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Abstract—In this study, the data obtained from 

meteorological satellites were analyzed using tensor 

decomposition. The data used in this paper are 

meteorological image data observed by the Himawari-8 

satellite and solar radiation data generated from Himawari 

Standard Data. First, we applied Higher-Order Singular 

Value Decomposition (HOSVD), a type of tensor 

decomposition, to the original image data and analyzed the 

features of the data, called the core tensor, obtained from the 

decomposition. As a result, it was found that the maximum 

value of the core tensor element is related to the cloud cover 

in the observed area. We then applied Multidimensional 

Principal Component Analysis (MPCA), an extension of 

principal component analysis computed using HOSVD, to the 

solar radiation data and analyzed the Principal Components 

(PC) obtained from MPCA. We also found that the PC with 

the highest contribution rate is related to the solar radiation 

in the entire observation area. The resulting PC score was 

compared to actual weather data. From the result, it was 

confirmed that the temporal transition of the amount of solar 

radiation in this area can be expressed almost correctly by 

using the PC score.  

 

Keywords—Tensor decomposition, Higher-Order Singular 

Value Decomposition (HOSVD), Multidimensional Principal 

Component Analysis (MPCA), meteorological image data, 

solar radiation data, Himawari-8 

I. INTRODUCTION 

Earth observation satellites acquire data by remotely 

sensing the earth using sensors, which are onboard 

observation devices. Using this data, we can make regular 

and long-term observations over a wide area at once 

anywhere in the world. The various physical quantity data 

observed and acquired by this satellite are useful in 

people’s lives. In recent years, the quality and quantity of 

satellite data have improved dramatically against the 

backdrop of technological innovation and an increase in 

the number of new companies entering the industry. Such 

 
 Manuscript received February 10, 2023; revised March 21, 2022, 

accepted May 10, 2023.  

development of the space utilization industry is expected 

to continue in the future. Our research aims to improve 

detailed feature extraction and processing speed by 

analyzing meteorological data from satellites using 

multidimensional data processing techniques. 

In this research, we analyze this data using tensor 

decomposition. Tensor factorization is an extension of 

matrix factorization to tensors of 3rd-order and higher, 

where tensors are multidimensional arrays. There are two 

types of this decomposition: the Tucker decomposition, 

which decomposes the original higher-order tensor into the 

product of tensors and matrices, and the 

CANDECOMP/PARAFAC (CP) decomposition, which 

decomposes it into the sum of products of vectors. Their 

application areas are fuzzy modeling, signal processing, 

image processing, image classification, data analysis and 

so on [1]. Multidimensional Principal Component 

Analysis (MPCA) [2], which applies this decomposition, 

enables data analysis by obtaining principal components 

that represent the characteristics of the high-order tensor 

data to be analyzed [3, 4]. 

A multispectral image is a record of electromagnetic 

waves in multiple wavelength bands, and can represent the 

state of the earth’s surface. In Ref. [5], tensor 

decomposition is applied to multispectral images acquired 

by Unmanned Aerial System (UAS) and used to correct 

cloud shadows. Furthermore, meteorological data may 

also be used as boundary conditions in building 

simulations. Rajput and Gahrooei et al. [6] proposed a 

method for creating a statistical weather model that can be 

used for simulations using Multiple Tensor on Tensor 

regression (MTOT) that applies tensor decomposition. By 

using this model, it is possible to predict changes in 

weather for each city and investigate the performance of 

buildings. 

In this paper, we apply tensor decomposition and 

MPCA to image data and physical quantity data of solar 
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radiation acquired by meteorological satellites, and 

analyze the feature values and principal components 

obtained from these data. Section II explains the overview 

of the meteorological satellite data to be analyzed, and then 

Section III describes the tensor decomposition and 

Multidimensional Principal Component Analysis (MPCA) 

methods. Subsequently, in Section IV and Section V, we 

analyze features obtained from tensor decomposition and 

MPCA, respectively, and conclude in Section VI. 

II. OVERVIEW OF ACQUIRED METROLOGICAL DATA 

In this study, meteorological data of weather images and 

solar radiation were obtained from two Research and 

Development Organization (R&D institutes) and used for 

analysis. 

Firstly, the image data was obtained from the Himawari 

satellite data archive of the Information and 

Communications Technology (NICT) Science Cloud [7], 

which was provided by the National Institute of 

Information and Communications Technology (NICT). 

From this cloud, we can obtain image and video data for 

three different observation areas (Full-Disk, the Japan-area, 

and the Target area) taken by the Himawari-8 

meteorological satellite every two minutes and 30 seconds. 

This time, we downloaded PNG-format color images of 

the Japan-area and handled them with the R package 

“imager” [8, 9]. 

Secondly, solar radiation data was provided by the 

interdisciplinary product provision service (P-Tree) of 

Japan Aerospace Exploration Agency (JAXA) [10]. With 

this service, geostationary meteorological satellite 

Himawari standard data and geophysical parameter data 

(Aerosol Property, Sea Surface Temperature, shortwave 

radiation, Chlorophyll-a, Cloud Property, Wild Fire, etc.) 

created from the standard data by JAXA can be obtained 

in near-real time. The data are updated every 10 minutes. 

In Section V, data related to solar radiation in NetCDF 

format was obtained from the geophysical data and used 

for the analysis [11]. The R package “ncdf4” [12] was used 

to handle the NetCDF data. 

III. TENSOR DECOMPOSITION METHOD AND MULTI-

DIMENSIONAL PRINCIPAL COMPONENT ANALYSIS 

A. Tensors 

The higher-order tensors mentioned in Section I 

represent multidimensional arrays, and the order of the 

tensor means the number of dimensions of the array. For 

example, a 3rd-order tensor is a 3-d array with component 

axes (modes) in the row, column, and depth directions. 

This time, we deal with a 3rd-order tensor whose row, 

column, and depth modes are 1-mode, 2-mode, and 3-

mode, respectively. 

Now, a 3rd-order tensor A  of size 
  

 Ι Ι Ι  as 

shown on the left side of Fig. 1 is defined by the following 

equation: 

 ( ) ( ; )i i i n na i I n
  

=  = =A , (1) 

where 
  
i i i
a  is 

  
 i i i( ) component of A . 

 

Figure 1. HOSVD of a 3rd-order tensor. 

B. Higher-Order Singular Value Decomposition and N-

Mode Product 

More specifically, the Tucker decomposition described 

in Section I is a method of decomposing an original higher-

order tensor into n-mode product of multiple matrices 

representing characteristics of each mode and a tensor 

called the core tensor (see below). Note that the n-mode 

product is an operation of multiplying a tensor and a matrix, 

which will be described later in this section. 

Higher-Order Singular Value Decomposition 

(HOSVD) [13] is a technique often used to perform the 

Tucker decomposition. HOSVD is a generalization of 

Singular Value Decomposition (SVD) of matrices (2nd-

order tensors) to decomposition of higher-order tensors of 

3rd-order and higher. In this paper, we deal with 3rd-order 

tensor data, therefore HOSVD for that tensor is explained 

below. 

The 3rd-order tensor A  defined by Eq. (1) is 

decomposed by HOSVD as follows: 

 (1) (2) (3)

1 2 3=   A S U U U . (2) 

In Eq. (2), S  is a 3rd-order tensor with the same size as 

A , called the core tensor, and corresponds to the singular 

value matrix of SVD. 
( )n

U  represent orthonormal 

matrices of size n nI I , ( )n =  ; n , ( )n =   

denote operators of the n-mode products. Fig. 1 shows an 

image of this decomposition. 

As for the n-mode product, the product in the case of the 

3rd-order tensor is explained in [2, 13]. Now consider the 

n-mode product of a 3rd-order tensor S  of size I I I     

and each matrix ( )n
X , ( )n =   of size n nJ I . Firstly, 

a 1-mode product can be calculated from Eq. (3): 

 
( )

1

1 2 3 1 1
1 2 3

1

(1)

1

1

1 1

,

( 1,2, , ; 1,2,3; 1,2, , ),

I

i i i j i
j i i

i

n n

s x

i I n j J

=

 =

= = =

S X
 (3) 
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where the left side of the first line of Eq. (3) represents a 

( )j i i     component of (1)

1S X . In the right side of 

Eq. (3), 
1 2 3i i is  is a ( )j i i     component of S , and 

1 1j ix  is a 

1( )j i  component of (1)
X . From this calculation, a 3rd-

order tensor (1)

1S X  of size J I I     can be obtained. 

Similarly, 2-mode and 3-mode products are defined by 

the following Eqs. (4) and (5), respectively, and can be 

calculated as 

 
( )

2

1 2 3 2 2
1 2 3

2

(2)

2

1

2 2

,

( 1,2, , ; 1,2,3; 1,2, , ),

I

i i i j i
i j i

i

n n

s x

i I n j J

=

 =

= = =

S X
 (4) 

 
( )

3

1 2 3 3 3
1 2 3

3

(3)

3

1

3 3

,

( 1,2, , ; 1,2,3; 1,2, , ).

I

i i i j i
i i j

i

n n

s x

i I n j J

=

 =

= = =

S X
 (5) 

For this calculation to hold, size of an n-mode of S  and 

column size of ( )n
X  must be the same. 

C. HOSVD Algorithm and N-Mode Matrix Unfolding 

A calculation procedure of HOSVD in the case of a 3rd-

order tensor is shown below [2, 13]. 

 

Algorithm 1: HOSVD of a 3rd-order tensor 

[Step 1] Apply the n-mode matrix unfolding to a 3rd-

order tensor A  to obtain matrices ( ) , ( 1,2,3)n n =A . 

This unfolding operation is described later in Algorithm 

2. 

[Step 2] By applying SVD, ( ) , ( 1,2,3)n n =A  obtained in 

Step 1 are decomposed as follows: 

 ( ) ( ) ( )T

( ) , ( 1,2,3)n n n

n n= =A U Σ V , (6) 

where 
( )n

U  are the left singular matrices, ( )n
Σ  are the 

diagonal matrices with singular values on the diagonal, 
( )n

V  are the right singular matrices, and T represents 

the transpose of a matrix. 

[Step 3] From the 3rd-order tensor A  and the matrices 

( )n
U , ( )n =   calculated in Step 2, calculate the 

core tensor S  using the following equation: 

 (1)T (2)T (3)T

1 2 3=   S A U U U . (7) 

[Step 4] Return the orthonormal matrices ,
( )n

U , 

( )n =  , the singular value matrices ( )n
Σ , 

( )n =  , and the core tensor S . 

End 

 

Next, we describe the n-mode matrix unfolding used in 

the first step of Algorithm 1. The matrix unfolding is an 

operation of transforming an original higher-order tensor 

into a matrix. In this paper, we use the matrix folding 

defined by Lathauwer et al. [13]. This algorithm for a 3rd-

order tensor is shown below. 

 

Algorithm 2: The n-mode matrix unfolding of a 3rd-

order tensor 

[Step 1] The matrix unfoldings of the following (i) to 

(iii) are performed. 

(i) 1-mode matrix unfolding: As shown in Fig. 2(a), 

submatrices ( )
2 2 2 2, ( 1,2, , )i ia i I = =A  are extracted 

from the 3rd-order tensor A . Then, let (1)A  be a matrix 

in which the submatrices are arranged horizontally as 

 ( )
2(1) 1 2| | | I=A A A A . (8) 

(ii) 2-mode matrix unfolding: Extract submatrices 

( )
3 3 3 3, ( 1,2, , )i ia i I= =A  from A  as shown in 

Fig. 2(b). Next, let (2)A  be a matrix obtained by 

transposing and horizontally combining the submatrices 

as 

 ( )
3

T T T

(2) 1 2| | | I=A A A A . (9) 

(iii) 3-mode matrix unfolding: Extract submatrices 

( )
1 1 1 1, ( 1,2, , )i ia i I= =A  from A  as shown in 

Fig. 2(c). Then, the same processing as in the 2-mode is 

performed to obtain a matrix (3)A  as 

 ( )
1

T T T

(3) 1 2| | | I=A A A A . (10) 

[Step 2] Return the matrices ( ) , ( 1,2,3)n n =A . 

End  

 
(a) 1-mode matrix unfolding. 

 
(b) 2-mode matrix unfolding. 

 
(c) 3-mode matrix unfolding. 

Figure 2. The n-mode matrix unfolding of a 3rd-order tensor. 
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In the above algorithm, the notation of submatrix 

( )
2i

a   in Step 1 means that a value of subscript 2i  is fixed 

and the other subscripts take all values. The other two 

notations have the same meaning.  

D. Overview of the Multidimensional Principal 

Component Analysis 

In matrix data with two modes of variables and 

individuals, principal component analysis (PCA) is a 

technique for obtaining principal components that 

represent characteristics of the data by synthesizing the 

variables. The individuals can be compared and classified 

using the obtained principal components. Eigenvalue 

Decomposition (EVD) and SVD are used to calculate PCA. 

Multidimensional Principal Component Analysis 

(MPCA) is an extension of PCA to higher-order tensor 

data of three or more orders [2], and HOSVD is used for 

this calculation. In this paper, we use 3rd-order tensor data. 

Regarding the handling of modes of the data, two modes 

of the data are treated as variables, and the remaining one 

mode is treated as individuals. By applying MPCA, we can 

obtain principal components that show features of the data 

combining the variables of the two modes. Similar to PCA, 

it is possible to compare and classify the individuals using 

the principal components of interest. In Section V, MPCA 

is used to analyze time-series data of solar radiation. 

E. Calculation of MPCA 

Firstly, preprocessing of acquired 3rd-order tensor data 

is performed. At this time, if there are missing values in 

the obtained data, they are complemented by a method 

described later. If there are no missing values, the original 

data is used as is. Now let C  be a 3rd-order tensor of size 

I I I    . 

Secondly, C  is normalized by the following equation 

and transformed into a 3rd-order tensor A  of size 

I I I    . 

 

1 2

1 2

,

( 1,2, , ; 1,2,3).

i i i i i

i i i

i i

n n

c c
a

s

i I n

  

  

−
=

= =

 (11) 

In Eq. (11), 
i i ia
  

 shows an ( )i i i     component of A , 

and 
i i ic
  

  denotes an ( )i i i      component of C  . 
1 2i ic   and 

1 2i is   are the mean and standard deviation, respectively, 

given by 

 

3

1 2 1 2 3

3

3

1 2 1 2 3 1 2

3

3 1

2

3 1

1
,

1
( ) ,

( 1, 2, , ; 1, 2).

I

i i i i i

i

I

i i i i i i i

i

n n

c c
I

s c c
I

i I n

=

=

=

= −

= =



  (12) 

In the case of data where 
1 2

0i is =  , only centering is 

performed using the following equation instead of Eq. (11). 

 1 2
,

( 1,2, , ; 1,2,3).

i i i i i i i i

n n

a c c

i I n

     
= −

= =
 (13) 

The above preprocessing is performed with the 1-mode 

(row direction) and 2-mode (column direction) of A   as 

variables, and the 3-mode (depth direction) as individuals. 

As can be seen from the calculations of Eqs. (11) to (13), 

the individual data of the 3-mode of A  are standardized 

or centralized. 

Thirdly, with A  as input for Algorithm 1, HOSVD is 

used to obtain the orthonormal matrices 
( )n

U , ( )n =   

and the singular value matrices ( )n
Σ , ( )n =  . 

(1)
U  is a 

principal component matrix representing features of the 1-

mode of A  , and 
(2)

U   is a principal component matrix 

with characteristics of the 2-mode. By calculating the n-

mode product of these two principal component matrices 

and A  , a tensor B   with principal component scores of 

individuals of the 3-mode can be obtained as shown in the 

following equation. 

 (1)T (2)T

1 2=  B A U U . (14) 

In Eq. (14), a subvector ( )
1 2 1 2i i i ib =b  of B  stores each 

individual score of an 2( )i i  th principal component 

obtained using an i th principal component of the 1-mode 

and an 2i th principal component of the 2-mode. Note that 

( )
1 2i ib   indicates that values of indices i  and 2i  are fixed 

and an index of 3-mode take all values. 

Lastly, contribution rates ( )n

kr , ( )n =    of kth 

principal components of the n-mode can be calculated by 

the following equation using diagonal components of the 

singular value matrices ( )n
Σ , ( )n =  . 

 
( )2

( )

( )2

1

, ( 1,2)
n

n
n k

k I

n

j

j

r n



=

= =


, (15) 

where 
( )n

j , ( 1, 2, , ; 1, 2)nj I n= =   are jth diagonal 

elements of the matrices ( )n
Σ   shown in the following 

equation. 

 

( )

1

( )

2( )

( )

0 0

0 0
,( 1,2)

0 0
n

n

n

n

n

I

n







 
 
 = =
 
 
  

Σ . (16) 
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IV. ANALYSIS OF METROLOGICAL IMAGE DATA USING 

HOSVD 

A. Meteorological Image Data Used 

In this chapter, meteorological image data taken by the 

Himawari-8 described in Section II are acquired from the 

data archive of the cloud and analyzed using HOSVD. 

In this analysis, image data from April 1 to 10, 2021 and 

May 1 to 10, 2021 at 12:00 am were used. Fig. 3 shows an 

example of acquired image data of size 2701 rows by 3301 

columns. The area over Kyushu Island (hereafter simply 

write Kyushu) is the subject of the analysis, and data of the 

area was used by cutting out a submatrix of size 300 rows 

by 250 columns, starting from a component of 1451 row 

and 1051 column in the data of Fig. 3. An example of 

image data over Kyushu is shown in Fig. 4. 

 

 

Figure 3. Metrological image data (Japan-area). 

 

Figure 4. Metrological image data (Kyusyu). 

The data used here is the RGB color image, which is a 

3rd-order tensor data consisting of three gray-scale images 

with R, G, and B components. The data size is 

300 250 3  . The function “HOSVD” provided by the 

rTensor package in R was used to calculate the 

HOSVD [14]. This function can compute an 

approximation called truncated HOSVD [15], which can 

be obtained as a core tensor of any size below the size of a 

3rd-order tensor given to the function. 

B. Analysis of Features of Meteorological Image Data 

Extracted from HOSVD 

Firstly, we applied HOSVD to the data of Kyushu from 

April 1 to 10, 2021 at 12:00 am, and compared the 

distribution of the obtained core tensor element values. 

The size of the core tensor acquired by HOSVD was set 

to 50 50 3  . The absolute values of the obtained tensor 

elements were taken, and they were sorted in descending 

order. The results of this calculation are shown in Fig. 5. 

In this figure, the vertical axis represents the absolute 

values of the core tensor elements, and the horizontal axis 

shows the rank of the absolute values. 

Table I shows the values of rank 1 for each day in Fig. 5. 

In this table, the core tensor values are sorted in ascending 

order. The images over Kyushu at 12:00 am for 10 days in 

April 2021 are shown in Fig. 6. In this table, the core tensor 

value is the smallest on April 7, and the image in Fig. 6 

shows that there is almost no cloud cover (clear weather) 

over the entire Kyushu on this day. In contrast, the largest 

core tensor value is found on April 4, which indicates that 

the entire area is covered by clouds. That is, as the core 

tensor values in Table I increase, the amount of cloud in 

the images in Fig. 6 also tends to increase. 

 

 

Figure 5. Distribution of absolute values of core tensor elements. 

TABLE I. VALUES OF RANK 1 IN FIG. 5 

Date 
Maximum absolute value of core 

tensor elements 

Apr. 7, 2021 111.11 

Apr. 10, 2021 122.72 

Apr. 6, 2021 156.71 

Apr. 5, 2021 191.96 

Apr. 9, 2021 195.61 

Apr. 1, 2021 238.79 

Apr. 3, 2021 286.38 

Apr. 8, 2021 299.54 

Apr. 2, 2021 299.87 

Apr. 4, 2021 390.21 
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Figure 6. Image data over Kyushu (April 2021). 

Furthermore, image data and core tensor values at 12:00 

am for 10 days from May 1, 2021 are shown in Fig. 7 and 

Table II, respectively. From these results, it was found that 

the relationship between the core tensor value and the 

amount of cloud in the image has the same tendency as the 

results in April. Therefore, the maximum absolute value of 

the core tensor element obtained from HOSVD is related 

to the amount of cloud cover in the observation area. 

Moreover, regarding the distribution after the second 

rank in Fig. 5, the values tend to be distributed lower on 

April 7 and 10, when there is little cloud cover. On the 

other hand, for other dates, the values are distributed 

highest on April 5, when the entire area is not covered with 

clouds, and it is considered that there is little relationship 

with cloud cover. 

TABLE II. MAXIMUM VALUE OF CORE TENSOR ELEMENTS (MAY 2021) 

Date 
Maximum absolute value of  

core tensor elements 

May 6, 2021 89.10 

May 3, 2021 106.08 

May 9, 2021 116.25 

May 10, 2021 124.47 

May 1, 2021 268.05 

May 2, 2021 285.79 

May 4, 2021 286.64 

May 5, 2021 363.00 

May 8, 2021 372.43 

May 7, 2021 398.55 

 

 

Figure 7. Image data over Kyushu (May 2021). 

276

Journal of Image and Graphics, Vol. 11, No. 3, September 2023



C. Attempt to Determine Sunny/Cloudy Using Core 

Tensors 

In the previous section, it was found that the largest 
absolute value of a core tensor element is related to the 
cloud amount in the metrological image. Cloud amount is 
the percentage of clouds in the sky, and the Japan 
Meteorological Agency defines the cloud amount of 0 to 1 
as clear, 2 to 8 as sunny, and 9 to 10 as cloudy. In this 
section, we attempted to determine the sunny/cloudy using 
the core tensor values described in the previous section. 
The devised algorithm for determination them is shown 
below. 

 

Algorithm 3: Determination of Sunny/Cloudy 

[Step 1] For each input data, the maximum absolute 

value of the core tensor element is obtained by HOSVD. 

Find the maximum value max  and minimum value 

min  from the obtained values and let the difference 

between them be d max min= − . 

[Step 2] The two thresholds 1Th , 2Th  are obtained by 

the following equation: 

 
1 0.1 ,

2 0.9 .

Th min d

Th min d

= +

= +
 (17) 

[Step 3] Using the threshold obtained in Step 2, data 

with core tensor values smaller than 1Th  are 

determined to be clear weather, data with core tensor 

values larger than 2Th  are determined to be cloudy, 

and otherwise are determined to be sunny. 

End 

 

 

Figure 8. Determination result by Algorithm 3. 

As input data for Algorithm 3, we used the image data 
of Figs. 6 and 7 shown in the previous section. The 
decision results of this algorithm are shown in Fig. 8. The 
horizontal axis represents indices attached to the data in 
Tables I and II. The indices from 1 to 10 represent the data 
in Table I and those from 11 to 20 correspond to the data 

in Table II. Based on thresholds 1 120Th = , 2 368Th = , 

the data on April 4 and May 7 and 8 were determined to be 
cloudy. Furthermore, the data on April 7, May 3, 6, and 9 

were judged to be clear weather. All other data were 
determined to be sunny. With regard to these 
determination results, when the amount of cloud in the data 
in Figs. 6 and 7 was visually confirmed, it is considered 
that the determination was generally correct. 

However, although this determination method is simple, 

it has the disadvantage that the threshold cannot be 

determined well when there are few patterns of cloud states 

in the input data. Therefore, when using this method to 

determine sunny/cloudy, it is necessary to increase the 

number of data as much as possible so that various cloud 

conditions are included in the input data. At least, by 

inserting data of the case where the observation area is 

mostly cloudless and the case where it is covered with 

clouds into the input data, as shown in Figs. 6 and 7, it is 

considered that the threshold value is set relatively well, 

and the judgment can be performed satisfactorily. 

V. ANALYSIS OF SOLAR RADIATION DATA USING MPCA 

A. Solar Radiation Data Used 

Compared to data such as sea surface temperature, 
which cannot be obtained in areas with clouds, solar 
radiation can be obtained in the entire observation area, 
therefore there are few missing values, and it is considered 
easy to construct higher-order tensor data. In this chapter, 
the solar radiation data described in Section II is analyzed 
using MPCA. 

This time, we obtained NetCDF data related to solar 
radiation from the JAXA Himawari Monitor. It contains 
data such as total atmosphere optical thickness, total 
atmosphere angstrom exponent, photosynthetically active 
radiation, shortwave radiation, ultraviolet-A radiation, and 
ultraviolet-B radiation [10, 11]. We extracted matrix data 
of the shortwave radiation (solar radiation) using the R 
package “ncdf4” and analyzed the obtained data. 

B. Configuration of Tensor Data for Solar Radiation 

Firstly, the solar radiation data described in above 

section is obtained for 24 hours. The data are observed 

every 10 minutes; therefore 144 data are acquired in 24 

hours. Then, the matrix data of the solar radiation at each 

time is stacked in the 3-mode as shown in Fig. 9 to 

construct a 3rd-order tensor. 

 

Figure 9. Structure of solar radiation tensor data. 
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Note that the size of the tensor in the 1-mode and 2-

mode depends on the size of an observation area. In this 

paper, Kyushu and Kumamoto Pref. areas were targeted as 

the observation areas. The size of the original solar 

radiation data is 2401 rows and 2401 columns. For the data 

of the Kyushu area, the submatrix of size 71 rows and 61 

columns was used with 521 rows and 981 columns of the 

original data as the origin. For the Kumamoto Pref. area, 

the submatrix with the size of 21 rows and 14 columns was 

obtained and used with the component of 538 rows and 

1008 columns as the starting point. Fig. 10 shows an 

example of a color map of the solar radiation seen from 

above the Kyushu area created from an extracted data. 

 

Figure 10. Color map of solar radiation seen from above Kyushu 

(12:00 on Jan. 1, 2022, Unit: W/m2). 

In addition, the solar radiation data observed by the 

meteorological satellite may contain missing values due to 

unmeasured portions. Therefore, missing values are 

complemented for each data acquired at each time. This 

completion process repeats a process of searching for a 

missing value in matrix data at a certain time and replacing 

it with an average value of 8 neighboring elements of an 

element in which the missing value is found. This 

processing is performed for the matrix data at all times. 

After the processing, it is checked whether data for all 

times are available. Then, if there is no data at a certain 

time, an average matrix data is obtained from matrix data 

before and after that time, and a missing matrix data is 

replaced with the average data. 

C. Analysis of Features of Solar Radiation Data 

Extracted from MPCA 

We used solar radiation data for the Kyushu area for 24 

hours from 9:00 am on January 1, 2022. The 3rd-order 

tensor data described in above section was constructed and 

MPCA was applied to it. The size of this tensor data is 

71 61 144  . 

The contribution rates of 1st principal components of 

the 1-mode (row direction) and 2-mode (column direction) 

of the tensor data obtained from the MPCA were 

calculated by (15) and was approximately 98.7% in both 

components. Therefore, we decided to compare the data at 

each time on the (1,1) th principal component obtained by 

synthesizing these principal components. 

This comparison can be performed by confirming a 

component value (principal component score) 

corresponding to each time stored in a partial vector 

( )11 11b =b  of the principal component score tensor B  

obtained from the calculation of (14). Hence, as shown in 

Fig. 11, it is visualized by a graph with the time on the 

horizontal axis and the component values of 11b  on the 

vertical axis. 

 

 

Figure 11. (1,1) th principal component score at each time (Jan. 1-2, 

2022, Kyushu). 

 

From Fig. 11, it can be seen that the principal 

component score is large when the sun is rising and is 

small when the sun is setting, although exact times of 

sunrise and sunset are not known due to the wide area of 

Kyushu. Thus, the (1,1) th principal component is 

considered to represent a feature reflecting the solar 

radiation in the entire observation area. 

D. Comparison with Past Meteorological Data 

To confirm whether the (1,1) th principal component 

obtained in the previous section is a feature related to the 

solar radiation in the observed area, we compared it with 

past meteorological data. As calculation examples, we 

used the solar radiation data for the summer solstice (Jun. 

21–22, 2021) and winter solstice (Dec. 22–23, 2021) in 

Kumamoto Pref. as the observation area. The size of the 

tensor data used for the MPCA calculation is 21 14 144  . 

Also, values of solar radiation observed on the earth were 

obtained from the website of “Past Meteorological Data 

Search” published by the Japan Meteorological Agency 

[16]. The values are shown in the columns of global solar 

radiation G  in Tables III and IV. 

Fig. 12(a) plots the (1,1) th principal component scores 

at the summer and winter solstices. In this figure, the 

horizontal and vertical axes show time and the principal 

component scores, respectively. The blue and green plots 

correspond to the scores obtained from the data of summer 

and winter solstices, severally. 

In this verification, we used hourly integrated global 

solar radiation observed by the Kumamoto Local 

Meteorological Observatory. Therefore, the principal 

component scores in Fig. 12(a) were integrated every hour. 

In Tables III and IV, the integrated values are shown as 

Isc . With reference to the calculation method of the daily 

radiant energy in [17], each value of Isc  was calculated 

by the following equation when there are m pieces of score 

data ksc , ( 1, 2, , )k m=  within a certain hour. 
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TABLE III. COMPARISON OF INTEGRATED VALUE OF (1,1) TH 

PRINCIPAL COMPONENT SCORE AND GLOBAL SOLAR RADIATION  

(JUN. 21–22, 2021, KUMAMOTO PREF) 

Day, 

Time 
Isc  

Normalized 

Isc  

G  
2

[MJ/m ]  

Normalized 

G  

Jun. 21  

10:00 7.42E+04 0.78 2.91 0.81 

11:00 9.45E+04 0.91  3.22 0.90 

12:00 1.08E+05 0.99  3.50 0.97 

13:00 1.09E+05 1.00  3.59 1.00 

14:00 9.92E+04 0.94  3.26 0.91 

15:00 8.20E+04 0.83  3.03 0.84 

16:00 5.53E+04 0.66  2.25 0.63 

17:00 1.69E+04 0.42  1.52 0.42 

18:00 −9.43E+03 0.26  0.99 0.28 

19:00 −3.85E+04 0.08  0.36 0.10 

20:00 −5.10E+04 0.00  0.03 0.01 

21:00 −5.11E+04 0.00  

None  

22:00 −5.11E+04 0.00  

23:00 −5.11E+04 0.00  

Jun. 22  

0:00 −5.11E+04 0.00 

1:00 −5.11E+04 0.00  

2:00 −5.11E+04 0.00  

3:00 −5.11E+04 0.00  

4:00 −5.11E+04 0.00  

5:00 −5.11E+04 0.00  0.00 0.00 

6:00 −4.64E+04 0.03  0.06 0.02 

7:00 −3.02E+04 0.13  0.23 0.06 

8:00 −9.11E+03 0.26  0.65 0.18 

TABLE IV. COMPARISON OF INTEGRATED VALUE OF (1,1) TH 

PRINCIPAL COMPONENT SCORE AND GLOBAL SOLAR RADIATION 

(DEC. 22–23, 2021, KUMAMOTO PREF) 

Day, 

Time 
Isc  

Normalized 

Isc  

G  
2

[MJ/m ]  

Normalized 

G  

Dec. 22  

10:00 6.17E+04 0.63 1.15 0.58 

11:00 9.65E+04 0.84  1.62  0.82  

12:00 1.18E+05 0.96  1.90  0.96  

13:00 1.24E+05 1.00  1.97  1.00  

14:00 1.12E+05 0.93  1.84  0.93  

15:00 8.10E+04 0.74  1.45  0.74  

16:00 3.51E+04 0.47  0.91  0.46  

17:00 −2.00E+04 0.13  0.32  0.16  

18:00 −4.19E+04 0.00  0.01  0.01  

19:00 −4.19E+04 0.00  

None  

20:00 −4.19E+04 0.00  

21:00 −4.19E+04 0.00  

22:00 −4.19E+04 0.00  

23:00 −4.19E+04 0.00  

Dec. 23  

0:00 −4.19E+04 0.00 

1:00 −4.19E+04 0.00  

2:00 −4.19E+04 0.00  

3:00 −4.19E+04 0.00  

4:00 −4.19E+04 0.00  

5:00 −4.19E+04 0.00  

6:00 −4.19E+04 0.00  

7:00 −4.19E+04 0.00  0.00  0.00  

8:00 −3.26E+04 0.06  0.10  0.05  

 𝐼𝑠𝑐 = (
1

𝑚
∑ 𝑠𝑐𝑘
𝑚
𝑘=1 ) × 3600 (18) 

For example, consider the calculation of Isc  for Jun. 21 

at 10:00 am in Table III. First, an average score is obtained 

from 6m =  score data every 10mins from 9:10 to 10:00 in 

the blue plot in Fig. 12(a). Then, the Isc  is obtained by 

multiplying the average score by 3600s. The Isc  at other 

times can also be calculated in the same way. 

 
(a) 

 
(b)  

 
(c)  

Figure 12. Comparison between (1,1) th principal component score and 

past meteorological data (Kumamoto Pref.): (a) The (1,1) th principal 

component score at each time (Jun. 21–22, Dec. 22-23, 2021); (b) 

Comparison in summer solstice data (Jun. 21–22, 2021); (c) Comparison 

in winter solstice data (Dec. 22-23, 2021). 

 

Then, to compare with actual meteorological data, the 

values of Isc  and global solar radiation G  were 

normalized so that the minimum value is 0 and the 

maximum value is 1. The normalized values are shown in 

Tables III and IV. In Fig. 12(b) and Fig. 12(c), the 

normalized values of Isc  and G  are plotted with black 

dots and red triangles, respectively, for comparison. From 

these results, it can be seen that a trend of change of the 

two normalized values is well matched. When the 

correlation coefficient was actually obtained from the data 

paired with these two values, a high correlation was 

confirmed with 0.997 in the case of Fig. 12(b) and 0.999 
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in the case of Fig. 12(c). 

Conversely, the (1,1) th principal component score itself 

was found to express characteristics of instantaneous solar 

radiation in the observation area, since the integrated value 

matches the global solar radiation. Originally, we dealt 

with short-wave radiation data with an energy intensity per 

unit time. Therefore, it was confirmed again that the 

feature value obtained by applying MPCA to the data is 

also instantaneous like this radiation. 

VI. CONCLUSION 

In this paper, we analyzed the weather image data and 

solar radiation data acquired by the weather satellite using 

tensor decomposition and MPCA. The results were as 

follows. 

First, in the analysis of weather image data, multiple-

colored images were obtained over Kyushu, and the 3rd-

order tensor data was composed and analyzed for each 

image. The analysis used HOSVD, one of the tensor 

decompositions, and examined the characteristics of this 

data from the distribution of the obtained core tensor. As a 

result, it was found that the absolute value of the maximum 

value of the core tensor element is related to the amount of 

cloud in the observation area. 

Therefore, we devised and implemented a simple 

algorithm to determine whether the observation area is 

sunny or cloudy using this value. The result of applying 

this algorithm to the data above Kyushu was almost correct. 

Note that this determination algorithm is an observation 

result from the sky because it uses data taken by the 

weather satellite, which may be different from the 

observation of cloud volume from the ground. 

Furthermore, since this algorithm uses only feature values 

related to cloud cover, it may be judged as sunny or cloudy 

even if it is raining or snowing in the observation area. If 

it is necessary to judge rain, snow, etc., other 

meteorological data must also be used. 

Next, in the solar radiation analysis, we used the solar 

radiation data calculated by JAXA based on the data 

observed by meteorological satellites. The data used for 

the analysis was the 3rd-order tensor data acquired every 

10 mins for 24 h in the observation area of Kyushu or 

Kumamoto prefecture. Then, MPCA using HOSVD was 

applied to this tensor data. 

Analyzing the principal components that represent the 

characteristics of the calculation result data obtained from 

MPCA, it was found that the principal component with the 

highest contribution rate was related to the amount of solar 

radiation in the entire observation area. Looking at the 

results of comparison with actual meteorological data, it 

can be said that the time-series changes in the solar 

radiation in the observation area can be expressed almost 

correctly using this principal component.  

As mentioned in Section I, tensor decomposition is used 

to process multispectral image data and statistical 

meteorological data in the fields of remote sensing and 

architecture and so on, and its application range is wide. 

We believe that our research can also play a role in these 

efforts. 

Finally, the future work is to combine weather image 

data analysis with physical quantity data such as solar 

radiation to enable more accurate weather determination. 

In addition, we would like to work on similarity search of 

weather images and physical quantity data, and speeding 

up the search. 
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