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Abstract—Rice plant diseases pose a high threat to rice 

production. However, the ability to produce better crops is 

required for any country's economic development. Thus, 

early detection of rice plant diseases is needed as it can also 

save the farmer's economic loss. This study presented an 

identification framework based on AlexNet architecture and 

transfer learning that can distinguish between healthy 

leaves, leaves infected with one of the three most common 

diseases, namely rice blast, brown spot, or bacterial blight, 

or leaves infected with a disease not covered by any of the 

three, and displays the results, nature, solutions, and 

interventions in an application. The Convolutional Neural 

Network (CNN) and the application were implemented 

using MATLAB. The datasets used to train the network 

were obtained from online repositories, and the trained 

network was tested on actual data taken from the farm. The 

training-testing division used for labeled images was 80%-

20%, and thus the network obtained a validation accuracy 

of 99.84%. The images taken from the field were captured 

and proposed to be deployed for remote monitoring via 

Raspberry Pi connected through Wireless Local Area 

Network (WLAN) interfaced in a Graphical User Interface 

(GUI). The identification of the AlexNet achieved a 

classification accuracy of 94% in testing a 2-inch radial 

distance of the camera to the subject with images taken 

from the field. Furthermore, a computed average 

percentage rating of 80.89% based on the evaluation 

responses from crop experts and other evaluators proved 

that the framework was functional, reliable, and efficient.  

Index Terms—AlexNet, transfer learning, convolutional 

neural network, rice plant disease, WLAN 

I. INTRODUCTION

Agriculture is a significant industry in the Philippines. 

The country's output meets domestic demand due to its 

location in Southeast Asia, which has alternating rainy 

and dry seasons. The Philippines ranked eighth in rice 

output in 2018, according to the United Nations Food and 

Agriculture Organization [1]. It is regarded as a critical 
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commodity in the country. However, farmers lose an 

estimated 37% of the rice crop yearly due to pests and 

diseases. Pest and disease damage accounts for a 

significant share of crop losses. A study included an 

expert-based crop health assessment and numerical 

estimates of production losses caused by diseases and 

pests for five main crops globally, including rice [2]. The 

result of this showed that rice output losses potentially 

reached 30%. On the other hand, crop management and 

early and correct diagnosis can significantly reduce losses. 

Crop protection specialists advise and remind farmers 

that early diagnosis or identification of rice diseases is the 

best approach to prevent the potential spread and increase 

the farmers' losses [3]. 

Traditionally, diseases were identified based on visual 

symptoms or pathogen detection in the laboratory. The 

visual assessment of the disease lesion is a subjective 

matter. It is susceptible to psychological and cognitive 

processes that might result in bias, visual illusions, and 

error [4]. 

Today's innovative and effective technology can 

fundamentally transform the agricultural landscape. Most 

studies believe farmers are now interested in 

implementing new agricultural practices as agriculture's 

credence in technology. According to [5], current 

improvements in data processing technology have helped 

smart farming expand exponentially, making it a 

significant ingredient in the success of current agriculture 

and assisting producers or farmers in the field. In recent 

decades, there has been a rising idealization with various 

technologies customized to farmers' circumstances to 

ensure the goal's long-term viability. 

Plant diseases can lower crop yields and provide low-

quality agricultural products, damaging the economy and 

people's livelihoods. As a result, establishing a fast and 

accurate method for detecting plant diseases is crucial in 

the agriculture industry. An automated plant disease 

detection and categorization system was designed and 

tested in [6], which is a more advanced version of [7]. 

The improved solution includes six parts and the 
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technique used in image processing. They developed a 

color transformation structure for the RGB leaf images in 

the first phase and applied device-independent color 

space transformation. K-means clustering algorithm is 

used for image segmentation in the second phase. Next is 

the identification of the pixels that are predominantly 

green in color. These pixels are masked using particular 

threshold values derived using Otsu's approach, wherein 

the primarily green pixels are masked. Then, the pixels 

with zero red, green, or blue values and pixels on the 

edges of the infected cluster were eliminated. They 

calculated the texture features for segmented infected 

objects in the fifth phase. The retrieved features are sent 

into a pre-trained neural network during the final phase. 

This algorithm evaluated five plant diseases: early scorch, 

cottony mold, ashen mold, late scorch, and slight 

whiteness. The result of the study established that it can 

significantly aid in the accurate diagnosis of leaf diseases 

with minimal computational effort. 

In this paper, transfer learning and the pre-trained 

network AlexNet were used to identify rice plant diseases, 

specifically rice blast, brown spot, and bacterial blight, 

which are the three most common rice diseases in the 

Philippines, according to International Rice Research 

Institute. The healthy leaves and diseases not covered are 

included as additional classes. The correct identification 

of rice plant disease can aid the farmers in applying 

appropriate treatment to the plant without relying on 

experts' availability. Furthermore, the experiments show 

that the camera's ideal distance to the leaf is 2-inch as it 

shows high accuracy in identifying the disease, which can 

be used as a reference to identify the disease remotely. 

The rest of this paper is organized as follows. Section 

II presents related works in identifying plant diseases. 

Section III discusses the methodology, followed by its 

application in Section IV. The results are presented in 

Section V and Section VI concludes this work. 

II. RELATED LITERATURE 

A. Convolutional Neural Network 

A study by Rahman et al. [8] utilized the use of CNN 

architecture, demonstrating a total accuracy of 93.3% in 

all eight diseases covered. In addition, a presented study 

using DCNN achieved an accuracy of 95.48% with a total 

dataset of 500 images. Furthermore, the same dataset was 

used to train shallow SVM, Back Propagation (BP), and 

Particle Swarm Optimization (PSO) classifiers which 

garnered an accuracy of 92%, 91%, and 88%, 

respectively [9]. Rathore and Prasad also presented a 

study using CNN architecture in which, in their study, the 

overall accuracy was 99.61%, with a training-testing 

division of 80%-20% [10]. In addition, a CNN model was 

also presented in the study of Hossain et al. [11], where 

an overall accuracy obtained was 97.82% on independent 

test images. In relation, the use of Multiclass CNN 

centered on classifying common rice plant anomalies was 

presented by Atole and Park [12] used 800 total images 

with 70%-30% training-testing division the accuracy that 

was obtained was 91.23%. Furthermore, Bari et al. [13] 

proposed a faster R-CNN technique in their study. A total 

of 2400 images from online and on-field datasets have 

been collected for the model, which garnered a total 

accuracy of 99.25%. 

B. AlexNet Architecture 

Some studies have used pre-trained CNN models to 

detect plant diseases and showed that Alexnet 

architecture outperforms VGG-16, Squeezenet, and 

Inception V3. According to [14], AlexNet has a higher 

accuracy of 97.4% and takes less time to classify six 

diseases and a healthy tomato class from a total of 13,262 

images compared to the deep VGG-16, which has a 

classification accuracy of 97.29%. Durmus et al. [15] and 

Setiawan et al. [16] used two architecture models, 

Alexnet and Squezenet, to detect diseases on plants in 

tomato fields or greenhouses and classify Maize leaf 

disease, respectively. AlexNet was superior to 

SqueezeNet for detecting diseases on tomatoes with an 

accuracy of 95.65% and for Maize leaf disease 

classification with an accuracy of 97.69%. On the other 

hand, AlexNet, SqueezeNet, and Inception V3 are three 

pre-trained CNN models used in a study to identify the 

severity of tomato late blight disease. The architectures 

utilized two methodologies: transfer learning and feature 

extraction. AlexNet outperforms the other two 

architectures obtaining the highest levels of accuracy in 

both approaches, 89.69 % and 93.4 %, respectively [17]. 

In addition, the AlexNet architecture was employed as a 

classifier in two more studies to detect diseases on grape 

and mango leaves and plant diseases with datasets, all of 

which had good accuracy [18], [19]. Lastly, another study 

utilized an AlexNet neural network to identify three 

common rice leaf diseases: bacterial blight, brown spot, 

and leaf smut, and achieved a 99% accuracy [20]. 

C. Conventional Way of Identification 

Traditional methods of identifying rice disease are 

mainly done manually and tend to be unreliable, 

expensive, and time-consuming. According to Bari et al. 

[13], the mapping technique for detecting rice diseases is 

quite simple and straightforward. However, it is easy to 

make mistakes in identification. Moreover, in the study of 

Shrivastava et al. [21], it was stated that the visual 

examination of the disease is a subjective matter that may 

fail to diagnose. In addition, pathogen identification in 

the laboratory is a time-consuming process. Likewise, 

according to PhilRice [22], the Conventional assessment 

methods are not always reliable because symptoms can 

be caused by various factors, including nutrient or water 

deficiency. 

D. Technology in Rural Areas 

According to the National Information and 

Communications Technology Household Survey, cellular 

signals cover 92% of surveyed barangays, with 3G 

technology still dominating rural areas. Some locations 

still lack telecommunications towers, fiber optic cable, 

and free WiFi despite having access to electricity. 

Correspondingly, cellular networks cover around 91% of 

the barangays, with urban areas having 10% higher 
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coverage than rural towns. Rural areas are more likely to 

have 3G or 2G as the strongest signal in their localities 

than urban barangays [23]. 

According to [23], Filipino families pay an average of 

PHP 1,280.59 per month for internet connection, with 

urban households spending more (PHP 1,406.99) than 

rural households (PHP 1,008.33). By comparing the 

median monthly family income of poor and low-income 

families, [24] determined that internet access in the 

Philippines remains unreasonably expensive. 

III. METHODOLOGY 

This section presents the methodology used in this 

paper. The training phase, workflow, and validation are 

discussed. 

A. Training Phase 

Fig. 1 shows the training process flow chart for the rice 

plant disease identification system. The first layer of the 

pre-trained network, an AlexNet convolutional neural 

network, was fed with a total of 6318 images, comprising 

1,370 for each rice plant disease, 897 for healthy leaves, 

and 1,311 for additional rice plant diseases not covered 

by the study. These images were classified into folders 

with the names of the respective rice plant diseases. 

Loading of photos is the initial stage prior to the training 

process. The images were categorized into validation and 

training images. In this system, 80 percent of the images 

were utilized for training and 20 percent for validation. 

After loading AlexNet, its final three layers were replaced 

with a fully connected, a softmax, and a classification 

layer. With the imageDataAugmenter function, the RGB 

pictures were resized to 227×227×3 and then used as the 

network's input. The options for training are then 

provided. The loss function was reduced using Stochastic 

Gradient Descent with Momentum (SGDM). Other 

options, such as the size of the mini-batch, the maximum 

number of epochs, the initial learning rate, the option for 

data shuffling, the data to be used for validation during 

training, the frequency of network validation, an indicator 

to demonstrate training progress information, and 

additional options were set to observe the training 

progress.  

 

Figure 1. Training and validation process. 

B. Data Generation and Acquisition 

The researchers obtained images from datasets 

acquired from Mendeley Data online repositories. The 

datasets include the most common rice plant diseases, 

including rice blast, brown spot, and bacterial blight, as 

well as healthy rice plants and diseases not covered by 

the study. The datasets comprise a total of 6,318 images 

covering all the categories. The network was trained on 

5055 of these images, while the remaining 1263 were 

utilized to determine the validation accuracy. In addition, 

the total accuracy for the whole training period at regular 

intervals was calculated for each epoch. The overall 

accuracy score was utilized for performance evaluation. 

Fig. 2 displays one sample resized image for each rice 

plant disease exported from the application. 

   
(a)                              (b)                              (c) 

Figure 2. Exported sample images a.) Rice blast, b.) Brown spot, c.) 
Bacterial blight. 

C. Data Augmentation 

The images from the previously stated online data 

repositories were rotated at 90, 180, and 270 degrees 

increments. These rotated photos were then added to the 

total amount of images for each dataset, providing more 

enhanced resources to enhance the validation accuracy 

and reliability of the trained model. The size of these 

images was not modified because AlexNet already has 

the technique and function that automatically resizes the 

images to 227×227×3 pixels, which is the required image 

size for the training phase. 

D. Rice Plant Disease Identification  

Fig. 3 presents the flow diagram of the rice plant 

disease identification. The classification of rice disease 

can detect if the leaf is healthy or infected with one of the 

diseases recognized by the network. It can also classify if 

the disease is not covered with no data available. 

 

Figure 3. Rice plant disease identification flow diagram. 
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Figure 4. Experimental set-up of the proposed deployment. 

Using a Raspberry Pi (RPi) camera or otherwise, an 

input image for testing was captured. This image was 

analyzed by the rice plant disease identification system, 

which used a trained neural network, as illustrated in Fig. 

4. Suppose the study covers the discovered rice plant 

disease. In that case, the application can present the 

details of the disease, its nature, and the most appropriate 

solutions and interventions. In contrast, 'Healthy,' 

'Disease Not Covered,' or 'No data available' is indicated 

if the identification is not one of the three rice plant 

diseases included in the study. 

E. Validation 

The identification framework utilized a confusion 

matrix to present an output matrix and assess the 

validation and testing accuracy of the trained model. 

Classification accuracy was used to evaluate the model's 

accuracy by calculating the percentage of correct 

predictions to the total number of samples. After 

calculating the classification accuracy for each category, 

the sum of their means is divided by the number of 

classification categories. Equation (1) shows the equation 

for the classification accuracy per category. 

 

Accuracy =  
Number of Correct Predictions

Total Number of Samples
    (1) 

 

Equation (2) presents the mathematical representation 

of the Jaccard Similarity Index, which was employed in 

the study to evaluate further and cross-validate the 

accuracy of the network with the ground truth. The 

Jaccard index ranges from 0 to 1. It determines which 

elements from the two categorical data sets are shared or 

unique. The set of ground truth is represented by 𝐴, and 𝐵 

represents the tested category of the disease, and | ⋅ | the 

cardinality of the set. 

 

𝐽(𝐴, 𝐵) =
|𝐴∩𝐵|

|𝐴∪𝐵|
                            (2) 

IV. APPLICATION 

The Waterfall Model presented in Fig. 5 was utilized 

in developing the application to discuss the procedures 

for its completion comprehensively. It is a structural 

model that adopts a linear and sequential method in 

system development presented. 

 

Figure 5. Waterfall model for the application. 

A. Requirement Analysis 

In developing the application, initial requirements must 

be determined. The researchers collected rice plant leaves 

images that involve the five categories from Kaggle and 

Mendeley Data. Also, the nature of the diseases and the 

solutions and interventions for each to be presented on 

the application were gathered. The collected images were 

used to train a convolutional neural network using 

AlexNet architecture. The RPi camera was connected to 

the RPi microcontroller to transmit the image to the 

application created and designed using the MATLAB 

App Designer. Fig. 6 shows the interface developed with 

the example leaf identified.  

 

Figure 6. User interface of the identification process. 

B. Implementation 

The functions for the AlexNet architecture are 

imported through the Deep Learning Toolbox Model for 

the AlexNet Network of MATLAB. Additionally, the 

MATLAB Support Package for RPi Hardware must be 

installed in the software to connect the RPi 

microcontroller and camera to the application. MATLAB 

App Designer was the main platform to develop the 

necessary application for the study. The researchers used 

an Acer Nitro 5 personal computer with specifications of 

8 GB RAM and Intel(R) Core(TM) i510300H CPU @ 

2.50GHz processor. The application's functionality and 

features were based on the necessary information 

enumerated on the specific objectives. The experimental 

configurations that were used are summarized in Table I. 
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TABLE I.  PARAMETERS USED IN TRAINING 

Deep Learning Architecture AlexNet 

Training Mechanism Transfer Learning 

Dataset Type Colored Images with 

Background 

Data Division (Training-Testing) 80%-20% 

Number of Epochs 6 

Solver Type SGDM 

Base Learning Rate 0.0001 

C. Testing 

The testing procedure for the application includes unit 

testing, system testing, and acceptance testing. The unit 

testing was conducted to assess the small-scale 

demonstrable features of the application individually. The 

test case was also performed for the system testing to 

determine if the different features perform as expected 

and confirm if it complies with all necessary standards, 

guidelines, and specifications. After undergoing the unit 

and system testing, the researchers let the crop experts 

and other research respondents use the application and 

answer the evaluation form reformed from ISO 25010 for 

the acceptance testing. 

D. Operation and Maintenance 

After conducting effective testing procedures, the 

researchers included the features recommended by the 

test correspondents using the app designer. The improved 

application was packaged through the software and 

transferred to the user's personal computer. Subsequently, 

to completely deploy the application, the researchers 

assigned an IP address for the RPi microcontroller 

through the installed MATLAB support package for RPi 

Hardware to connect it to the user's WLAN. 

V. RESULTS AND DISCUSSION 

Fig. 7 shows the visualization of the network 

architecture and detailed information about the network 

layers of the trained network. The pre-trained AlexNet's 

last three layers are set up for 1000 classes. For the new 

identification problem, these three layers are replaced by 

the class of rice plant diseases. For achieving the 

objective of this study, these layers were replaced by a 

fully connected layer, a softmax layer, and a 

classification layer. 

 

Figure 7. Layers of the trained network. 

Fig. 8 shows the training progress, validation accuracy, 

and training time. The network was trained using 5055 

images containing the three most common rice plant 

diseases, healthy, and the diseases not covered by the 

study. The other 1263 images were used to determine the 

validation accuracy of the trained network. Upon training, 

the computed validation accuracy was 99.84%, indicating 

that 1261 images were correctly identified and two were 

wrong. The total elapsed training time utilizing 6318 

images was 167 minutes and 35 seconds. 

 

Figure 8. Training progress of the trained network. 

 

Figure 9. Confusion matrix for the trained network. 

Based on the confusion chart in Fig. 9, two images 

were identified incorrectly out of the 1263 images used 

for testing. The true class of these incorrect predictions is 

rice blast, but they were identified as brown spots. To 

calculate the validation accuracy using the classification 

accuracy formula, we need to get the ratio of the correct 

predictions to the total number per row and get the 

overall mean. With the use of (1) and (2), the computed 

overall classification accuracy was 99.85%. 

The network showed good accuracy and was tested on 

a rice farm in Brgy. Panipuan, Mexico, Pampanga, 

Philippines. Due to the limited presence of rice diseases 

in the field, only the brown spot and bacterial blight were 

tested, along with the healthy leaves, which the crop 

expert verifies. The captured images were set to 2-inch 

and 4-inch radial distances to test the accuracy in 

identifying the disease to the camera's distance to the 

object. Fig. 10 shows the captured data from the field of 

a.) brown spot and b.) bacterial blight 
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a.) Brown spot b.) Bacterial blight 

Figure 10. 2-inch radial distance captured images. 

The summary of the accuracy of the camera's distance 

to the leaf gathered from the testing procedure is 

presented in Fig. 11. A total of 150 images were tested, 

30 from each category: bacterial blight, brown spot, 

disease not covered, healthy, and rice blast. The images 

were also captured using 2 and 4 inches as radial 

distances, the leaves were analyzed, and the diseases 

were identified using the trained neural network. 

 

Figure 11. Summary of actual identification results. 

 

Figure 12. Confusion matrix for the 2-inch radial distance testing. 

In Fig. 12, the confusion matrix is obtained by 

comparing the ground truth as a reference and the images 

captured with a radial distance of 2 inches. From the 

confusion matrix, the trained network has mistakenly 

identified one bacterial blight as rice blast, two brown 

spots as healthy and rice blast, three diseases not covered 

as bacterial blight, healthy and rice blast, and three rice 

blast as bacterial blight and brown spot. The network 

identified the 30 images tested for healthy leaves 

correctly. Generally, 141 images were accurately 

identified by the network.  

Fig. 13 shows the confusion matrix obtained by 

comparing the ground truth as a reference and the images 

captured with a radial distance of 4 inches. The trained 

network has mistakenly identified 18 bacterial blights as 

mostly healthy and rice blast, 15 brown spots as mostly 

healthy and rice blast, eight diseases not covered as 

bacterial blight, healthy, and rice blast, and 11 rice blast 

as bacterial blight and brown spot. The network identified 

the 30 images tested for healthy leaves correctly. 

Generally, 98 images were accurately identified by the 

network.  

 

Figure 13. Confusion matrix for the 4-inchesradial distance testing. 

Table II summarizes the classification accuracy and 

Jaccard index for each category upon testing. The highest 

obtained accuracy for the 2 inches radial distance was 

from the healthy leaves with 100%, while the lowest was 

from both the disease not covered and rice blast with 90% 

accuracy. Additionally, bacterial blight and brown spot 

classification accuracies were 96.67% and 93.33%, 

respectively. Cross-validation of the categorical data 

achieves the highest Jaccard index of 0.9355 obtained 

from the healthy leaves. In contrast, the lowest index of 

0.8182 was from the rice blast-infected leaves. 

Furthermore, the Jaccard index of bacterial blight, disease 

not covered, and brown spot correspondingly were 

0.9063, 0.9000, and 0.8750. 

Additionally, the highest obtained accuracy for the 4 

inches radial distance was from the healthy leaves with 

100%, while the lowest was from the bacterial blight with 

40% accuracy. Cross-validating, the highest Jaccard 

index of 0.7333 was obtained from the disease not 

covered. In contrast, the lowest index of 0.2857 was from 

the bacterial blight infected leaves. The Jaccard indices 

indicate the network's performance in overall identifying 

the rice plant's status and correctly identifying and 

misclassifying the network. The misclassification affects 

the Jaccard index, showing that the 4-inch radial distance 

performs poorly.  
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TABLE II.  SUMMARY OF CLASSIFICATION ACCURACY AND JACCARD 

INDEX FOR EACH CATEGORY 

Category 
Classification Accuracy (%) Jaccard Index 

2 Inches 4 Inches 2 Inches 4 Inches 

Bacterial 
Blight 

96.67 40 0.9063 0.2857 

Brown 

Spot 
93.33 50 0.875 0.4688 

Disease 
Not 

Covered 

90 73.33 0.9 0.7333 

Healthy 100 100 0.9355 0.4915 

Rice Blast 90 63.33 0.8182 0.5 

Average 94 65.33 0.887 0.4952 

 

 

Figure 14, Summary of acceptability testing. 

In Fig. 14, the summary of the acceptability test to 

determine the functional suitability, reliability, and 

performance efficiency of the application is illustrated. 

The computed average scores for each of the evaluated 

parameters of the application were 4.1, 3.9, and 4.13, 

respectively, which are also equivalent to 82%, 78%, and 

82.37%, respectively, correspondingly. The computed 

overall average percentage of the application 

accumulated from the percentage score per parameter was 

80.89%, and their average percentages showed that the 

evaluators agreed that all items were satisfied by the 

system. 

VI. CONCLUSION AND RECOMMENDATION 

Utilizing a pre-trained AlexNet that was trained using 

transfer learning with images with background achieves a 

validation accuracy of 99.84%. The trained network 

could classify bacterial blight, brown spot, rice blast, and 

the diseases not covered. Additionally, healthy leaves are 

added to the classes for identification. The system 

deployment proposed using an RPi to capture the images 

remotely, interfaced with a GUI connected using WLAN. 

After conducting multiple tests on two different radial 

distances, an inference may also be drawn that the 2 

inches radial distance is more reliable with 94% accuracy 

than the 65.33% accuracy of 4 inches distance. The 

average time delay of 21.7163 seconds in executing ten 

identification processes also implies that the time 

efficiency of the framework is economical. In addition, 

based on the computed overall average percentage rating 

of 80.89% from the responses of the crop experts and 

other evaluators. For further improvement, more images 

can be utilized from various field settings in training the 

convolutional neural network. The number of categories 

can also be increased to expand the rice plant disease 

identification scope. For better portability, the trained 

network, RPi camera, and application to the RPi 

microcontroller can also be integrated. 
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