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Abstract—Delivering robots impact many facets of our life, 

including food delivery and restaurant services, with 

advancements enabling obstacle overcome, faster delivery, 

and minimizing human intervention. However, delivering 

robots remained to experience poor vertical mobility-

elevator usage in multi-floor buildings. Incorporating new 

elevator models into the robot’s elevator usage capabilities 

involves a long process of manufacturer approval and 

authentication. Furthermore, strict fire-code regulations 

pose communication barriers between the robot and the 

elevator. In this paper, we introduce MirrorVision-a novel 

approach designed for accurate floor detection during 

vertical mobility, regardless of obstructions blocking the 

robot’s direct line of sight to the elevator number panel. 

First, we collected and pre-processed a dataset of direct and 

reflective views of elevator number panels via the pre-

installed mirrors. Then, we trained mirrored images in 

various possibilities to accomplish accurate floor detection. 

MirrorVision provides a solid mechanism to understand 

floor numbers at the level of distorted images. Extensive 

evaluations show that MirrorVision achieves 98.8% 

accuracy for floor detection in a crowded elevator, while 

state-of-the-art EfficientDet and YOLOv5 achieved 90.8% 

and 93.3%, respectively.   

 

Keywords—autonomous robots, floor detection, indoor 

navigation, MirrorVision, faster Region Convolution Neural 

Network (R-CNN), EfficientDet, YOLOv5 

 

I. INTRODUCTION 

Over the past decades, a number of robots have been 

deployed in several public places, including airports, 

hospitals, hotels, museums, etc., to perform a wide range 

of services (e.g., security, cleaning, delivery, and 

guidance) [1, 2]. These robots are fitted with several 

state-of-art algorithms and technologies, including 

computer vision, outdoor navigation, embedded systems, 

and just to name a few. For instance, Airstar, the first 

regularly operating robot assistant at Korea international 

airport, provides multilingual assistance and guides 

passengers using advanced functionalities like facial 

recognition and accurate navigation [3]. Another real-life 
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example is Camello, an autonomous robot in Singapore 

that delivers groceries from markets to customers [4]. 

Robots require complete autonomous abilities to 

achieve the highest reliability and performance in 

accurately accomplishing tasks. One of the essential 

capabilities of autonomous robots is accurate indoor 

navigation that helps to localize the robot accurately and 

perform tasks in the right place [5]. However, their indoor 

navigation system has several limitations in terms of the 

multi-floor indoor environment and elevator control. The 

successful movement of robots in multi-floor indoors 

requires accurate floor detection in elevators [6]. Floor 

detection can help robots to move from floor to floor, just 

as people can move another floor using visual eyesight 

abilities in a multi-store building. 

Current research progress has offered several 

methodologies for floor detection in elevators for multi-

floor buildings. These approaches applied Wi-Fi signal 

strength [7, 8], air pressure calculations [9], and computer 

vision-based floor recognition techniques [10–18] to 

accurately detect the current floor status. However, there 

are several challenges to apply the above-mentioned 

approaches.  

Wi-Fi-based methodologies are often grounded in the 

concept of Radio Frequency (RF) fingerprinting. They 

leverage the signal strength and angle of arrival 

properties of RF signals to determine the current floor. 

However, due to the elevator’s closed environment and 

its metal composition, it is difficult to receive external 

signals in elevators. Furthermore, numerous factors can 

influence Wi-Fi signals, such as interference from other 

devices, signal multipath, and environmental 

changes [14].  

Floor positioning using air pressure computations take 

advantage of the fact that air pressure decreases with 

altitude parameters. These techniques use built-in 

pressure sensors to compute the current floor level based 

on the measured air pressure. However, such methods are 

a highly unreliable solution for floor detection. The issue 

lies in the nearly uniform characteristics of air pressure 

within elevators due to their relatively confined and 

controlled environment. Thus, the differences in air 

pressure between floors are often so minute that they fall 
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within the sensor’s error range, leading to a high 

probability of failures in floor detection.  

Computer vision-based techniques are the most 

promising approach. As represented in the literature 

review section, they can provide advanced solutions for 

the robots to recognize the floor number from elevator 

number panels in elevators. However, if the elevator is 

crowded and occupied with people, the robot’s line of 

sight to the elevator number panel can be blocked. This 

creates a significant obstacle for computer vision 

algorithms, which rely on a clear view of the target object 

to function effectively. Therefore, the robot may struggle 

to correctly identify the floor number from the elevator 

panel due to obstruction from people, luggage, or other 

objects. This, in turn, can negatively impact the robot’s 

ability to accurately localize itself within the building and 

navigate effectively to its destination. 

This paper suggests a low-cost mirror reflection based 

on a floor detection approach—MirrorVision to solve the 

blockage problem between the elevator number panel and 

the robot. As a result, even the robot cannot see the 

elevator number panel directly. Instead, the robot can use 

the reflected numbers to detect the current floor or 

upcoming floors, as shown in Fig. 1. The proposed floor-

detecting system consists of three stages, firstly, the robot, 

which is equipped with a camera, enters the elevator, and 

starts to record a video from the inside of the elevator. In 

the second stage, a video is used as input to the video 

segmentation module, and the FFmpeg-based video 

segmentation model divides the video into frames by 

decreasing the size of the video. In the final stage, 

segmented frames are applied to the pre-trained Faster R-

CNN-based floor detector module to detect and recognize 

the current floor number. We validate our system via 

various tests and confirm its accuracy in various state-of-

the-art computer vision-based algorithms.  

 

 
Fig. 1. System view of MirrorVision. 

The rest of the paper is organized as follows. Related 

studies and highlights of the relevant literature in floor 

detection are presented in Section II. Section III 

illustrates the proposed system design, the detailed 

description of data processing, and applied computer 

vision algorithms for floor detection. Section IV depicts 

performance evaluation results. Section V presents the 

comparison and significance of the proposed Faster R-

CNN module with various state-of-the-art computer 

vision techniques. Finally, the conclusion is given in 

Section VI. 

II. LITERATURE REVIEW 

Compared to the vast literature on conventional robot 

navigation systems, only a limited number of publications 

are available for floor detection systems in elevators, and 

authors mainly paid attention to elevator button 

recognition. In this section, we only pay attention to the 

intelligent floor detection systems in elevators for 

autonomous robots. This work proposed a computer 

vision-based robust elevator button recognition approach 

with a robot arm to control the elevator buttons [15]. A 

robot arm was able to click the target button and 

recognize the clicked button among other floor number 

buttons. The authors used contour-based object 

segmentation and feature point re-ordering algorithms to 

solve the ambiguity issue and increase the performance in 

object segmentation. One of the main issues of that work 

was that the robot had to stay near the elevator buttons. In 

real-life, elevators are crowded and used by many people. 

People can be a blockage between the number panel and 

the robot and click multiple buttons at a time. As a result, 

the robot cannot detect the required elevator button and 

fails in floor recognition.  

This work presented the novel elevator button 

recognition approach based on OCR-RCNN [16]. Optical 

Character Recognition (OCR) network and Faster 

Region-Based Convolutional Neural Networks (RCNN) 

architecture were combined with a single neural network 

and used to recognize elevator buttons. The authors paid 

attention to several factors to increase the accuracy of 

button recognition, including various light effects, 

perspective distortion, and different button content, which 

made the task complicated. Although the proposed 

system’s accuracy 94.6% was remarkable, computational 

efficiency was not high enough as they expected.  

Zhu and Liu et al. [17] presented a novel algorithm to 

autonomously correct perspective distortions of elevator 

number panel images. First, the Gaussian Mixture Model 

(GMM) provided the grid fitting procedure using the 

results of button recognition. Then the estimated grid 

center was utilized to calculate camera motions to correct 

the image distortions. The authors used only 50 images to 

prove the efficiency of their proposed algorithm. 

However, more experiments were required to accurately 

remove perspective distortions for a valid comparison. 

Several other methodologies have been suggested for 

button detection using buttons’ visual features, for 

instance, texture and color. Yu and Dong et al. [18] 

introduced Hough transform, multi-symbol, and structural 

inference-based elevator button detection systems. 

García-Domínguez et al. [19] suggested a technique that 

applies shape, size, and color to identify buttons. 
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However, brightness and background illuminations lead 

to failure in button detection in those works. 

III. PROPOSED SYSTEM ARCHITECTURE AND 

IMPLEMENTATION DETAILS 

In this section of the paper, detailed proposed system 

design, data pre-processing, and Faster R-CNN-based 

floor detection mechanism were described briefly in 

subsections. 

A. System Design 

The detailed proposed system design is presented in 

Fig. 2. It can be clearly seen that the proposed approach 

includes four main stages, namely elevator-in, video 

segmentation, Faster R-CNN-based floor detection, and 

elevator-out. First, as the robot enters the elevator, it 

starts to record direct and reflection views of the elevator 

number panel from pre-installed mirrors using the camera. 

After that, the video streaming is sent to the video 

segmentation module, and the video is cut into individual 

frames in specific periodical thumbnails to decrease the 

video size to avoid dataset duplication. Segmented frames 

are applied to the pre-trained Faster R-CNN-based floor 

detection module. Afterward, the floor detection module 

detects the floor number with its classification score and 

bounding box. According to the detected floor number, 

the robot can localize itself and decide to go our wait on 

the required floor in the last stage. Accurate detection of 

the mirror-reflected elevator number panel has allowed 

the robot to watch and localize itself, even if there was a 

blockage between the robot and the elevator number 

panel.  

 

 
Fig. 2. Proposed system design. 

 

B. Data Collection and Pre-Processing 

The data collection and pre-processing stages are 

described in detail in this subsection of the paper. For the 

data collection, there were already three mirrors on the 

elevator’s left, right, and back sides from the 

manufacturer. However, the left and right-side mirrors 

cannot directly reflect the elevator number panel. 

Therefore, we installed three mirrors on the elevator’s 

back wall, which could reflect floor numbers from six 

different coordinates, as shown in Fig. 3. These three 

mirrors allow a robot to obtain reflections of the elevator 

number panel from the different angles and elevator 

coordinates. If there is a blockage between the robot and 

the elevator number panel, the robot can see the elevator 

number panel through the mirrors. 

To increase the floor detector’s accuracy by 

considering the elevator’s size, the elevator floor is 

divided into six coordinates. As the robot enters the 

elevator, it can occupy one of the coordinates of the 

elevator from the given six coordinates each time. The 

view of the elevator number panel reflections can be 

different from different coordinates. Thus, all possible 

scenarios are collected from the mirrors based on six 

coordinates to increase the detection accuracy.  

 

Fig. 3. Installation of mirrors and data collection from different angles 

and elevator coordinates. 

The reflected floor number videos were collected from 

all six coordinates at different angles using a camera 

attached to the laptop from the ground floor to the 

seventh floor. Overall, 18 min of video were recorded 
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from the ground floor to the seventh floor. The frame rate 

of the collected video was 30 Frames per Second (FPS), 

and more than 32,000 raw images could be collected 

from the recorded video. However, the collected raw 

images could not be applied to the proposed system 

because of computational cost. Thus, the recorded video 

was inputted into the FFmpeg-assisted video 

segmentation module to avoid duplications and decrease 

video size. This allowed us to optimize the computational 

time by analyzing input frames faster. More precisely, the 

collected video was forwarded to the video segmentation 

module, which segmented the video into frames every 

0.25 s (I = 0.25 s). It allowed extracting four images from 

a one-second video instead of duplicating 30 images. 

Overall, around 4300 individual frames were collected in 

the video segmentation phase from the basement to the 

seventh floor of the building to train the proposed system.  

Several examples of the individual frames segmented 

from the reflected elevator number panel recordings are 

shown in Fig. 4. However, we cannot directly use these 

images to train our proposed Faster R-CNN algorithm-

based floor detection model. The reason is that the robot 

must recognize and detect the floor number; the 

surroundings of the number panel are not important for 

detecting floors in crowded elevators. In addition, if the 

surroundings of the elevator number panels are 

considered in each training and testing, the accuracy of 

floor detection decreases, which leads to failures in 

accurate floor detection. Therefore, elevator number 

panels were cropped, and cropped images were annotated 

to train the Faster R-CNN-based floor detection module. 

 

Fig. 4. Examples of floor number reflected images. 

Annotation maps an object to its respective label by 

drawing a rectangular box (bounding box) over the object. 

Bounding boxes are a series of values or coordinates that 

present the position of the floor number in an image. 

Several annotation formats are widely used to create 

annotation files, including YOLO, Pascal Visual Object 

Classes (VOC), COCO, and others. For example, in the 

annotation phase, the first elevator number panel images 

were annotated in the Pascal VOC XML format to 

prepare the dataset for the training models because the 

Pascal Visual Object Classes (VOC) format allows 

creating of single XML annotation files for each image 

with the image details, bounding box coordinates, classes, 

rotation, and other essential values [20]. Therefore, it 

became easier to label floor number images separately in 

eight classes, namely, Base 1, First, Second, Third, 

Fourth, Fifth, Sixth, and Seventh, as represented in Fig. 5 

with their respective bounding boxes. 

 

Fig. 5. Examples of annotated images with bounding boxes in eight 

classes. 

Moreover, the data augmentation technique was 

applied for the dataset to crop randomly, flip (horizontal 

and vertical), rotate (clockwise, counterclockwise, and 

upside down), bright (from −25% to 25%), blur, generate 

images (in 2 copies), and to resize 416×416 pixels. At the 

end of the data preparation, more than 8000 trainable 

images were ready to use for training (70%), validation 

(15%), and testing (15%) with eight-floor labels. 

C. Implementation and Training 

The data collection and development of the proposed 

system were conducted at the State University of New 

York, Korea campus, Block C from April 2022 to August 

2022. The development of the proposed system 

comprises three main phases: data collection, 

implementation, and deployment. In the implementation 

phase, we deployed and tested several state-of-the-art 

object detection algorithms for accurate floor detection 

for autonomous robots in the elevator using mirror-

reflected floor numbers. We implemented the Faster R-

CNN, EfficientDet, and YOLOv5-based floor detection 

systems, and pre-trained COCO weights were applied to 

all models.  

The dataset of over 8000 mirrored elevator number 

panel images is categorized into eight classes, each 

representing a distinct floor level. Annotating these 

images was streamlined using the Pascal VOC XML 

format. The dataset is divided into 5600 training images, 

1200 for validation, and 1200 for testing, facilitating a 

robust and well-rounded evaluation of our model’s 

effectiveness. Training the Faster R-CNN, EfficientDet, 

and YOLOv5 models required about 5 h, 6.5 h, and 5.5 h 

for 100 epochs, respectively. 

1) Faster R-CNN: We used Detectron2 [20] 

framework to implement our Faster R-CNN model. 

Detectron2 was developed based on PyTorch by 

Facebook’s AI Research team, and using this framework, 

we can easily design and deploy our object detection, 

recognition, and segmentation models. The initial version 

of Detectron was implemented in Caffe2, but the current 

version was written on PyTorch. Detectron2 requires 

datasets in the Common Objects in Context (COCO) 

JSON format. After data preparation and pre-processing, 

VGG16 is the backbone for image feature extraction. 
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Then the extracted image feature maps are shared 

between Region Proposal Network (RPN) and Fast R-

CNN. Based on extracted feature maps, the RPN 

generates region proposals. The region proposal 

encompasses the object’s location in the images with 

various scales and aspect ratios. Then region proposals 

are inputted to the ROI Pooling, and the responsibility of 

ROI Pooling is extracting fixed-length feature vectors 

from all region proposals and feature maps. After that, 

Fast R-CNN classifies the extracted feature vectors to 

detect the floor number with their classification score and 

bounding box [21]. We applied the weight attenuation to 

0.0005 for the training network model, and the 

momentum was 0.937. The training iterations were 5000. 

The learning rate was initialized as 0.01, and the learning 

rate decay was 0.00001. The batch size was 64, with 100 

epochs. 

2) EfficientDet: EfficientDet [22] is one of the 

widely used methods of convolutional neural networks, 

and this technique can efficiently detect objects by 

combining layer width, layer depth, and resolution 

parameters. EfficientDet was initially implemented in 

Tensorflow and Keras but currently has implementations 

using PyTorch. PyTorch-based implementation of 

EfficientDet performs faster and more accurate in 

debugging capabilities compared with Tensorflow and 

Keras-based implementations. EffecientNet [23] is the 

backbone of the EfficientDet, and it has classification and 

a custom detection network. EfficientDet also requires 

datasets in the COCO JSON format. The same number of 

learning rates, iterations, batch sizes, and epochs were 

employed in the EfficientDet training process. The 

EfficientDet-based classification model accurately 

classified (90.8%) the floor numbers based on reflected 

elevator number panel images. 

3) YOLOv5: To test and prove the effectiveness of 

our mirror reflection-based floor detection model, we also 

used YOLOv5 [24], one of the widely used object 

detection algorithms, because of its accuracy and speed. 

YOLO is an acronym for “You Only Look Once,” and it 

is for detecting objects. The network architecture of 

YOLOv5 comprises three main parts: Model Backbone, 

Model Neck, and Model Head. The Model Backbone 

extracts essential features from the given input images. 

CSP (Cross Stage Partial Networks) is used as a 

Backbone in YOLOv5. Model Neck is applied to 

generate feature pyramids to identify the same object in 

various sizes and scales. YOLOv5 calls PANet a model 

neck to obtain feature pyramids. Model Head mainly 

performs the final object detection layer by generating 

final output vectors with objectness score, class 

probability, and bounding box. The original Pascal VOC 

XML dataset was exported to the YOLOv5 PyTorch 

format because training and test data must be in the 

YAML file in YOLOv5 [25]. The same number of 

learning rates, iterations, batch sizes, and epochs were 

also employed in the YOLOv5 training process. The 

YOLOv5-based classification model accurately classified 

(93.3%) the floor numbers based on reflected elevator 

number panel images. 

D. Used Technologies 

Table I presents the technologies used on a general-

purpose machine for the implementation environment.  

TABLE I.  SPECIFICATION OF THE IMPLEMENTATION ENVIRONMENT 

System Parameter Description 

Operating System Windows 10 

CPU Intel Core (TM) i7-7700K CPU @4.20 GHz 

GPU NVIDIA GeForce GTX 2060 Ti 

Primary Memory 24 GB DDR4 

Framework FFmpeg, Detectron2 

Libraries Torch 1.5, Torchvision 0.6, CUDA 10.1 

CNN models Detectron2, EfficientDet, YOLOv5 

Programming 

language 
Python 3.9 

IV. EVALUATION RESULTS 

A. Loss Analysis 

As discussed, the proposed MirrorVision network 

model architecture contains two fully connected network 

layers, the RPN and Fast R-CNN layers. Both layers 

define independent loss functions for floor number 

classification and bounding-box regression. Thus, a 

combination of the network losses is considered a 

multitask loss: classification loss and regression loss. The 

former is employed to classify the target floor number 

among all other floors, and the latter is applied for 

regressing a bounding-box to locate the classified floor 

number. 

Fig. 6 depicts the loss metrics for the classification and 

regression results, respectively. In the first epoch of 

classification, the training and validation loss remains at 

around 90% and 65%, respectively. Both loss figures 

decline gradually between training epochs 2 and 21. 

There are small fluctuations from epoch 21 to epoch 40, 

and the classification loss is around 15%. After 55 epochs, 

both classification losses maintain the same level over the 

training and validation sets, and the last loss scores are 

just above 0.001%.  

Box regression validates how well the proposed model 

can localize the center of the floor number panel and how 

well the predicted bounding-boxes fit a floor number. 

Fig. 6(b) compares the bounding-box localization errors 

around floor numbers over the training and validation sets. 

At the beginning of the epochs, the training loss was 

around 90% and decreased remarkably until epoch 20, 

and in this epoch, training and validation errors reached 

the same level (loss = 20%). 

To sum up, although classification loss has reached 

nearly the same level for both training and validation 

results, training loss of box regression is moderately 

higher than validation loss. Compared with training loss, 

validation loss is less by around 2% loss after epoch 50. 

At the end of the training and validation epochs, 

bounding-box regression achieved 2% and 0.2% errors, 

respectively. 
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(a) Classification loss 

 

(b) Regression loss  

Fig. 6. (a) Classification loss and (b) Regression loss results over the 

training and validation sets. 

B. Accuracy Analysis 

Fig. 7 presents the classification and regression 

accuracy results over the training and validation sets. 

Classification accuracy is one of the most common 

metrics for summarizing the performance of classification 

models. More precisely, classification accuracy requires 

employing the classification model to predict each 

example in the given dataset. Then, predicted outcomes 

are compared to the known labels for those examples in 

the dataset. The accuracy of the proposed floor number 

detection model is the proportion of predicted correct 

floor numbers divided by all floor number predictions 

over the given dataset. As can be seen, in the initial 

epochs, the classification accuracy of the training and 

validation sets are about 6% and 34%, respectively. After 

epoch 50, the training and validation accuracy is around 

99% for both training and validation cases. Regression 

accuracy shows how well the faster R-CNN algorithm 

can locate the bounding-boxes around the floor numbers. 

The training and validation accuracy plots show that the 

proposed floor number detection system achieved 99.8% 

accuracy at the end of the given epochs. 

To summarize, the performance of the MirrorVision is 

remarkably accurate in localizing the autonomous robot 

in the elevator in terms of floor number classification and 

bounding-box regression. The former achieved nearly 

100% accuracy in classifying the floor number after 

epoch 60, whereas the latter reached 99.6% accuracy in 

bounding-box localization after epoch 85 over the 

validation set.  

 

(a) Classification accuracy  

 

(b) Regression accuracy  

Fig. 7. (a) Classification accuracy and (b) Regression accuracy results 

over the training and validation sets. 

V. COMPARISON AND SIGNIFICANCE 

This section of the paper briefly describes the 

significance of the proposed Faster R-CNN-based floor 

number detection results by comparing EfficientDet and 

YOLOv5-based floor number detection results in terms of 

loss and detection accuracy.  

A. Comparative Analyses of Detection Loss Results 

Fig. 8 compares the floor number classification and 

regression loss results of the Faster R-CNN, YOLOv5, 

and EfficientDet over the validation set. The error rate of 

the EfficientDet-based floor number classification is 

greater than the remaining models. The average 

classification loss of Faster R-CNN, YOLOv5, and 

EfficientDet-based floor number detection equals 0.07%, 

0.09%, and 0.12%, respectively. 

In the first epoch of the validation set, the error rates of 

the Faster R-CNN, YOLOv5, and EfficientDet models 

based on bounding box regression are approximately 

0.32%, 0.48%, and 0.59%, respectively. On the other 

hand, in the last epoch of the validation set, the 

classification loss results are nearly equal.  

Generally, there is no significant difference between 

YOLOv5 and EfficientDet’s error rates. In contrast, our 

proposed Faster R-CNN-based floor detection model’s 

error rate in bounding box regression is slightly less than 

the remaining models. The average bounding box 

regression loss of Faster R-CNN, YOLOv5, and 

EfficientDet-based floor detection equals 0.09%, 0.12%, 

and 0.14% over the validation epochs, respectively. 
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(a) Classification loss  

 

(b)  Regression loss  

Fig. 8. Comparative analysis of (a) Classification loss and (b) 

Regression loss results. 

B. Comparative Analyses of Detection Accuracy Results 

In this subsection of the paper, we present a detailed 

comparison of the proposed Faster R-CNN-based floor 

detection results with two other state-of-the-art YOLOv5, 

EfficientDet models over the training, validation, and test 

sets.  

Fig. 9 compares the floor number classification and 

regression ac-curacy results of Faster R-CNN, YOLOv5, 

and EfficientDet-based floor detection over the training, 

validation, and test sets. The training accuracy of the 

EfficientDet, YOLOv5, and Faster R-CNN-based floor 

detection models are 81.5%, 86.7%, and 88.34%, 

respectively. For the validation set, the classification 

accuracy score is about 6% higher for all models 

compared with the training set. The test accuracy results 

show that the proposed Faster R-CNN-based floor 

detection model achieved 99.6% classification accuracy. 

In contrast, the YOLOv5 and EfficientDet-based floor 

detection models performed 93.5% and 90.8% 

classification accuracy, respectively.  

Compared to the other two modules, the EfficientDet-

based floor detection model has achieved the lowest 

bounding box regression accuracy: 78.2%, 86.9%, and 

90.7% over the training, validation, and test sets, 

respectively. While the regression accuracy of the 

YOLOv5-based model has had 80.5%, 88.6%, and 93% 

over the mentioned data set. Our proposed Faster R-CNN 

model achieved the highest accuracy over the data sets, 

and the final bounding box regression accuracy in the 

new and unseen floor number panels is 98%.  

 

(a) Classification accuracy 

 

(b) Regression accuracy 

Fig. 9. Comparative analysis of (a) Classification accuracy and (b) 

Regression accuracy results. 

Fig. 10 represents the comparative analyses of 

Efficient-Det, YOLOv5, and Faster R-CNN-based floor 

detection results over the test set. As can be seen from the 

EfficientDet-based floor detection results in Fig. 10(a), 

base 1, the fifth, and sixth floors were detected with 

higher than 90% accuracy. In contrast, the third, fourth, 

and seventh floors achieved 89%, 86%, and 88% 

accuracy, respectively. However, the first and the second 

floors had the lowest accuracy, 74%, and 75%, 

respectively, compared with the remaining floors.  

Fig. 10(b) depicts the YOLOv5-based floor detection 

results; the basement, first, and sixth floors achieved 86% 

accuracy in the output examples, while the third and 

fourth floors had 87% and 88% accuracy, respectively. 

The second and fifth floors’ recognition achieved 89% 

accuracy, whereas the seventh floor had the highest 

accuracy (90%) among other floor numbers. Output result 

examples of the Faster R-CNN-based floor detection 

Fig. 10(c) illustrate that the model achieved 100% 

accuracy in detecting the basement floor over the test 

dataset, while the classification accuracy was from 99% 

to 100% in the remaining floor numbers. Rotated, 

mirrored, and flipped floor numbers with various 

brightness and blurred levels could not affect the 

accuracy of the floor number detection model.  
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(a) EfficientDet-based floor detection results 

 

(b) YOLOv5-based floor detection results 

 

(c) Our Faster R-CNN-based proposed floor detection results 

Fig. 10. Some test results over the test set to comparatively analyze EfficientDet, YOLOv5, and Faster R-CNN-based floor number detection results. 

The bounding boxes refer to the detected floor numbers annotated by their classification scores. 

VI. CONCLUSION  

In this work, we proposed MirrorVision, an accurate 

floor detection system in crowded elevators for 

autonomous robots. Our system can accurately detect 

floor numbers from the elevator number panels using 

mirror-reflected images even though there is an obstacle 

between the robot and the elevator number panel. The 

mirror-reflected videos for each floor were collected from 

the experimental environment, and the gathered videos 

were divided into frames in periodical thumbnails using 

the FFmpeg-based video segmentation module to 

decrease video size and increase computational efficiency. 

Those frames were used to train, validate, and test 
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modern state-of-the-art object detection algorithms, 

including Faster R-CNN, EfficientDet, and YOLOv5. 

The comparative analysis of the floor detection 

algorithms shows that the Faster R-CNN achieved an 

average of 98.8% accuracy in classifying floor labels with 

respected bounding boxes, whereas the EfficientDet and 

YOLOv5-based floor detection have achieved 90.8% and 

93.3% accuracy, respectively.  
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