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Abstract—This study focuses on identifying and detecting 

several types of vehicles, with each vehicle’s position depicted 

by drone technology or an Unmanned Aerial Vehicle (UAV) 

camera. The vehicle’s position is captured from a height of 

350 to 400 meters above the ground. This study aims to 

identify the class of vehicles that travel on the highway. The 

experiment employs several convolutional neural network 

models, including YOLOv4, YOLOv3, YOLOv7, 

DenseNet201-YOLOv3, and CSResNext50-Panet-SPP, to 

identify this type of vehicle. Meanwhile, the Darknet 

algorithm aids the training process by making it easier to 

identify the type of vehicle depicted in MP4 movies. Several 

other Convolution Neural Network (CNN) model 

experiments were conducted in this study, but due to 

hardware limitations, only these 5 CNN models could 

produce an optimal accuracy of up to 70%. Following several 

experiments, the CSResNext50-Panet-SPP model produced 

the highest accuracy while detecting 100% of video data 

using UAV technology, including the volume of vehicles 

detected while crossing the road. Other CNN models 

produced high accuracy values, such as DenseNet201- 

YOLOv3 and YOLOv4 models, which can detect up to 98% 

to 99% of the time. This research can improve its capabilities 

by detecting other classes that are affordable by UAV 

technology but require hardware and peripheral technology 

to support the training process.   

 

Keywords—unmanned aerial vehicle, vehicle, Convolution 

Neural Network (CNN), CSResNext50-Panet-SPP, 

densenet201-YOLOv3, YOLOv3, YOLOv4, YOLOv7  

I. INTRODUCTION 

All vehicles can be detected when crossing the highway 

above ground level. The condition of detecting vehicles 

that are visible above this height is a problem that needs to 

be studied optimally so that errors do not occur in 

determining the type of vehicle. When using a camera 

from an unmanned aerial vehicle (UAV) to capture 

vehicle-type data, dynamic footage is produced which 

often contains unsteady camera movement on some 

moving objects. Drone technology was initially used in the 

military field and then widely applied in the civilian 

field [1]. In recent years researchers have become 

interested in conducting image processing research on 

 
Manuscript received October 18, 2022; revised February 3, 2023; 

accepted March 13, 2023. 

datasets generated from drones using deep learning. The 

application of drones in various fields such as agriculture, 

aerial surveys, mapping, photography, surveillance, and 

others has an impact on the data explosion and the 

abundance of datasets produced by drones [2]. The 

consequence is that processing datasets to extract 

information automatically becomes a necessity, and 

computer vision becomes one of the relevant information 

technologies to do the job [3]. Drones are capable of 

acquiring thousands of high-resolution images during a 

single flight, which the operator must analyze. For 

example, in the case of an object search operation, it is 

necessary to find small objects (e.g., cars) in the image. 

The size of such an object will not exceed 50 × 50 pixels 

in an image size of 5000 × 3000 pixels. Eventually, this 

task cannot be completed for one person without 

automation, due to the accumulation of additional and 

more complex image data [4]. Therefore, we need a 

computational engine capable of performing object 

detection analysis automatically, accurately, and quickly. 

Drones were initially used in coastal and marine areas, 

but their use has expanded to include plantation, forestry, 

and mining areas. In addition, the use of drones is also 

increasingly widespread and developing, if initially they 

were only used for documentary activities, now they can 

be more analytical [5]. Analyzing drone-captured data 

becomes quite easy with follow-up information in the form 

of metadata recorded in each photo produced by the drone. 

This metadata stores important information in the form of 

x and y coordinates and relative elevation points. At first, 

the flying altitude of the drone during the flight preparation 

stage will affect its quality. As an initial stage of 

adjustment, the flight altitude can be set to vary from 300 

meters to 400 meters above ground level. Conversely, if 

the drone flies higher it can cover a wider area. But, the 

spatial resolution will decrease so that the detail of the map 

scale and the resulting accuracy is also lower [6]. 

UAV-captured images and their post-analysis are two 

major categories that fall in commercial applications of 

aerial vehicles. Applications in aerial images include 

landslide mapping, search and rescue, wildlife monitoring, 

the creation of digital elevation maps, and using mounted 
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cameras for a multitude of purposes. The technology 

behind innovation in aerial applications is responsible for 

digital video stabilization, autonomous navigation, and 

terrain analysis [5]. One of the attractions is that many 

researchers apply and use deep learning to handle and 

process drone data acquisition results, as well as to analyze 

and detect vehicle object class systems. Several 

researchers state that deep learning technology is one of 

the state-of-the-art in the field of artificial intelligence and 

computer vision for the domains of image classification, 

object detection, and Natural Language Processing (NLP). 

The data obtained from drone acquisitions are mostly in 

the form of images and videos, where drones are flown at 

various altitudes ranging from low altitudes (10–99 m) and 

medium altitudes (100–400 m) [7]. 

Object detection in low-altitude UAV datasets has been 

performed using deep learning with some CNN models 

(example of object detections in Fig. 1). Object detection 

is a technique of identifying variable objects in a given 

image and inserting a boundary around them to provide 

localization coordinates. Object detection in aerial images 

has gained the attention of researchers working in this field 

as aerial vehicles provide stereo views from a camera 

mounted on them. Deep learning-based object detection 

approaches are revolutionizing autonomous navigation 

vehicles’ capabilities [8].  

The work presented in the paper is intended to offer 

detection accuracy in a wide-ranging indication of the use 

of deep learning-based object detection approaches 

specifically on low-altitude aerial datasets. It will serve as 

a repository of all current developments in deep learning-

based object detection in low-altitude datasets and also 

help young researchers to consult research issues for 

further perusal in this field. 

 

 

Figure 1. Examples of object detection in UAV datasets [9, 10]. 

 

A. Focus and Motivation 

Our research is focused on the need to find several 

methods based on the convolution network model for 

object detection in low-altitude UAV datasets and group 

them into three classes. This research is expected to find 

out the exact accuracy based on the height of the object 

depicted on the drone/UAV dataset. So that when 

determining the class for each object, it becomes optimal 

and reduces errors due to objects that are not too clearly 

depicted on the UAV Dataset.  

In addition, from the deepening of several experiments 

in detecting objects, the role of the deep learning method 

becomes very dominant to increase the recognition of 

objects in the UAV Dataset. Such as the average accuracy 

in recognizing the detected object. Although, in general, 

visible objects range between 500–600 meters above the 

ground surface. 

The main objectives of this research are as follows: 

1) The system reviewed the taxonomy of deep learning 

object detection algorithms using several 

Convolution Neural Network (CNN) models on 

UAV Camera 

2) The system can better detect vehicle types from a 

height of 300–400 Meters above sea level more 

optimally by using a UAV camera. 

3) The system could produce optimal MAP from each 

CNN model used so that it can be a guideline for 

other researchers in detecting objects including the 

calculation of their volume from the UAV camera. 

4) This research can be a new approach, including being 

one of the raw models in detecting visible objects 

using a UAV camera. 

In addition, carrying out object detection research using 

a UAV camera for the detection of vehicle objects using 

deep learning algorithms needs to consider two main 

factors, namely the accuracy of object detection and 

calculating its volume as well as producing optimal data 

processing speed. Some of the advanced deep learning 

algorithms in the object detection model are YOLOv4, 

YOLOv3, YOLOv7, Densenet201-YOLOv3, and 

CSResNext50-Panet-SPP. The display of the detection 

results using one of the CNN models from the Deep 

learning algorithm is shown in Fig. 2. 

 

 

Figure 2. MAP results from object class detection from UAV datasets 

on public highways using DenseNet201-YOLOv3. 

 

Figs. 2–3 illustrate the MAP results from processing 

UAV Datasets in determining the object's class that passes 
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through public highways. With the training process carried 

out by the Darknet algorithm, it will classify the object 

class that is detected in an object in the bounding box. The 

concept of object class detection from UAV Datasets in the 

video form is a new approach that can continue to be 

developed for MAP. The difference between the two 

figures occurs at the initial time detection of objects of 

each class for the CSResNext50-Panet-SPP model. The 

percentage of accuracy starts at more than 88% for the 

CSResNext50-Panet-SPP model, while in the CNN model, 

the average accuracy percentage starts at 60–65%. After 

that, it only reaches 100%. Especially when detecting 

motorcycles, the dataset from the drone in video form is 

too small. 

 

 

Figure 3. MAP results from object class detection from UAV datasets 

on public highways using CSResNext50-Panet-SPP. 

 

II. LITERATURE REVIEW 

Drones or Unmanned Aircraft have been developing 

and the existence of UAV technology in the world of 

aviation continues to experience increasing development 

in recent years. However, as air transportation, it is also 

used in commercial and military circles, including a 

technology that has other functions such as regional 

mapping, the film industry, maritime patrols, disaster, 

medical assistance, and forest fire detection [8]. One of the 

technologies mentioned is the presence of UAVs 

(Unmanned Aerial Vehicles) [11]. UAV is a pilotless 

aircraft that is operated using a remote control or automatic 

control. UAVs can be remotely controlled and have 

various shapes, sizes, configurations, and characters. The 

results of data collection from Drones/UAVs are used for 

the implementation of several deep learning algorithms for 

object detection in the processing of datasets generated by 

drones. The researcher also uses a UAV Dataset that is 

flown at low altitudes, and in his research, the dataset used 

is the result of drone acquisition at an altitude of 350m [12]. 

There are at least four categories in computer vision on the 

UAV Dataset, namely image object detection, video object 

detection, single object tracking, and multi-object tracking. 

The characteristics of the dataset are categorized into two 

types, namely urban and sub-urban areas. Several 

researchers said that there were several issues and 

problems with the UAV Dataset, namely small objects, 

occlusion, variations in spatial scale and resolution, and 

class imbalance [13, 14]. 

Another research where there are so many obstacles that 

are mostly faced by UAVs is the difficulty of landing on a 

base. This difficulty can be solved by the renewal of UAVs 

which is the development of landing vision by detecting 

the helipad to prevent the risk of accidents that could be 

harmful and could lead to death [15]. Another study uses 

UAVs to detect forest and land fires so that they have an 

impact on ecosystem damage, besides that, forests in 

Indonesia continue to shrink every year due to forest fires. 

One solution to this problem is to use a Unmanned Aerial 

Vehicle (UAV) to make direct observations through the 

camera. The detection of fire produced an average 

accuracy of 0.92. The best accuracy was obtained on the 

3rd test with a precision score of 0.96, a recall score of 0.98, 

and an accuracy score of 0.96, so this research can 

continue to be developed [16]. In another paper, an 

approach for vehicle detection is presented with virtual 

line-based sensors which are just straight detection lines 

that are first set on-road lanes. The proposed method has 

an outstanding advantage in any condition such as 

excellent traffic jams as well as sunny, cloudy, and rainy 

days, or nighttime, or even tunnels with complex 

illumination [17]. 

Several studies on UAVs have been widely published in 

international journals and conferences in different 

application areas such as search and rescue [18], air 

security and monitoring [19], disaster management 

planning [20], plant management vision [21], and mission 

communication [22]. The vehicle has the ability to fly at 

different speeds to hover over the target, perform outdoor 

flights, and maneuver at a close range of objects over a 

suitable place [23]. These features make it suitable for 

operations where human intervention becomes difficult to 

perform completely and can replace humans. Some of the 

major challenges in low-altitude UAV-based object 

detection when compared to standard images such as 

large-scale variety, dense distribution of objects, arbitrary 

orientation, object relative motion, and turbulence of 

atmospheric conditions cause objects to become 

blurry [24]. All these challenges lead to an object 

development detection approach in low-altitude aerial 

images using low-level scene features as well as 

immersive features to process. There are some other 

important critical issues in object detection on drone 

platforms due to differences in mAP can be seen [25]. An 

overview of the percentage of drone technology utilization 

in several types of activities supported by deep learning 

algorithms. Such implementations can be seen in Fig. 4. 

It has been quite evident in recent years that there has 

been a boost in research publications due to the emergence 

of deep learning-based object detection, but achieving a 

high level of accuracy is challenging in the case of low-

altitude UAVs. The domain of object detection was infinite 
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in nature if we consider each development, we would 

strictly stick to algorithms that have scope in low-altitude 

aerial images [26]. The literature on object detection in 

aerial images had been classified into two categories: 

classical and modern object detection approaches. The 

classical categorization includes conventional techniques 

which include vision-based as well as machine classifier-

based approaches. Whereas modern deals with deep 

learning-based algorithms which are our focus area. 

Classical approaches to object detection include all major 

developments made in the field of aerial images using 

handcrafted features-based machine learning 

approaches [27]. 

 
Figure 4. Some examples in some field of the use and utilization of 

object detection [1]. 

III. MATERIALS AND METHODS 

This study is for vehicle object recognition on UAV 

datasets with distances between surfaces ranging from 300 

to 400 m. Detected objects are classified into three types: 

cars, trucks, and motorcycles. There are two types of 

trucks: trailer trucks and regular trucks. The car is not 

classified by vehicle type. The motorcycle object appears 

to be very small, making it difficult to distinguish it from 

a bicycle.  

The preparation stage, training stage, and testing stage 

are the three major parts of this research. The preparation 

stage consists of gathering video data and analyzing the 

video dataset. All collected data is processed for the 

training stage, and the weight of each data is calculated so 

that it can be recognized during the testing process. The 

testing process involves recognizing test data based on 

previously collected training data. Furthermore, a more 

detailed explanation can be found in the sections that 

follow. 

A. Collecting Materials And Preparation 

An overview of the processes that occur at the 

preparation stage can be seen in Fig. 5. 

Fig. 5 depicts the preparation stage. At this point, video 

data is collected using Drone/UAV technology, and the 

drone video dataset is used as training data. However, the 

object detection algorithm cannot detect objects in a raw 

video without first being trained. As a result, videos 

captured by drones must be processed first for the machine 

to understand them. Each sample video from the drone is 

processed with FFMPEG to obtain screenshots of the 

video every few seconds. This process's goal is to prepare 

the image for the image labeling process. Image labeling 

is required to teach the machine which objects to identify. 

As shown in Fig. 6, the drone videos have been converted 

into new images. There is also a text file for each image 

which contains data of objects for the machine to learn in 

the image. 

 

 

Figure 5. The preparation stages in vehicle object detection. 

 

After converting and labeling the images, another file 

must be prepared. A file called trainer. Data containing 

labeled drone images, total class value, and training output 

folder must be created. Another process in this stage is to 

obtain pre-trained convolutional weight and configuration 

of the CNN model from the internet. Then, the 

configuration file must be configured depending on the 

total class. These configurations can be seen in the 

following section as training hyperparameters. 

Fig. 7 illustrates the training stage, which generates 

weight files. As stated before, it requires files which are 

images for training, image labels, class identity, training 

data, pre-trained model weight, and a matching model 

configuration before training. To decrease the variance 

when training, the training configuration of some 

hyperparameters for all CNN models is equivalent to one 
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another. The equated training hyperparameters are shown 

in Table I. 

 

Figure 6. Labeled drone image samples. 

 TABLE I. DARKNET TRAINING CONFIGURATION 

Hyperparameters Value 

Batch 32 

Subdivisions 32 

Max_Batch 6000 

Classes 3 

 

After preparing the required files, the training stage can 

be started. The training stage iterates until the iteration 

modulus is either completed or until it finishes the 1000th 

iteration modulus. This stage aims to use the drone image 

data and supporting files to be trained for each iteration 

using the Darknet algorithm. The results of the training 

phase are weight files.  Weights are generated by the 

choice of a target-object-space, which depends heavily on 

the nature of the objects in the training set and the 

predicted property”. To obtain the most accurate data 

possible, the training process is conducted using the same 

device and training dataset. The result would be in a less 

ambiguous weight file. To support the experiment, the 

Darknet framework was used to help only in the training 

process which trained some CNN models. 

B. Training Dataset 

The next stage is the training process which can be seen 

in Fig. 7. 

 

 
Figure 7. The training stage in vehicle object detection. 

TABLE II. BASIC INFORMATION OF CNNS 

CNN Model 
Total 

Layers 
BFLOPs 

Network 

Size 

YOLOv3 81 65.319 416 

YOLOv4 137 59.578 416 

YOLOv7 132 43.625 416 

DenseNet201- YOLOv3 300 44.438 416 

CSResNext50-Panet-SPP 112 99.411 608 

 

Table II shows the basic information on CNNs that are 

used for the experiment. YOLOv3 has the least layers with 

only 81 layers which could indicate the smallest model in 

the experiment. DenseNet201- YOLOv3 on the other hand 

has a total layer of 300. DenseNet201-YOLOv3 was the 

largest model tested in the experiment according to the 

number of layers. However, information about the model’s 

architecture alone cannot justify the size and real-world 

performance of the model. BFLOPs and network size are 

parameters that can determine the model performance. In 

this case, the table indicates that YOLOv7 has the lowest 

required performance to run on a single image (BFLOPs) 

even with a total layer of 132. This is followed by 

DenseNet201-YOLOv3 with a required performance of 

44.438 BFLOPs. Meanwhile, the highest BFLOPs value in 

the experiment is 99.411 BFLOPs, which is required to run 

CSResNext50-Panet-SPP. To prove this performance fact, 

tests need to be done which will be explained further in the 

paper. 
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C. Testing Process 

After the training process was carried out, it was 

continued with the testing process on vehicle object data 

taken from other UAV Datasets. Based on the training data, 

all testing data would be detected optimally. In this 

experiment, four CNN models were also used to know 

which one is optimal for carrying out the vehicle object 

detection process. The stages of the testing process can be 

seen in Fig. 8. 

Fig. 8 illustrates that after the training is complete, the 

system can start the testing phase by importing the required 

files for testing. These files are the trained weight file, 

configuration file, and trainer data file. The testing process 

starts by taking a frame from the UAV Dataset in video 

form. Then, the system calculates the prediction using non-

max suppression (NMS). The other process is drawing the 

bounding box and the system will determine the call traffic 

type and calculate the volume of the object class as the 

target object. The bounding box usually comes with other 

information like class and coordinate. This information is 

important for vehicle object detection and keeping ID. This 

is to generate the appropriate virtual key for the UI to 

receive after the system succeeds to detect the vehicle 

object. Then, an algorithm using conditional cases decides 

which behavior to apply within the case including showing 

the accuracy starting with the lowest percent will grow up 

after detecting the vehicle clearly. Then, the system draws 

a line to see the direction of the object if it has moved in 

the frame. Finally, the bounding box of the vehicle should 

respond to the ID key and accuracy percent according to 

the predefined bindings. 

 If the different objects are too close and have the same 

ID, then two choices are made, if yes, then a new ID is 

assigned, but if not, the old id is assigned. However, for 

the assigned ID and old ID. At the same time, the object is 

shown from the processed frame. In this testing stage, the 

output is accuracy, precision, F1 Score, and others, so that 

the accuracy percentage in vehicles detection in the video 

form can be acquired by the UAV Dataset in the show 

frame process with the output testing is the performance of 

vehicle detection on the video UAV Dataset. The outputs 

are metrics that would be used to measure the performance 

of every CNN model. 

The types of vehicle detection studied use different 

CNN models to improve recognition, each model would 

result in a different performance. This phenomenon 

happens because each CNN model had a different 

architecture that made each model unique. This is why 

some models could work well when in a certain situation 

especially to detect the vehicle object. Therefore, by using 

the data collected throughout the training process, it will 

be possible to compare the five CNN models. Several 

metrics, such as mAP, precision, recall, and F1-score are 

used as comparison variables. The comparison variables 

between each CNN model will determine which approach 

is the best to detect vehicle objects on the highway based 

on UAV Dataset in Video form. The samples needed to 

measure the CNN model’s performance are split into two 

categories. The first category is the positive samples, 

which have the targeted object in them. The second 

category is the negative samples, which have none of the 

targeted objects in them. 

 

 

Figure 8. The testing stage in vehicle object detection. 

 

1) Precision and recall 

To calculate the precision value, there are two necessary 

variables. The first variable is the number of positive 
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samples that the model correctly classified and the last one 

is the total number of samples that are classified as positive 

samples (whether the model correctly classified them or 

not). The range value of precision is from 0 to 1, with 0 as 

its lowest score and 1 as its highest score. This precision 

value reflects how reliable the model is when classifying 

the positive samples. The result of precision is obtained by 

dividing only correctly classified positive samples by the 

total number of positive samples. Compared to precision, 

a recall is calculated by dividing the number of positive 

samples that the model correctly classified and the number 

of total positive samples [28, 29]. Recall completely 

ignores the negative samples and only focuses on the result 

of the positive samples. With the range the same as 

precision, a recall measures how many positive samples 

are correctly classified by the model. Both precision and 

recall formulas are illustrated below: 

 

Precision
positive

positive positive

TRUE

TRUE FALSE
=

+

                      (1) 

Recall=
positive

positive negative

TRUE

TRUE FALSE+

                              (2) 

where: 

TRUEpositive  = total of positive samples that the 

model correctly classified 

FALSEpositive  = total of negative samples that the 

model mistakenly classified as positive samples 

FALSEnegative  = total of positive samples that the 

model couldn’t classified 

2) Intersection over union (IoU) 

In Intersection over Union or IoU, there are two things 

that need to be addressed because the two are defined later 

in the IoU formula. Those two values are the predicted 

bounding box and the truth bounding box. The predicted 

bounding box is the box that the model predicts on having 

one of the targeted objects or items. Meanwhile, the truth 

bounding box is the box that the tester initially marked as 

the targeted object before the measuring process. Finally, 

the definition of IoU is the ratio between the intersection 

of the predicted bounding box and the truth bounding box 

with the combined area or union of the two boxes (see 

Fig. 9). The more the predicted box overlay the area of the 

truth box, the higher the accuracy of the model. In return, 

the IoU score would be near the value of 1, which is the 

highest accuracy score [28]. 

3) F1-Score and mAP (mean average precision) 

F1 Score used the two previous metrics, which are 

precision and recall, F1-Score is a metric that combines the 

precision and recall metrics into a single metric. The 

formula for the F1-score is defined as the average of 

precision and recall [28, 29]. The output of the formula 

will give an F1-score value ranging from 0 to 1, where 1 is 

the highest accuracy value. 

 F1-Score = 2
Precision × Recall

Precision+Recall
 (3) 

 

In addition to the F1-score that summarizes the two 

previous metrics,  the mean Average Precision(mAP) is the 

metric that shows the mean value of average precision for 

the detection process of all the previously determined 

classes [17]. Performance accuracy test results of object 

detection on the UAV Dataset have been carried out. The 

test results were done using a performance metric called 

the mean average precision (mAP) [11]. The formula is as 

follows:   

( )

1

AveP

mAP

Q

q

q

Q

=
=


         (4) 

 

where Q is the number of queries in the dataset and AveP(q) 

is the Average Precision (AP) for a particular query, q for 

a given query, q, the corresponding AP is computed, and 

then the average of all these AP scores will give you a 

single number, called MAP which measures how well our 

model performs querying. Average Precision, or AP in 

short, is the average of the precision metric across all recall 

values between 0 and 1 at various IoU thresholds [28].  The 

mAP model will be one of the core metrics to determine 

which model has the best overall performance because it 

takes considers all previously mentioned metrics.  

 

 
Figure 9. Illustration of intersection over union (IoU). 

 

IV. RESULT AND DISCUSSION 

A. Training Results 

The training uses PCs with the latest CPU and GPU 

technology. The use of PC technology will not affect the 

aftermath use of the models. This method has a benefit in 

accelerating the training duration of the model because the 

Darknet framework supports the GPU Acceleration 

method for the training phase which reduces the training 

time when compared to using the CPU for training. If the 

training process is done with less advanced technology, 

then it would take a lot more time to finish the study 

because the output weight file would result in the same file 

as the advanced CPU. The hardware Specifications needed 

to support the vehicle detection and the counting system 

with UAV Camera which can be seen in Table III.  
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TABLE III. HARDWARE SPECIFICATION ON THE EXPERIMENT 

No. Component Specification 

1 Processor Ryzen 5 5600H 

2 RAM 16 GB DDR4 

3 GPU NVIDIA RTX 3060 

3 VRAM 6 GB 

 

 The training process uses the Darknet algorithm model. 

As the model architecture increases in size, the machine's 

training speed decreases. The size of the model also affects 

the model output size. Fortunately, all of the tested models 

resulted in a good loss average result that are displayed in 

the form of CNN model training graphs, which can be seen 

in Fig. 10.  

Fig. 10 (a) illustrates the training process of YOLOv4 in 

a graph. The YOLOv4 training graph shows a significant 

decrease in loss percentage during the first 1200 iterations. 

But then it would steadily decrease with a few little 

increases and decrease until the last iteration. In Fig. 10 (b) 

shows the training process of YOLOv3. Unlike YOLOv7, 

which has a consistent loss percentage for the majority of 

its iterations, both DenseNet201-YOLOv3 and 

CSResNext50-Panet-SPP show an unsteady decrease loss 

percentage. YOLOv3 exhibits a similarly steady decrease 

in loss percentage as YOLOv7. 

Fig. 10 (c) shows the training process of YOLOv7 in a 

graph. The loss percentage began to fall dramatically after 

about the 200th iteration and continued to fall until about 

the 540th iteration. Between the 540th and 700th iterations, 

the loss percentage began to rise again and reached a 

maximum of 2%. After the 700th iteration, the loss 

percentage once again decreased dramatically and 

continued to do so until the 800th iteration. The loss 

percentage began to decrease steadily after the 800th 

iteration as the iterations progressed. Fig. 10 (d) shows the 

training process of CSResnext50-Panet-SPP in a graph. In 

Fig. 10 (e), a graph depicts the training process of 

DenseNet201-YOLOv3. 

At first, most of the model's loss declined in the first 600 

iterations. YOLOv7 on the other hand declined faster than 

other models. However, this decline will not have any 

significant impact as long as the loss declines to an 

acceptable level. After a steep decline at the start, the loss 

starts to stabilize in a gentle curve. It shows that the model 

is starting to understand the given dataset. Finally, the 

graph shows that the loss stabilizes until the end of the 

iteration. This result suggests that the trained model has 

effectively learned the provided vehicle dataset. As stated, 

each model architecture is unique and has its own distinct 

benefits in particular circumstances.  

Therefore, the experiment can go on using the generated 

train weights. A more detailed training result can be seen 

in Table IV. 

Table IV showed the average loss of the CNN model to 

determine how it will perform. Thus, carrying out is one of 

the parameters that could affect the test results. As 

explained before, the lower the average loss, the better the 

machine in understanding the dataset. This way, it could 

potentially affect the performance of detecting objects. If 

the machine doesn't understand how to differentiate one 

different vehicle type from another, then the machine 

wouldn't be able to detect the object as well as it would 

expect. As explained before, the lower the average loss, the 

better the machine in understanding the dataset. Table IV 

shows that all of the models have an average loss below 

0.3. This value is low enough and acceptable for the 

experiment. DenseNet201-YOLOv3 has the lowest 

average loss of 0.1358 with a total of 5.49 h of training 

time. When detecting vehicle objects on highways, CNN 

model YOLOv3 has the second lowest average loss of 

0.1546 with an approximate training time of 3.05 h. Next, 

YOLOv7 has an average loss of 0.1887 and an 

approximation training time of 3.13 h. However, the 

difference between them is only 0.0341. The YOLOv4 

model comes second to last with an average loss of 0.2984 

with an approximation training time of 4.51 h. Lastly, the 

CSREsNext50-Panet-SPP model has an average loss of 

0.2985 with an approximate training time of 7.46 h. All 

CNN models must be properly tested and analyzed; the 

performance of a model can not be determined by using 

only the average loss value. Therefore, the following 

section will explain more about the performance in other 

aspects. 

TABLE IV. TRAINING RESULT OF EACH CNN MODELS USING 

AVERAGE LOSS PARAMETER 

Model Average Loss (%) 

YOLOv3 0.1546 

YOLOv4 0.2984 

YOLOv7 0.1887 

DenseNet201-YOLOv3 0.1358 

CSResNext50–Panet-SPP 0.2985 

 

B. Simulation and Results 

Before testing the weights trained in the self-service 

application, the vehicle object detection algorithm needs to 

import the supporting files. The supporting files are the 

training label, image path, model configuration, and a .data 

file type called the trainer.data. These supporting files are 

necessary for executing the testing process which uses the 

OpenCV library as the inference. OpenCV itself is an 

open-source library mainly used for image processing [20]. 

Then, the self-service module for accuracy and vehicle 

class detection will be automatically initiated. Next, an 

examination of vehicle object detection is performed. This 

examination was needed to carry out if the trained object 

detection works properly. In this case, the frames that are 

captured and processed by the machine were examined in 

a separate window. Fig. 11 provides an overview of the 

simulation used to detect vehicle class objects in the UAV 

dataset. 
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(e) 

Figure 10. Training graph of CNN Models: YOLOv4 (a), YOLOv3 (b), YOLOv7 (c), CSResnext50-Panet-SPP (d), and DenseNet201-YOLOv3 (e). 

 

Fig. 11 showed that when the application detects 

vehicles on the highway, it can run some objects and 

calculations flawlessly with above-acceptable 

performance. That means a great response feel and fast 

processing speed. It is required for real-time object 

detection to make sure everything is processed without 

delay between one frame to another frame and interactions 

around the bounding box with accuracy number. However, 

When the system was tested to run the same object 

detection, the response speed and processing time were not 

acceptable. In the experiment, all of the model’s network 

input sizes depend on object classes such as trucks, cars, 

and motorcycles. This is to reduce the processing load 

which could increase processing time. The result of the 

bounding box calculations, using the combined area or 

union of the two boxes are presented in Fig. 12. 

Fig. 12 showed the result of calculating the truth 

bounding box with the combined area or union of the two 

boxes. Calculating the IoU performance for the highest on 

the CNN model, namely CSResNext50-Panet-SPP at 

91.42%, followed by the CNN YOLOv4 model at 86.11%. 

On the other hand, the CNN DenseNet201-YOLOv3 

model had the lowest IoU performance at 68.94%. 

Therefore, this experiment shows that the CSResNext50-

Panet-SPP model has the highest IoU performance and can 

serve as a guideline for future research. 

Fig. 13 informs the inference time of all five CNN 

models relative to their mAP@0.50 percentage or their 

accuracy. Inference time calculates the processing time 

between the captured frame and its results in a form of 

prediction. The higher the inference time, then the slower 

the detection process becomes. This also worsens the 

experience of using this object detection technology 

because of its slow processing capability. In Fig. 15, CNN 

Model shows an additional percent more accuracy than 

half the amount of the original inference time. In the 

vehicle object detection process, the UAV Dataset shows 

that the average inference time is more than 50% compared 

to the average accuracy of the image predicted by the 

system. For example, the CSResNext50-Panet-SPP model 

has 100% accuracy, but the inference time does not result 

in 50%. 

Instead, the inference time that the model has is more 

than 100% which is 173.44 ms. Other models have the 

same results as CSResNext50-Panet-SPP. The YOLOv4 

model has an accuracy of 99.19%, while the inference time 

is more than 50% which is 83.84 ms. The YOLOv3 model 

has an average accuracy of 95.73%, but the inference time 

is more than 50% which is 81.32 ms. YOLOv7 and 

DenseNet201-YOLOv3 have an inference time of less than 

50 ms. DenseNet201- YOLOv3 has the lowest inference 

time with 38.65 ms but also has the lowest mAp@0.50 

percentage which is 92.39%. On the other hand, YOLOv7 

has a low inference time (44.98 ms) but high compatibility 

(99.61% mAp@0.50). Calculating recall, precision, and 

F1 scores with deep learning algorithms on several CNN 

models can be seen in Fig. 14. 
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Figure 11. Vehicle class object detection simulation on UAV dataset. 

 

Figure 12. CNN models average IoU after optimization comparison 

 

Figure 13. Combined inference time model graph before and after 

optimization. 

Fig. 14 described an experiment using a UAV Dataset 

when detecting three object classes, namely the truck class 

which includes trailer trucks, and several models of cars, 

and the motorcycle class which includes bicycles because 

the object looks very similar. Based on this experiment, the 

highest accuracy is in the CNN CResNext50-Panet-SPP 

model where the percentage of precision, recall, and F1 

Score reaches 100%. Followed by the YOLOv4 model 

where the average is up to 98.67% and the lowest accuracy 

is DenseNet201-YOLOv3 with an average value of 

91.67%. So, it can be concluded that the approach of the 

deep learning algorithm with several CNN models in the 

testing process would be supported by the Darknet 

algorithm. The minimum average accuracy is only 91%. 

So, it can be concluded that object detection with this 

approach has worked well and could detect all the objects 

almost perfectly. 

 

 

Figure 14. Precisions, recall and F1-score of each model CNN. 

 

 

Figure 15. The combination of the average accuracy for each vehicle 

class on the CNN model. 

Fig. 15 showed the average accuracy when recognizing 

three vehicle class objects using several CNN models for 

this experiment. The CSResNext50-Panet-SPP model can 

recognize all vehicle objects ranging from trucks 

(including trailers), cars (several types of cars), and 

motorcycles (including bicycles) on the UAV Dataset 

where the distance between the surface and the top position 

of the drone is between 300-400 meters with the ground 

moving vehicles for each class up to 100%. The YOLOv4 

and YOLOv7 model can also detect all classes of vehicle 

objects very well, such as trucks and cars up to 100%, 
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while motorcycles (bikes) can detect up to 97.58% for 

YOLOv4 and 98.84% for YOLOv7.  

The introduction continued by using the DenseNet201-

YOLOv3 CNN model where the accuracy of trucks can be 

recognized well. But for cars, there are only a few errors 

where the accuracy reaches 99%, while motorcycle objects 

can be recognized only up to 79.90% which is the lowest 

percentage of all types. For the recognition of moving 

objects on the UAV Dataset, the YOLOv3 model is used. 

Although its accuracy for motorcycle objects is only 

91.29%, it is still robust in recognizing images with an 

accuracy of more than 90%. This experiment also proves 

that the approach for vehicle object recognition on the 

UAV Dataset can be recognized on average more than 

90%. 

 

 

Figure 16. Approximately identical image comparison of detected 

objects for each model. 

The five models are being used to determine their 

performance to detect cars, motorcycles, and trucks as 

their targeted objects. Each model is confronted with a test 

video on the same road. The model’s job is to detect as 

many targeted objects while also being precise about them. 

Creating two published paper that are currently in the 

publication process. 

Fig. 16 showed the comparison of each model to 

detected the model. Each image has two cars, one truck, 

and two motorcycles in it. In each frame, not every model 

could detect all vehicles that are on the road. Only 

CSResNext50-Panet-SPP and YOLOv7 were able detect 

all the vehicles. YOLOv3 and Yolov4 could not detect any 

motorcycles and DenseNet201-YOLOv3 can only detect 

one truck and one motorcycle. To determine how 

consistently these CNN models can detect vehicles on a 

road using UAVs, each CNN model needs to use the same 

test video sample. 

Fig. 17 showed to detect the objects using a video, five 

parameters were shown on the top left of the video. These 

five parameters were: traffic present in the frame, total 

objects detected, total trucks detected, total cars detected, 

and total motorcycles detected. Fig. 19 informs the 

prediction on the test video using the seven model. 

YOLOv7 prediction managed to detect a total of 73 objects 

consisting of 37 cars, 34 motorcycles, and 2 trucks. 

 

Figure 17. Cropped YOLOv7 prediction. 

 

Figure 18. Cropped YOLOv4 prediction. 

Fig. 18 showed the prediction of YOLOv4 on the test 

video. YOLOv4 detected a total of 64 vehicles. Yolov4 

detects 9 fewer vehicles than YOLOv7, with a total of 42 

cars, 17 motorcycles, and 5 trucks. YOLOv4 managed to 

detect a lot more cars and trucks but couldn’t detect as 

many motorcycles as YOLOv7. 

 

 

Figure 19. Cropped DenseNet201-YOLOv3 prediction. 

Fig. 19 showed the prediction of DenseNet201 

YOLOv3 on the test video. DenseNet201-Yolov3 detected 

a total of 102 vehicles with a total of 32 cars, 65 

motorcycles, and five trucks. DenseNet201-YOLOv3 

detected the most motorcycles out of all the CNN models, 

but it couldn’t detect as many cars as other models. 

 

 

Figure 20. Cropped CSResNext50-Panet-SPP prediction. 

Fig. 20 showed the prediction on the video test used the 

CSResNext50-Panet-SPP model. CSResNext50-Panet-

SPP detected a total of 84 vehicles. CSResNext50-Panet-

SPP has the highest number of vehicles detected, with a 

total of 39 cars, 40 motorcycles, and 3 trucks. The number 

of motorcycles detected is the highest among all the CNN 

models. 

Fig. 21 showed the prediction on the test video using 

the YOLOv3 model. YOLOv3 detected a total of 44 

vehicles. YOLOv3 has the lowest number of objects 

detected with a total of 35 cars, 7 motorcycles, and 2 trucks. 

The number of motorcycles detected by YOLOv3 is fewer 

than 10. 
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Figure 21. Cropped YOLOv3 prediction. 

TABLE V. TOTAL OBJECTS DETECTED IN THE LAST FRAME (VOLUME) 

  YOLOv7 YOLOv4 
DenseNet201-

YOLOv3 

CSResNext50-

Panet-SPP 
YOLOv3 

Car (Mobil) 2 2 2 2 2 

Motorcycle 

(Motor) 
2 0 1 2 0 

Truck (Truk) 1 1 0 1 1 

SUM 5 3 3 5 3 

All of the prediction images were taken from the last 

frame of the video. The result of the total objects detected 

in the last frame from each CNN model is shown in Table 

II.  Besides the prediction data from the last frame of the 

test video, there is also data on the total objects detected in 

the last 12 seconds of the video. 

Table V showed the objects totals detected in the last 

frame of the video. In Table V, CSResNext50-Panet-SPP 

and YOLOv7 had the most object detected out of all five 

CNN models. Both models managed to detect two cars, 

two motorcycles, and one truck. The rest of the models had 

the same total number of vehicles detected which is three 

vehicles. YOLOv4 and YOLOv3 could not detect any 

motorcycle, while DenseNet201-YOLOv3 couldn’t detect 

a single truck.  

TABLE VI. TOTAL OBJECTS DETECTED IN THE APPROXIMATE LAST 12 SECONDS 

 Control Data YOLOv7 YOLOv4 
DenseNet201-

YOLOv3 

CSResNext50-Panet-

SPP 
YOLOv3 

Car (Mobil) 5 37 42 35 39 35 

Motorcycle (Motor) 4 34 17 30 40 7 

Truck (Truk) 2 2 5 6 5 2 

SUM 11 73 64 71 84 44 

 

Table VI showed the data of the total objects that were 

detected in the last 12 seconds of the test video. Table VI 

shows that CSResNext50-Panet-SPP detects the most 

vehicles with a total of 84 vehicles which consists of 39 

cars, 40 motorcycles, and five trucks. The lowest number 

of objects detected is the YOLOv3 with a total of 44 

vehicles that consist of only 35 cars, seven motorcycles, 

and two trucks detected. 

Each CNN model has a unique architecture, and they 

produce different metric values from each other. This 

difference will be a key component for comparing the four 

CNN models and determining which model is most 

suitable for detecting vehicle object classes. In Fig. 13, all 

CNN models depicted the average values of Precision, 

Recall, F1-Score, and IoU. The CSResNext50-Panet-SPP 

model got the highest average IoU value, followed by 

YOLOv4, densenet201-YOLOv3, and YOLOv3, thus 

affecting Precision, Recall, and F1-Score on each CNN 

model. 

C. Evaluation 

In the experiment, there were a total of five CNN 

models tested for their performance in object detection 

technology on the UAV dataset. Although all of the CNN 

models managed to detect more than 40 vehicles. The total 

number of vehicles in the video is only 11 vehicles which 

consist of five cars, four motorcycles, and two trucks.  

Table VI gave an insight into why the numbers are so much 

different compared to control data. It can be identified that 

the problem is caused by the movement of the camera and 

the size of the objects that need to be detected. The result 

of this bug would sometimes make the same object 

counted as a new object by the system. Another factor is 

that when using video from a UAV, the targeted objects 

tend to be very small and the camera moves a lot. This 

makes it hard for the system to keep track of the targeted 

objects. It can be seen from Table V that smaller objects 

are harder for the CNN model to detect. But the number of 

objects detected could be an indicator that the model has a 

good performance. If the models could detect a high 

number of vehicles, then the model can detect the objects 

within a frame better than another model. 

V. CONCLUSION 

In this study, the right approach is needed to optimize 

the ability to detect the three classes of vehicle objects 

depicted in the UAV dataset, such as a motorcycle class 

that is similar to a bicycle, a car class that is almost similar 

to several types of cars and a truck class that is almost the 

same for trailers and general trucks. 

When detecting three vehicle class objects on the UAV 

dataset, this study utilized a deep learning algorithm with 

five CNN models and Darknet algorithms to support the 

training process. The experimental results can be 

concluded that the CSResNext50-Panet-SPP is the CNN 

model that can be used as a solution to recognize the three-

vehicle class in a UAV dataset such as car, truck, and 

Motorcycle. 

Based on the results of the experiments on the UAV 

dataset, it was illustrated that the CsResNext50-Panet-SPP 

model has produced Precision, recall, and F1 Scores with 

a percentage of up to 100% followed by an average IoU of 

more than 90%. Furthermore, the YOLOv4 model had an 

accuracy percentage is more than 98% with an average IoU 

of more than 85%. Lastly, YOLOv7 had the best potential 

when using a UAV dataset because of its low inference 

time of 44.98 ms and high mAp@0.50 accuracy 

percentage of 99.61%. 
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As stated before, the most optimal model used in object 

detection with the UAV dataset is the YOLOv7 CNN 

model. Because of the model's low inference time and high 

accuracy, YOLOv7 is potentially the best to be 

implemented in real-time object detection cases using a 

UAV video stream on a power constraint processor device. 

Another option was by using CSResNext50-Panet-SPP 

because of its high accuracy ability. But due to its high 

inference time, CSResNext50-Panet-SPP is only 

recommended when using high-power devices. For further 

research, a more complex clearer dataset and improved 

object tracking system could potentially increase the 

performance of this kind of research on the topic of real-

time object detection performance, especially UAV. 
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