {𝒂𝟏, 𝒂𝟐, … , 𝒂ேೌ

} and 𝑩 = {𝒃𝟏, 𝒃𝟐, … , 𝒃ே್
}, the one-

sided Hausdorff distance from 𝑨 to 𝑩 is defined as: 

𝜉ሚு(𝑨,  𝑩) = 𝑚𝑎𝑥
∈𝑨

𝑚𝑖𝑛
∈𝑩

‖𝒂 − 𝒃‖         (9) 

And the bidirectional Hausdorff distance between 𝐴 
and 𝐵 is defined as:  

𝜉ு(𝑨,  𝑩) = 𝑚𝑎𝑥(𝜉ሚு(𝑨,  𝑩), 𝜉ሚு(𝑩,  𝑨))    (10) 

The Hausdorff distance measures the maximum of the 
distances from each point in 𝐴 to the closest point in 𝐵.  

The five registration strategies described before were 
applied to the training set of 30 abdominal multi-organ 
surfaces under four simplification levels. The case of 
reference surface used in Section II.C was regarded as the 
target surface and the rest 29 cases of surfaces in the 
training set were registered to the target surface. The mean 
Hausdorff distance of the registration pair is shown in 
Table I.  

The comparison of simplification levels under the same 
method shows that the simplification levels only have a 
negligible effect on the registration results. The 
introduction of non-rigid registration enormously 
increases the accuracy of registration. Compared with the 
former methods, the independent registration of single 
organs in method 4 deforms the surfaces to individual 
organs before mapping them to the wrong organs in the 
multiple organ structures and increases the accuracy. In 
method 5, using more iteration of NICP of single organs 
instead of multi-organ level registration also increases the 
registration result. 
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TABLE I.  MEAN ACCURACY AND SPECIFICITY 

Hausdorff 
Distance 

SL 1 SL 2 SL 3 SL 4 

Method 1 21.44±6.36 21.26±6.31 21.12±6.25 21.12±6.25 
Method 2 [10] 16.26±5.72 15.74±5.44 15.24±5.3 14.62±4.91 

Method 3 16.24±7.40 15.55±7.34 14.97±7.17 14.89±6.55 
Method 4 13.68±6.44 13.26±6.25 13.34±5.99 13.68±5.86 
Method 5 12.37±6.20 11.92±5.90 11.73±5.50 12.00±5.47 

 
(a)                        (b) 

 
(c)                         (d) 

Figure 2.  One example of registration results with large Hausdorff 
distance: four surfaces representing (a) source mesh, (b) target mesh, 

(c)deformed mesh, and (d) a combination of target mesh and deformed 
mesh. The order of organs shown in each surface is: liver, right kidney, 

left kidney, and spleen. 

Although the Hausdorff distance of registration is 
improved by introducing the NICP algorithm, some cases 
of the registration results yield bad matching which may 
lead to negative effects to the SSMs. An example of 
registration results with a Hausdorff distance of 28.15 is 
shown in Fig. 2. By comparing the source mesh (cyan), the 
target mesh (green), and the moved source mesh (blue), a 
large difference after registration can be found in the 
bottom region of the liver organ. 

C. Shape Model Building 

The SSMs were generated from the landmarks that 
corresponded from the registration of multi-organ surfaces 
simplified in level 2. To evaluate the quality of SSMs built 
from the landmarks obtained by five different registration 
methods, three benchmarks of model quality, namely 
generalization ability, specificity, and compactness, are 
introduced in the experiment. 

The first property of an SSM is the generalization ability 
which is the ability to construct new instances out of the 
training set, as well as the ability to avoid over fittings. 
Generating new shapes is a vital ability in the application 
of SSM. Suppose 𝑀 is the number of modes used to build 
the model for fitting the current instance that is not 
included in the training set as much as possible. Suppose 
the number of instances inside the training set is 𝑡, the 
generalization ability 𝐺(𝑀) is expressed as: 

𝐺(𝑀) =
ଵ

௧
∑ |𝒚 − 𝒚

ᇱ(𝑀)|ଶ௧
ୀଵ         (11) 

where shape 𝒚 denotes the excluded instance and shape 
𝒚

ᇱ(𝑀) denotes the instance that best fitted to 𝒚 using 
the former 𝑀 modes of the SSM. 

To compare the generalization ability 𝐺(𝑀)  and 
𝐺ொ(𝑀)  of two models 𝑃  and 𝑄 , when 𝐺(𝑀) ≤

𝐺ொ(𝑀)  is satisfied for all of the 𝑀  and 𝐺(𝑀) <

𝐺ொ(𝑀) is satisfied for some of the 𝑀, then the model 𝑃 
is considered better than 𝑄 in the aspect of generalization 
ability. 

The second property, specificity, reflects the ability of 
generating shapes which are similar to those included in 
the training set, which is expressed as: 

𝑆(𝑀) =
ଵ

௧
∑ |𝒚(𝑀) − 𝒚

ᇱ|ଶ௧
ୀଵ         (12) 

where 𝒚  is the shape generated by the model with 𝑡 
eigenvalues on 𝑀  modes and 𝒚

ᇱ  is the most 
approximate shape to 𝒚(𝑀) in the training set. Similarly 
to the comparison rules of generalisation ability, for model 
𝑃  and model 𝑄  with their specificity 𝑆(𝑀)  and 
𝑆ொ(𝑀), when 𝑆(𝑀) ≤ 𝑆ொ(𝑀) is satisfied for all of the 
𝑀  and 𝑆(𝑀) < 𝑆ொ(𝑀)  for some of the 𝑀 , then the 
specificity of model 𝑃 is considered better than that of 
model 𝑄. 

The compactness assesses the ability of constructing the 
instance with the minimum number of modes possible. 
Defining 𝜆  as the 𝑖 th eigenvalue, the compactness is 
described by the accumulation of variance: 

𝐶(𝑀) = ∑ 𝜆
ெ
ୀଵ               (13) 

using 𝐶(𝑀) and 𝐶(𝑀) to express the compactness of 
two models 𝑃  and 𝑄 , the comparison rules is like the 
specificity. The generalization ability, specificity, and 
compactness of four multi-organ SSMs built from 
landmarks corresponded using five registration strategies 
are compared in Fig. 3, Fig. 4, and Fig. 5, respectively. 

 
(a)                          (b) 

 
(c)                          (d) 

Figure 3.  Generalization ability of SSMs built from landmarks 
corresponded by using for five registration strategies (1: rigid-ICP of 

multi-organ, 2: NICP of multi-organ, 3: NICP of multi-organ followed 
by single organs, 4: NICP of single organs followed by multi-organ, and 
5: NICP of single organs); (a) Spleen, (b) right kidney, (c) left kidney, 

(d) liver. 

Journal of Image and Graphics, Vol. 10, No. 3, September 2022

©2022 Journal of Image and Graphics 99



 
(a)                          (b) 

 
(c)                           (d) 

Figure 4.  Specificity of SSMs built from landmarks corresponded by 
using for five registration strategies (1: rigid-ICP of multi-organ, 2: 

NICP of multi-organ, 3: NICP of multi-organ followed by single organs, 
4: NICP of single organs followed by multi-organ, and 5: NICP of 

single organs); (a) Spleen, (b) right kidney, (c) left kidney, (d) liver. 

 
(a)                          (b) 

 
(c)                          (d) 

Figure 5.  Compactness of SSMs built from landmarks corresponded 
by using for five registration strategies (1: rigid-ICP of multi-organ, 2: 

NICP of multi-organ, 3: NICP of multi-organ followed by single organs, 
4: NICP of single organs followed by multi-organ, and 5: NICP of 

single organs); (a) Spleen, (b) right kidney, (c) left kidney, (d) liver. 

It can be found that the quality of SSMs built are relative 
to the registration accuracy in the landmarks 
corresponding procedure and the model qualities are 
increasing from method 1 to 5, as the accuracy of 
registration results. Thus, the introducing of NICP method 
applied to single-to-single organs registration strategy can 
benefit the SSMs building process. 

IV. DISCUSSION 

A. Surface Registration 

In the experiments of multi-organ surface registration 
by using five different methods, the comparison of 

registration accuracy measured by Hausdorff distance 
shows that the strategy of method 5, a single organ NICP 
registration pairs, is more beneficial to the registration 
accuracy, as shown in Table I.  

In method 1, a classic ICP method is performed to the 
registration of jointed multi-organ structures. The large 
error in the result shows the necessity of introducing non-
rigid transforms for the registration of human organs from 
different patients so that the deformation space is complex 
enough to describe the non-rigid distortion among 
different shapes. In method 2, the jointed surfaces 
containing four organs are directly matched to the target 
surface. Although there is no intersection among the four 
surfaces, as they are constructed from the voxel data of 
different organs, it is inevitable that some of the organs are 
anatomically close. In our experiment, the right kidney is 
posterior to the liver, and the left kidney is posterior to the 
spleen, which may lead to misregistration when different 
organs in method 2 are unable to distinguish. The accuracy 
of surface registration is improved by introducing the 
NICP, compared to the ICP method, but there is still a 
problem of misregistration between different organs. In 
method 3, a single-to-single registration among individual 
organs is attached after the multi-organ surface registration 
in method 3. However, the deformation of the surface is 
misled to the wrong organs in the previous multi-organ 
surface registration. The strategy of single-to-single 
registration is unable to fix the problem, which makes the 
accuracy of method 3 similar to method 2. In method 4, the 
order of the registration process is adjusted, and the single-
to-single registration is brought forward. This operation 
improved the accuracy by the registration between single 
organs firstly and alleviates the problem of misregistration 
among anatomically close organs. In method 5, the 
registration of multi-organ structures is removed and 
replaced by a complete single-to-single registration 
strategy, and this strategy achieves the best result.  

Compared with the registration of multi-organ structure, 
where the four organs are regarded as one united surface, 
the single-to-single strategy provides additional 
information of organ category and the misregistration of 
vertices belonging to different organs is forbidden, which 
improve the accuracy of the multi-organ registration. 

In the experiment, four levels of simplification are 
performed to the original surfaces which are obtained from 
the voxel data. The registration accuracy by the same 
method under different simplification levels is almost the 
same, which indicates that the simplification rarely affects 
the registration accuracy. It can be shown that, in process 
the simplification, the global geometry is nearly not 
changed despite the number of vertices and faces which 
are used to describe the surface are decreased rapidly as 
the simplification level raises. Although the accuracy 
cannot be improved by simplification, the use of fewer 
vertices in the registration can improve the efficiency of 
calculation and reduce the cost of computation resources. 

B. SSMs Building 

The generalization ability, specificity, and compactness 
are three indicators to measure the quality of SSMs built 
from different training sets of landmarks. It also reflects 
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the effectiveness of the corresponding method. The SSMs 
of four organs, which are built from the landmarks which 
are corresponded by using five different registration 
strategies, are evaluated and their generalization ability, 
specificity, and compactness are shown in Fig. 3, Fig. 4, 
and Fig. 5 respectively. The qualities of SSMs built are 
basically increasing from method 1 to 5 and positively 
relevant to the accuracy of registration. The SSMs built by 
using the proposed method of the highest accuracy also 
possess the highest quality, as the registration is important 
to the process of finding proper corresponding landmarks 
on each surface. 

V. CONCLUSION 

In this paper, a series of surface registration strategies 
are applied to the problem of SSMs building. The 
landmarks are corresponded from the surfaces which are 
registered by the G-RBF-based NICP method. Different 
single or multiple organs matching processes are 
conducted in each of the strategies. The experiment of 
SSMs building is performed on a training set containing 30 
cases of multi-organ surfaces. The result shows that the 
accuracy of surface registration is improved by the 
proposed method. Further, the quality of the SSMs is also 
improved by using the proposed corresponding approach.   
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