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Abstract—The recent spread of smartphones and social 

networking services has increased the means of seeing images 

of human faces. Particularly, in the face image field, the 

generation of face images using facial expression 

transformation has already been realized using deep 

learning–based approaches. However, in the existing deep 

learning–based models, only low-resolution images can be 

generated due to limited computational resources. 

Consequently, the generated images are blurry or aliasing. 

To address this problem, we proposed a two-step method to 

enhance the resolution of the generated facial images by 

combining a super-resolution network following the 

generative model, which can be considered a serial model, in 

our previous work. We further proposed a parallel model 

that trains a generative adversarial network and a super-

resolution network through multitask learning. In this paper, 

we propose a new model that integrates self-supervised 

guidance encoders into the parallel model to further improve 

the accuracy of the generated results. Using the peak signal-

to-noise ratio as an evaluation index, image quality was 

improved by 0.25 dB for the male test data and 0.28 dB for 

the female test data compared with our previous multitask-

based parallel model.  

Keywords—image processing, deep learning, facial 

expression transformation, generative adversarial networks, 

super resolution 

I. INTRODUCTION

Human face images are now widely used in various 

fields, including advertisements for sales promotions in the 

industrial world and diagnostic reference materials in the 

medical industry. Consequently, technologies for 

generating fictitious human face images by changing a 

person’s gender, age group, and facial expressions have 

been attracting attention, and related face image 

conversion technologies have been actively developed. 

Particularly, facial expression generation from a single 

facial image is widely applied in entertainment and social 

communication. Achieving facial expression changes is 

possible using Pix2Pix [1, 2] or other generative 

adversarial networks (GANs) [3, 4]. However, deep 

learning or GAN-based methods cannot generate high-
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resolution images due to limited computational resources. 

To solve this problem, we proposed a two-step method [5], 

which comprises Pix2Pix and a super-resolution (SR) 

model, as well as its improved end-to-end model [6], in 

which a facial image is generated using Pix2Pix and a 

high-resolution image is generated via an SR network. The 

weakness of these methods was their complexity because 

two models (generation and SR models) were used in the 

training and testing phases. Therefore, we proposed a 

parallel model with multitask learning [7]. Unlike previous 

methods [5, 6], this method uses both models only in the 

training phase. In the test phase, only the generation model 

of the main task is used to generate high-resolution facial 

expression images from low-resolution expressionless 

facial images. Compared with conventional methods, this 

method improved accuracy while reducing computational 

costs. Inspired by Wang et al. [8], we proposed another 

approach, which can be considered as an improved cGAN 

with two encoders [9]. An additional self-supervised 

guidance encoder (SGE) is integrated into the cGAN to 

extract high-frequency features by cropping patches from 

the original high-resolution images.  

In this paper, we incorporate the SGE into the multitask-

based parallel model [7] to further improve facial image 

generation accuracy. In the proposed method, two SGEs 

are adopted for the facial expression generation task and 

the super-resolution task, respectively. In each task, the 

features obtained from the SGE are input to each layer of 

the corresponding decoder stepwise, which is expected to 

improve the generation accuracy and the super-resolution 

accuracy. 

II. RELATED WORK

A. Pix2Pix

To date, Pix2Pix [2] has been used for facial expression

transformation, which is based on the conditional 

adversarial network [10], a type of GAN [11]. GAN 

comprises two neural networks: the generator and the 

discriminator. These two networks are trained on each 

other to output an image similar to the training image. The 

framework of the generator is shown in Fig. 1 and 
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comprises eight encoder layers and eight decoder layers. 

The upper number indicates the number of output channels 

in each layer. The generator uses a network called “U-

net” [12] to avoid information bottlenecks. U-net is a 

network that adds a “skip connection” to the encoder–

decoder network between each layer (Fig. 1). The 

framework of the discriminator is shown in Fig. 2; the 

discriminator is constructed similarly to the encoder layer 

of the generator. 

Pix2Pix uses “conditional image/image pairs of 

expressionless and expression images” as training data and 

learns the correspondence between them. By learning the 

relationship between images in this way, generating one 

image from another is possible. In this study, we used this 

network as a baseline to generate images of facial 

expression changes. 

The objective function of Pix2Pix is shown in Eq. (1), 

which is the objective function of cGAN (Eq. (2)) plus an 

L1 loss (Eq. (3)). Eq. (1) represents a minimax game where 

the generator tries minimizing the objective function, and 

the discriminator tries maximizing it. G represents the 

generator, and D represents the discriminator; 𝜙𝐺 and 𝜙𝐷 

represent the parameters of G and D, respectively, where 
𝑥 is the training image, 𝑦  is the real image, 𝐷(𝜙𝐷; 𝐱, 𝐲) is 

the output of the discriminator with the training and real 

images as input, and 𝐷(𝜙𝐷; 𝐱, 𝐺(𝜙𝐺; 𝐱)) is the output of 

the discriminator with the training and generated images 

as input. 𝐺(𝜙𝐺; 𝐱) is the image generated by the generator. 

The limitation of the Pix2Pix (cGAN)-based method is that 

it can only input low-resolution images due to limited 

computational resources and cannot generate high-

resolution images. 

min
𝐺

max
𝐷

𝐿𝑃2𝑃(𝐷, 𝐺) = 𝐿𝑐𝐺𝐴𝑁(𝐷,  𝐺) + 𝜆𝐿𝐿1(𝐺)     (1) 

𝐿𝑐𝐺𝐴𝑁(𝐷, 𝐺) =  𝐸𝐱,𝐲[ln𝐷(𝜙𝐷; 𝐱, 𝐲)] + 𝐸𝐱 [ln (1 −

𝐷(𝜙𝐷; 𝐱, 𝐺(𝜙𝐺; 𝐱)))]                                        (2) 

𝐿𝐿1(𝐺) = 𝐸𝐱, 𝐲 [‖𝐲 − 𝐺(𝜙𝐺; 𝐱)‖1]                           (3) 

 

Figure 1. The network structure of the generator. 

 

Figure 2. The network structure of the discriminator. 

B. Serial Model (Pix2Pix + SR) 

To solve the low-resolution problem, we proposed a 

two-step approach [5] and its end-to-end two-step 

model [6] in our previous work (Figs. 3 and 4). The two-

step approach comprises Pix2Pix [2] and a SR model 

(SRCNN) [13], as well as its improved end-to-end 

model [6]. 

In the first step, the Pix2Pix generates a low-resolution 

expression image from an expressionless image. 

Subsequently, the generated low-resolution expression 

image is interpolated and enlarged using Bicubic. In the 

second step, the generated low-resolution expression 

image is enhanced to a high-resolution expression image 

using the SR model (SRCNN). In the two-step 

approach [5], Pix2Pix and SRCNN are trained separately. 

In the end-to-end two-step model [6], Pix2Pix and SRCNN 

are trained in an end-to-end fusion using Eq. (4) and (5) as 

objective functions. In Eq. (4), G, D, and S represent the 

generator, discriminator, and SR, respectively. The first 

term of Eq. (4) is the objective function for Pix2Pix 

(Eq. (1)), and the second term is for SR (Eq. (5)). λ is a 

hyperparameter. In Eq. (5), S represents the SR model, and 

𝜙𝑠  and 𝜙𝐺  represent parameters of the SRCNN and 

generator, respectively. Eq. (5) represents the mean 

squared error of the reconstructed image S(𝜙𝑠; 𝐺(𝜙𝐺; 𝐱)) 

and the corresponding high-resolution expression image y. 

x is the low-resolution expressionless image.  

min
𝐺,𝑆

max
𝐷

𝐿𝑡𝑜𝑡𝑎𝑙(𝐷, 𝐺, 𝑆) = 𝐿𝑃2𝑃(𝐷,  𝐺) + 𝜆𝐿𝑆𝑅(𝐺, 𝑆) (4) 

min
𝑆

𝐿𝑆𝑅(𝑆) = 𝐸𝐱, 𝐲 [‖𝐲 − 𝑆(𝜙𝑆; 𝐱)‖2]           (5) 

 The limitation of this approach is that it is a two-step 

method, and two CNNs are used to generate high-

resolution expression images. 

 

Figure 3. Overview of the two-step approach (Pix2Pix + SR) during 

training. 

 

Figure 4. Overview of the two-step approach (Pix2Pix + SR) during 

inference. 
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C. Multitask-Based Parallel Model (Pix2Pix + SR) 

We further proposed an end-to-end parallel model that 

integrates the SR network into the existing Pix2Pix 

pipeline [7]. Specifically, the model is trained as parallel 

multitask learning, with Pix2Pix as the main task and SR 

as an auxiliary task. Fig. 5 shows the network during 

training, and Fig. 6 shows the network during inference. 

Notably, although this method uses two models 

(generation and SR models) in the training phase (Fig. 5), 

it only uses the generation model of the main task to 

generate the high-resolution facial expression image in the 

inference phase (Fig. 6). We used a model in which the 

encoders of the two streams are common and share weights. 

This allows the SR network to be removed during 

inference, which is expected to improve the resolution of 

the generated images without incurring extra 

computational costs. The weakness of this method is that 

it produces an image with less blurring overall than the 

serial model; however, it does not adequately generate 

small-edge information. 

 

 

Figure 5. Overview of the multitask-based parallel model during 

training. 

 

Figure 6. Overview of the multitask-based parallel model during 

inference. 

III. THE PROPOSED METHOD (MULTITASK MODEL 

WITH SGES) 

A. Overview  

In this paper, we propose a multitask-based model with 

additional SGEs [8, 9], which extracts high-frequency 

features by cropping patches from the original high-

resolution image. In the proposed method, two SGEs are 

introduced on both sides of the generation and SR models, 

respectively. The SGE is introduced to ensure that each 

model (generation and SR models) can generate highly 

accurate images. Fig. 7 shows the network for training, and 

Fig. 8 shows the network for inference. Two encoders are 

applied in this study. The Encoder is used for image 

generation, which inputs a low-resolution expressionless 

image. The SGEs on the Pix2Pix and SR sides are used to 

guide high-frequency information, whose inputs are patch 

images of the high-resolution expressionless image of the 

same size as the low-resolution image. The outputs 

(features) of two encoders are combined and fed into the 

decoder to generate a high-resolution expression image. 

We used a model in which the encoders of the two streams 

(generation and SR models) are common and share 

weights during training. Since the SGE can extract features 

of the original high-resolution image and input it as 

guidance, the proposed method can generate high-

resolution facial expression images from low-resolution 

expressionless facial images during inference with a 

single-generation model without using SR networks. 

Compared with the conventional Pix2Pix and multitask-

based parallel approaches, the proposed method can 

significantly capture high-resolution information by 

introducing additional SGE. Compared with the existing 

two-step serial approaches (Pix2Pix + SR), the proposed 

method is a single-step method like Pix2Pix during 

inference. 

The generator parts of the generation and SR models use 

the U-net structure, which consists of an encoder, decoder, 

and skip connection. Additionally, the SGE uses the U-net 

structure with a shared decoder, where features obtained 

from the SGE are input to each layer of the corresponding 

decoder in stages. This allows information from deeper 

and shallow layers to be added, which is expected to 

improve the image generation accuracy and super-

resolution accuracy. 

 

 

Figure 7. Overview of the multitask-based model with the SGE model 

for training. 

 

Figure 8. Overview of the multitask-based model with the SGM model 

for inference. 

B. Self-Supervised Guidance Encoder 

The SGE generates highly accurate images by 

extracting high-frequency features from the original high-

resolution image and inputting them into the decoder [8, 9]. 

Due to limited computational resources, the encoder’s 
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input is a downsampled image of the original high-

resolution image. Therefore, the advantage is that the 

original high-resolution image can be used. For the patch 

portion, the center portion (1/4 of the original image) is 

cropped instead of randomly. In this paper, the guidance 

image (256×256×3) is cropped from the high-resolution 

image (512×512×3). The SGE consists of multiple residual 

blocks and MaxPool. The output size of the intermediate 

layer is adjusted so that the obtained features can be input 

to each layer of the decoder. The residual block is 

comprised of 3×3 and 1×1 convolutional layers. The 

network structure of the SGE and the residual block is 

shown in Fig. 9. 

 

 
Figure 9. The network structure of the SGE and residual block. 

 

C. Contributions of the Proposed Method 

The main contributions are summarized as follows: 

(1) The proposed method uses two encoders (the 

generation model encoder and the SGE on 

Pix2Pix), which is expected to improve the 

accuracy of the generation results without using 

the SR network during inference. The generation 

model encoder uses a low-resolution image that is 

downsampled from a high-resolution image due to 

limited computational resources, whereas the SGE 

has the advantage of using the original high-

resolution image. Additionally, although this paper 

introduces SGE to the baseline Pix2Pix (cGAN), 

the proposed framework is generic and can be 

integrated into any GAN-based model. 

(2) Adopting the U-net structure for SGE makes 

improving the overall accuracy and the accuracy of 

detailed edge information possible. Simply 

combining features obtained from the generation 

model encoder and SGE and inputting them into 

the decoder is insufficient in generating highly 

accurate images. This could be because only the 

deep layer features obtained using SGE are used, 

which can be expected to improve the accuracy of 

small-edge information, such as around the eyes 

and nose, but does not add shallow layer 

information, such as structural information. 

Therefore, to improve overall blur and small-edge 

information, the proposed method adopts a U-net 

structure in which features obtained from the SGE 

are directly inputted to a decoder and combined 

stepwise in each layer of the corresponding 

decoder. This allows for the addition of 

information from the deeper (detailed information, 

such as eyes and teeth) and shallow layers (large 

structural information, such as facial contours), 

thereby improving the overall accuracy and the 

accuracy of detailed parts. 

D. The Objective Function in the Proposed Method 

In this study, we added the objective function of SR 

(Eq. (4)) to that of Pix2Pix (Eq. (1)). Consequently, the 

objective function to be optimized in the proposed method 

is shown in Eq. (6). G, D, and S represent the generator, 

discriminator, and SR, respectively. Notably, λ is a 

hyperparameter. In this research, λ is selected as 100 based 

on experiments. 

min
𝐺,𝑆

max
𝐷

𝐿𝑡𝑜𝑡𝑎𝑙(𝐷, 𝐺, 𝑆) = 𝐿𝑃2𝑃(𝐷,  𝐺) + 𝜆𝐿𝑆𝑅(𝐺, 𝑆)  (6) 

IV. EXPERIMENT AND COMPARISON 

A. Preprocessing for Database Creation and Data 

Augmentation 

This experiment required an image dataset of facial 

expression changes. The subjects were asked to change 

their facial expressions from straight faces to smiling faces 

in the 74 frames. For all 74 frames, the face images were 

extracted, except during the expression change. Frames 1 

to 10 were straight faces before the change of expression, 

and Frames 65 to 74 were smiling faces after the change of 

expression was complete (Fig. 10) The 1st and 65th frames, 

the 2nd and 66th frames, and the 10th and 74th frames are 

images of straight faces and their corresponding smiling 

faces, respectively. Although there were minute changes 

in the images, the degree of facial expression is the same 

and can be regarded as a type of data augmentation. 

Additionally, data augmentation was performed on each 

data. The original image obtained by shooting was 

1200×1600 pixels, and the central part was cropped for 

experiments because the outer parts are unnecessary. The 

cropping area is shown in Fig. 11. Suppose the distance 

between the eyes was d, the cropping area is defined as 3.2 

d from the top of each eye to the edge of the image and 6.4 

d in both length and width (Fig. 11). Subsequently, the 

image was resized to ensure that 6.4 d was 512 pixels in 

height and width. A normal random number with mean 0 

and standard deviation 1 was generated for each coordinate 

and size to be cropped, and data augmentation was 

performed by shifting the cropping position. Moreover, we 

added a horizontally flipped image with a probability of 

1/2 and a scaled image to increase the training data by 20 

times. 

 

 

Figure 10. Overall flow of dataset creation. 
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Figure 11. Cropping process of dataset. 

B. Experimental Details 

Pairs of low-resolution expressionless images (input 

image) and their high-resolution expression images 

(teacher image) were used for training. Pairs of 41 people 

(16 males and 25 females) were used as training data. We 

performed data augmentation to increase the training data 

by 20 times. Therefore, we used 8,200 pairs of input and 

teacher images (41 people × 10 frames × 20 times data 

augmentation). Only low-resolution expressionless images 

(one male and one female image), which are not included 

in the training dataset, were used as the test dataset. 

Experimental conditions are shown in Table I. 
All the models are optimized by Adam [14], with the 

initial learning rate set to 2e−4.  

TABLE I.  EXPERIMENTAL CONDITIONS 

Epoch 30 

Batch size 20 

Input size  256 × 256 pixels 

Output size 512 × 512 pixels 

C. Results 

The experimental results, representing images of the 

input, output from the test image, and ground truth, are 

shown in Fig. 12. The image size in (a) is 256×256 pixels, 

and that in (b) and (c) is 512×512 pixels. Although some 

parts of the image, such as the boundary lines of the teeth, 

are a little less clear than the ground truth, we generated a 

high-resolution facial expression image from a low-

resolution expressionless facial image. 

 

 

Figure 12. Generated high-resolution facial expression images. Top: the 

male sample; bottom: the female sample. Left: input image; middle: 

output image; right: ground truth image. 

D. Comparison and Evaluation 

We compared the proposed method with existing 

methods in Fig. 13. Fig. 13(a)–(e) are the output results of 

(a) the low-resolution images generated by Pix2Pix and 

interpolated and enlarged by bilinear [2], (b) the two-step 

serial model [5], (c) the end-to-end serial model [6], (d) the 

multitask learning–based parallel model [7], and (e) the 

proposed method. The existing serial model is confirmed 

to not only fail to generate small-edge information, such as 

around the nose and teeth, but also result in an overall 

blurry image. Additionally, the existing parallel model 

produces images with reduced blurring overall but does 

not produce fine details well. Conversely, we confirmed 

that the proposed method adequately generates the small-

edge areas around the nose, especially the teeth, and 

produces an image with limited blurring overall. 

 

 
Figure 13. Comparison of the proposed method with existing methods for the male ((a)–(e)) and female samples ((a’)–(e’)).  
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We evaluated the image quality using the peak signal-

to-noise ratio (PSNR) and structural similarity (SSIM). 

When used as an indicator of image quality evaluation, the 

PSNRs of the original and generated images are calculated. 

The formula for PSNR is shown in Eq. (7), where MSE is 

the mean squared error of the differences between the 

pixels of the reconstructed image and the ground truth 

image. MAX is the maximum possible pixel value in the 

image. The formula for SSIM is shown in Eq. (8), where 

the reconstructed image is represented by x and the ground 

truth image is represented by y. By measuring the mean 

( 𝜇
𝑥
, 𝜇

𝑦
), variance ( 𝜎𝑥

2, 𝜎𝑦
2 ), and covariance ( 𝜎𝑥𝑦 ) of 

neighboring pixels based on brightness, contrast, and 

structure, the SSIM index contains correlation with both 

individual pixels and pixels nearby. The PSNR index is 

very sensitive to shifting pixel positions. The PSNR score 

reduces dramatically even for a single pixel shift. Whereas 

the SSIM index takes into account the surrounding pixels 

for calculating the score, it is invariant to pixel shift. 

Quantitative comparison using PSNR and SSIM 

indexes are shown in Table II, and the proposed method is 

shown to have achieved the best result. The PSNR was 

improved by 0.25 dB for the male test data and 0.28 dB for 

the female test data compared with the end-to-end parallel 

method [7], which is the second-best result. In addition, the 

SSIM was improved by 0.01 for the male test data and 

0.007 for the female test data. We demonstrated the 

effectiveness of SGE from both subjective and quantitative 

assessments.  

𝑃𝑆𝑁𝑅 = 10 log10
𝑀𝐴𝑋2

𝑀𝑆𝐸
                              (7) 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2+ 𝐶1)(𝜎𝑥
2+𝜎𝑦

2+ 𝐶2)
         (8) 

TABLE II.  QUANTITATIVE COMPARISON OF ACCURACY (PSNR AND SSIM) AND NUMBER OF CNNS (DURING INFERENCE) 

Method Number of CNNs PSNR (Male / Female) SSIM (Male / Female) 

Pix2Pix + Bilinear [2] 1 23.79 dB / 25.81 dB 0.809 / 0.851 

Two-step method 

(Pix2Pix + SR) [5] 
2 23.93 dB / 25.84 dB 0.814 / 0.853 

End-to-end serial method 

(Pix2Pix + SR) [6] 
2 24.39 dB / 26.17 dB 0.820 / 0.858 

End-to-end parallel method 

(Pix2Pix + SR) [7] 
1 24.68 dB / 26.41 dB 0.822 / 0.862 

Proposed method 1 24.93 dB / 26.69 dB 0.832 / 0.869 

 

E. Comparison of Computational Costs 

We calculate the computational cost during the 
inference to observe the model complexity. We report the 
number of model parameters and compared it with other 
methods. Table III presents the results. The conventional 
Serial method [6] uses SRCNN as the SR network. The SR 
network used in the proposed method is an Encoder and 
Decoder structure. The number of parameters is compared 
with methods which have the same SR network structure. 
The proposed method has 44% more parameters during 
inference than [2] and [7], since the designed SGE Encoder 
module is incorporated. However, our proposed method 
with SGE modules has 27% fewer parameters than the 
Serial method. 

TABLE III.  COMPUTATIONAL COST ANALYSIS  

Method 
Parameters 

(During inference) 

Pix2Pix + Bilinear [2] 54,414,979 

Serial method 

(Pix2Pix + SR) [6] 
108,890,918 

Parallel method 

(Pix2Pix + SR) [7] 
54,475,939 

Proposed method 78,743,102 

 

F. Ablation Study 

We perform ablation studies to examine the efficiency 
of the designed modules employing different components. 
We incorporate the designed SGE module with the 
Pix2Pix side (Model-2) and SR side (Model-3). We also 
report the results of experiments without (Model-4) and 
with the skip (residual) connection (Model-5). The PSNR 
and SSIM scores for these various component 
configurations are shown in Table IV. In comparison to the 
baseline method, the accuracy of Models 2 and 3 has 
improved. This illustrates the importance of the designed 
Self-Supervised Guidance Encoder (SGE), which 
automatically focuses on the crucial feature information. 
When compared to the baseline, the performance is poor 
when there are no skip (residual) connections, proving that 
simply passing the feature maps from the SGE Encoder to 
the Decoder is insufficient to emphasize the important 
information. The finest performance demonstrates the 
necessity of skip connections between the SGE Encoder 
and Decoder (Model-5). The skip connections enable 
efficient flow of both shallow layer feature information 
(finer attributes) and deep layer feature information 
(coarse attributes), resulting in improved accuracy. 

TABLE IV.  ABLATION EXPERIMENTS TO DEMONSTRATE THE EFFICIENCY OF VARIOUS COMPONENTS USING PSNR AND SSIM INDEX  

 
Parallel method 

[7] (baseline) 

SGE  

(Pix2Pix side) 
SGE (SR side) 

skip 

connection 

PSNR (Male / 

Female) 

SSIM (Male / 

Female) 

Model- 1 ✓    24.68dB / 26.41dB 0.822 / 0.862 

Model-2 ✓ ✓  ✓ 24.80dB / 26.51dB 0.824 / 0.865 

Model-3 ✓  ✓ ✓ 24.83dB / 26.55dB 0.828 / 0.865 

Model-4 ✓ ✓ ✓  24.49dB / 26.28dB 0.825 / 0.862 

Model-5           

(Proposed method) 
✓ ✓ ✓ ✓ 24.93dB / 26.69dB 0.832 / 0.869 
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V. CONCLUSION 

In this paper, we proposed an accurate and efficient 

multitask learning—based method using an SGE to 

generate high-resolution facial expression images. The 

SGE was effective in improving the accuracy of the 

generated results and achieved higher accuracy than the 

existing method. We experimented with Pix2Pix as our 

baseline generation model to validate the effectiveness of 

the SGE in this paper, but the SGE can also be 

implemented in any GAN-based generation model. 
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