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Abstract—Image segmentation is a complex mathematical 

problem, especially for images that contain intensity 

inhomogeneity and tightly packed objects with missing 

boundaries in between. For instance, Magnetic Resonance 

(MR) muscle images often contain both issues, making 

muscle segmentation especially difficult. In this paper we 

propose a novel intensity correction and a semi-automatic 

active contour-based segmentation approach. The approach 

uses a geometric flow that incorporates a Reproducing 

Kernel Hilbert Space (RKHS) edge detector and a geodesic 

distance penalty term from a set of markers and anti-

markers. We test the proposed scheme on MR muscle 

segmentation and compare with some state-of-the-art 

methods. To help deal with the intensity inhomogeneity in 

this kind of image, a new approach to estimate the bias field 

using a fat fraction image, called Prior Bias-Corrected Fuzzy 

C-means (PBCFCM), is introduced. Numerical experiments 

show that the proposed scheme leads to significantly better 

results than compared ones. The average dice values of the 

proposed method are 92.5%, 85.3%, 85.3% for quadriceps, 

hamstrings and other muscle groups while other approaches 

are at least 10% worse.   

 
Keywords—3D segmentation, active contour, missing 

boundary, semi-automatic, marker, anti-marker 

 

I. INTRODUCTION 

Segmentation is an important computer vision task that 

has lots of practical applications. It is often used for 

downstream analysis. For instance, thigh muscle 

morphology and composition obtained from Magnetic 

Resonance Image (MRI) muscle segmentation have been 

suggested as potential imaging biomarkers for multiple 

diseases including osteoarthritis and sarcopenia. MRI 

muscle images however are very difficult to segment due 

to lack of boundaries between different muscle groups 

(physiology constraint) and intensity inhomogeneity 

(imaging quality constraint). Manual segmentation is time 

consuming and is prone to intra- and inter-operator 
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variations. In order to receive efficient and reliable 

quantification of thigh muscles, robust and fast 

reproducible segmentation methods are desirable. While 

deep learning methods have achieved considerable success 

when it comes to automated image segmentation, they still 

require a large amount of annotated data for training 

making them unsuitable for certain tasks. Specifically, for 

thigh muscles, manual annotation of data is time 

consuming and thus may not be feasible in all cases. 

Some model-based methods that incorporates auxiliary 

information as priors have been proposed to solve such a 

challenging problem. In the past few years, several 

automatic methods have been proposed [1–9]. Since 

intensity-based methods cannot distinguish different 

regions, most automatic methods are based on shape-based 

methods. Joint image processing models have attracted 

much attention in recent years. A segmentation model with 

adaptive priors from joint registration has been proposed 

in the past [10]. In this approach, registration plays the role 

of providing a shape prior to guiding the segmentation 

process. This method has been shown to outperform 

separate segmentation and registration methods as well as 

other joint methods. However, this method is highly 

dependent on the selection of moving images used for 

registration. When there is a significant difference between 

the moving image and the target image, the shape prior 

provided by the registration may not be accurate enough, 

leading to poor segmentation results. Moreover, this 

method requires operating on independent image pairs, 

and the computational cost of the energy function 

minimization is high.  In comparison, semi-automatic 

methods, though require some time- consuming and 

tedious user-intervention, are more reliable for certain 

difficult cases. These semi-automatic methods [11–16] 

have shown some efficiency in solving these problems. 

In this paper, we propose a semi-automatic method for 

segmenting the subgroups of thigh muscle. To the best of 

our knowledge, this is the first work using geometric flow 
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with minimum user input to automatically segment 3D 

objects with no boundaries between objects. The novelty 

lies in growing an active contour propagated by an internal 

and external force, so the segmentation results have some 

smoothness and stop when it is on the true boundaries. 

User drawn markers provide initial contours to locate 

objects of interest and user drawn anti-markers prevent the 

contours from overflowing. This is an efficient approach 

that allows users to feed in data adaptive information (with 

minimum effort though) to significantly improve the 

segmentation results. Compared to other methods, this 

approach is more data adaptive and requires the least user 

input. One can also automatize the placements of markers 

and anti-markers by registration, but the performance is 

not as good as user input ones. 

The following sections provide a literature review in 

Section II, the proposed work in Section III, and the results 

in Section IV. Section V concludes and discusses the 

future work. 

II. LITERATURE REVIEW 

A. Image Segmentation 

Many image segmentation techniques aim to segment 

the entire image domain [17, 18]. Oftentimes, however, 

only a small portion of the image is of interest, and one 

wishes to ensure that the final segmenting contour lies 

within a certain region of interest. 

The use of snakes to segment an image, as popularized 

by Kass et al. [19], intrinsically acts as a form of selective 

segmentation. The idea behind snakes is to evolve a 

contour so that it lies on the edges of the image, thereby 

segmenting it. The snake, specified by the 

parameterization v(s) = (x(s), y(x)), is evolved in such a 

way as to minimize its energy, which, in its broadest form, 

is given by: 

 

𝐸snake
∗ = ∫ 𝐸snake(𝑣(𝑠))ds 

1

0

 

= ∫ 𝐸int(v(s))
1

0
+ 𝐸image(v(s)) + 𝐸con(𝑣(𝑠))ds  (1) 

 

Eint represents the internal energy of the snake and is 

commonly used to penalize non-smoothness, Eimage 

represents energy related to image features such as edges, 

and Econ encapsulates any external constraint forces that 

may be introduced by the user. 

Caselles et al. [20] expanded upon [19] and introduced 

an approach that allows for the topology of the curve to 

change between iterations, thereby making it possible to 

segment multiple objects at once. This can be done by 

minimizing the following functional with respect to the 

curve Γ:  

 

𝐸(Γ) = ∫  |𝑔(𝛻𝐼)|dΓ
Γ

              (2) 

 

where I is the image being segmented and 𝑔(∇𝐼) =

 
1

1+𝛼|∇𝐼|2 is an edge stopping function. 

The final position of the snake can be further controlled 

by requiring the user to place a set of marker points M 

inside of a region of interest. Gout et al. [21] proposed a 

way to incorporate a set of markers into the work of 

Casselles et al. [20] and proposed the following functional 

to be minimized: 

𝐸(Γ) =   ∫ 𝐷(𝑥, 𝑦;  ℳ)  ⋅ 𝑔(|𝛻𝐼|)| ds
Γ

            (3) 

where D(x, y; M) is the distance from a pixel (x, y) to the 

set of markers. Eq. (3) is close to zero if the curve Γ either 

lies near the markers or on the edges of the image. 

Spencer and Chen [22] decoupled the distance penalty 

term from the edge stopping function and proposed 

minimizing the following: 

 

𝐹(𝜙, 𝑐1, 𝑐2) = 𝜇 ∫ 𝑔(|𝛻𝑧(𝑥, 𝑦)|)|𝛻𝐻(𝜙)|d
Ω

Ω +

                          𝜆1 ∫ (𝑧(𝑥, 𝑦) − 𝑐1)2𝐻(𝜙)d
Ω

Ω +

                       𝜆2 ∫ (𝑧(𝑥, 𝑦) − 𝑐2)2(1 − 𝐻(𝜙))dΩ
Ω

+

                            𝜃 ∫ 𝒟(𝑥, 𝑦; ℳ)𝐻(𝜙)dΩ
Ω

                    (4) 

 

Typically, a Euclidean distance penalty from the 

markers is used. Roberts et al. [23] used a geodesic 

distance penalty that was based upon the edges detected in 

the image. This is further elaborated on in Section III.C. 

B. Bias Correction 

It’s not uncommon for MRI images to suffer from 

intensity inhomogeneity and noise. Unfortunately, the 

presence of either intensity inhomogeneity and noise can 

make it difficult to analyze MRI images, and adversely 

impact the performance of many segmentation algorithms. 

Assuming the intensity inhomogeneity is the result of a 

bias field 𝛽(𝑥), the observed image 𝑓(𝑥) can be modeled 

as follows: 

 

𝑓(𝑥) = 𝛽(𝑥)𝑔(𝑥) + 𝜂(𝑥)                        (5) 

where 𝑔(𝑥)  is the true clenn imnee nn  𝜂(𝑥)  is rnn om 

Gnussinn noise.  

Some of the earliest and most basic approaches to 

estimating 𝛽(𝑥)  involved placing a uniform phantom 

inside the specific MRI images used to collect the data [24]. 

This approach is undesirable, not least because it involves 

the need to run extra scans, but because the original MRI 

machine is often not available after the data has been 

collected. 

Another approach to correcting for the effects of the bias 

field involves applying a low-pass filter to 𝑓(𝑥)  to 

estimate 𝛽(𝑥). The motivation behind using a low-pass 

filter is the assumption that the since the bias field varies 

slowly it will be concentrated in the lower end of the 

frequency domain. However, using a low-pass filter to 

arrive at 𝛽(𝑥)  raises the risk that low-frequency 

components of the true image will get filtered out. 

Pham et al. [25] introduced a modified form of fuzzy C-

means, called adaptive fuzzy C-means (AFCM) in order to 

both segment the image and estimate its bias field. The 

traditional fuzzy C-means objective function is: 

 

JFCM =  ∑ ∑ uk(𝑖, 𝑗)q ‖ y(i, j) − νk‖2C
k=1i,j             (6) 
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where y is the observed image, 𝜈𝑘  is k-th cluster centroid, 

uk(𝑖, 𝑗) is the membership value for pixel (i,j), C is the 

number of clusters, and q is the weighting exponent that 

controls the level of fuzziness of the clustering. AFCM 

objective function is given by: 

 

𝐽𝐴𝐹𝐶𝑀 =  ∑ ∑ 𝑢𝑘(𝑖, 𝑗)𝑞 ‖ 𝑦(𝑖, 𝑗) − 𝜈𝑘‖2𝐶
𝑘=1𝑖,𝑗  +

              𝜆1 ∑ ((𝐷𝑖 ∗ β(𝑖, 𝑗))
2

+ (𝐷𝑗 ∗ 𝛽(𝑖, 𝑗))
2

)𝑖,𝑗 +

                    𝜆2 ∑ ((𝐷𝑖𝑖 ∗ 𝛽(𝑖, 𝑗))
2

+ 2 (𝐷𝑖𝑗 ∗∗ 𝛽(𝑖, 𝑗))
2

+𝑖,𝑗

                               (𝐷𝑗𝑗 ∗ 𝛽(𝑖, 𝑗))
2

)             (7) 

where 𝛽(𝑖, 𝑗) is the bias field at pixel (i,j), 𝐷𝑖  and 𝐷𝑗  are 

the forward difference operators, 𝐷𝑖𝑖 , 𝐷𝑖𝑗 , and 𝐷𝑗𝑗  are 

second-order finite difference operators, and ∗ and ∗∗ are, 

respectively, the one and two dimensional discrete 

convolution operators. The purpose of the second term is 

to minimize the variation of the bias field, and the third 

term penalizes discontinuities in the bias field. 

Ahmed et al. [26] proposed a different modified version 

of fuzzy C-means called Bias-Corrected Fuzzy C-Means 

(BCFCM) that allows for the classification of each pixel to 

be influenced by the clustering of its neighbors. The 

objective function to be minimized is given by: 

𝐽𝐵𝐶𝐹𝐶𝑀 =  ∑ ∑ 𝑢𝑖𝑘
𝑞 ‖𝑦𝑘 −  𝛽𝑘 − 𝜈𝑖 ‖

2𝑁
𝑘=1       𝐶

𝑖=1 +

       
𝛼

𝑁𝑅
∑ ∑ 𝑢𝑖𝑘

𝑞(∑  ‖𝑦𝑘 −  𝛽𝑘 − 𝜈𝑖 ‖
2

𝑦𝑟∈𝑁𝑘
)𝑁

𝑘=1
𝐶
𝑖=1      (8) 

where Nk is the set of neighboring pixels of yk, NR is the 

cardinality of Nk, and α controls the effect of the 

neighboring pixels on the classification of yk. The added 

penalty term has the effect of encouraging neighboring 

pixels to belong to the same class, which promotes an 

overall classification that is piecewise-homogeneous. 

Zosso et al. [27] proposed a framework to both segment 

an image and estimate its bias field that is based on the 

Chan-Vese model for image segmentation [17]. The 

function to be minimized is the following: 

 

𝐸𝐶𝑉𝐵(𝑐1, 𝑐2, 𝜙, 𝛽, 𝑔) =  𝜆1 ∫ (𝑔(𝑥) − 𝑐1)2𝐻(𝜙)𝑑𝑥
𝛺

+  

                     𝜆2 ∫ (𝑔(𝑥) − 𝑐2)2(1 − 𝐻(𝜙))𝑑𝑥
𝛺

+

                         𝛼 ∫ |𝛻𝐻(𝜙)|𝑑𝑥
𝛺

+ 𝛾 ∫ |𝛻𝛽(𝑥)|2𝑑𝑥
𝛺

    (9) 

where c1 and c2 nre constnnts, nn  the seementine curve Γ 

is given by the zero level-set of φ 

In addition to the above approaches, there also exists a 

class of methods based on Gaussian mixture models that 

use the E-M algorithm in order to estimate β(x) [28, 29]. 

C. Registration Assisted Segmentation Methods 

Given the ground truth segmentation s of an atlas image 

Im that is not too different from the to be segmented image 

If, Thirion’s  emons nppronch [30] can register the two 

images Im, If and then apply the deformation field to the 

ground truth segmentation s to achieve segmentation of If. 

Let T be the deformation field from Im to If, one can find T 

by solving the following minimization problem:  

                                         

                   𝑚𝑖𝑛
                              𝑇

ED(𝐼𝑓, 𝐼𝑚 ∘ 𝑇) + 𝜂𝐸𝑅(𝑇)                    (10) 

where Im ◦ T is the deformed image of Im, ED is an image 

dissimilarity metric that quantifies the level of alignment 

between If and Im ◦ T, and ER is a regularization term. 

A joint segmentation-registration model was proposed 

by Li et al. [31]. Intensity correction is also taken into 

consideration in the modeling. It seeks to optimize the 

following energy function: 

 

ℰ(𝛩, 𝑢, 𝑇) = ℰ𝑆𝑒𝑔(𝛩, 𝑢) + ℰ𝐶𝐸(𝑢, 𝑠 ∘ 𝑇) + ℰ𝑅𝑒𝑔(𝛩, 𝑇) (11) 

   

where Θ collects all model related parameters, u is 

segmentation output, ℰ𝑆𝑒𝑔(𝛩, 𝑢) is a segmentation energy 

term based on Gaussian mixture model, ℰ𝑅𝑒𝑔(𝛩, 𝑇) is a 

registration term moving image Im to the intensity 

corrected image If / β with β a bias field, and 

ℰ𝐶𝐸(𝑢, 𝑠 ∘ 𝑇) measures the closeness between the 

deformed ground truth s and the segmentation u of the 

given image in terms of cross entropy. 

While these methods have the obvious advantage of 

being fully automatic, certain disadvantages do exist. 

Firstly, both these methods will require an atlas 

segmentation map to begin with. Secondly, the atlas 

segmentation map must be chosen from a subject which is 

close to the test subject, whose segmentation is to be 

obtained. In other words, the deformation field between 

the moving and fixed image should not be large. The 

framework we propose in the next section will be a semi-

supervised framework which will not suffer from the 

drawbacks that have been outlined for registration-based 

methods. We will also compare the results obtained from 

our framework with the registration-based frameworks. 

Note that there are deep learning approaches such as 

AlexNet network [32], U-Net architecture [33], bounding 

boxes with 3D U-Net [34], and edge-aware network based 

on U-Net [35]. Although deep learning has great potential 

in muscle segmentation, we should note that this data 

driven method needs large amount of annotated data and a 

specific network tuning for each dataset, which make it not 

very suitable and competitive for this task. 

III. PROPOSED WORK 

A. Prior Bias-Corrected Fuzzy C-means (PBCFCM) 

We propose a new method for removing intensity 

inhomogeneity from the thigh images that is based on a 

modified version of the BCFCM objective function. The 

new method works by incorporating prior information 

about the three different clusters that are present in each 

image into the fuzzy clustering. Let P(Γki) denote the 

probability that the k-th pixel belongs to the i-th cluster. 

Supposing we have an estimate of P(Γki) for all three 

clusters for each pixel, the proposed PBCFCM objective 

function is given by the following: 

 

𝐽𝑃𝐵𝐶𝐹𝐶𝑀 =  ∑ ∑ 𝑢𝑖𝑘
𝑞 

1

𝑃(𝛤𝑘𝑖)
‖𝑦𝑘 −  𝛽𝑘 − 𝜈𝑖 ‖

2𝑁
𝑘=1

C
𝑖=1 +

        
𝛼

𝑁𝑅
∑ ∑ 𝑢𝑖𝑘

𝑞(∑  ‖𝑦𝑘 −  𝛽𝑘 − 𝜈𝑖 ‖
2

𝑦𝑟∈𝑁𝑘
)𝑁

𝑘=1
𝐶
𝑖=1  (12) 
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Taking the partial derivatives of JPBCFCM and setting 

them equal to zero, we arrive the following three updating 

terms: 

𝑢𝑖𝑘
∗  =  𝑞 / (∑ (

𝐷𝑖𝑘/𝑃(𝛤𝑖𝑘)+
𝛼

𝑁𝑅
𝛾𝑖

𝐷𝑗𝑘/𝑃(𝛤𝑗𝑘)+
𝛼

𝑁𝑅
𝛾𝑗

)𝐶
𝑗=1 )

1
(1−𝑞)

                 (13) 

𝑣𝑖
∗  =  

∑ 𝑢𝑖𝑘
𝑞((𝑦𝑘−𝛽𝑘)+

𝛼

𝑁𝑅
∑ (𝑦𝑟−𝛽𝑟)𝑦𝑟∈𝑁𝑘

)𝑁
𝑘=1

(1+𝛼) ∑ 𝑢𝑖𝑘
𝑞𝑁

𝑘=1
            (14) 

𝛽𝑘
∗ = 𝑦𝑘 −

∑ 𝑢𝑖𝑘
𝑞𝐶

𝑖=1 𝑣𝑖

∑ 𝑢𝑖𝑘
𝑞𝐶

𝑖=1

                         (15) 

 

where 𝐷𝑖𝑘 =  ‖𝑦𝑘 −  𝛽𝑘 − 𝜈𝐼  ‖2 ;  𝛾𝑖 = ∑  ‖𝑦𝑘 −𝑦𝑟∈𝑁𝑘

𝛽𝑘 − 𝜈𝑖 ‖
2  . By thresholding the Dixon and T1 high 

resolution images it is possible to arrive at masks for the 

background, fat, and muscle regions. These masks can be 

used to estimate P(Γki). Suppose that it is believed that on 

average the three masks correctly classify a pixel with 

probability η, and that a misclassified pixel is equally 

likely to belong to one of the other two clusters. Then, the 

probability that a pixel is incorrectly classified by the 

masks is (1 – η)/2. 

In general, by carefully thresholding Dixon and T1 

images it is possible to arrive at masks that classify most 

of the pixels correctly. This is because despite being a low-

resolution image, the Dixon image is relatively free of 

intensity inhomogeneity and can be used to create an 

accurate fat mask. The background mask can be obtained 

by thresholding the T1 image with a value close to zero, 

and the muscle mask can be obtained by selecting all of the 

pixels that are not in either the fat or background masks. 

The steps of the PBCFCM algorithm can be 

summarized as follows: 
1. Determine the mnsks for the three clusters by 

threshol ine the Dixon nn  T1 imnees. 
2. Use the three mnsks to estimnte P(Γki). 
3. Initinlize the cluster centroi s nn  set the initinl bins 

fiel  to be close to be close to zero. 
4. Up nte u, v, nn  β usine Eqs. (13), (14), (15). 
5. Repent Steps 3 nn  4 until the vector of cluster 

centroi s, v, converees. 
We note that this intensity correction step might not be 

necessary for other data, or a different intensity correction 

algorithm might need to be adopted. 

B. RKHS Edge Detection 

In order to do a better job at identifying the weak edges 

in-between the muscle groups we use an RKHS edge 

detector [36, 37]. 

Let z be a function on a continuous  omnin Ω = [0,1] × 

[0,1] that gives the intensity values for a 2D image. Then, 

the following Gaussian kernel can be used to model the 

smooth regions of the image: 

                      𝐾(𝑥, 𝑥̃) = (
1

√2𝜋𝜎
)

2

𝑒
−

||𝑥−𝑥|̃|
2

2𝜎2  (16) 

Smooth approximations to the Heaviside function 

     𝜓(𝑥) =
1

2
(1 +

2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑥

𝜖
))                  (17) 

cnn be use  to form n re un nnt  ictionnry, nllowine for 

the e ees of the imnee to be mo ele  usine the followine 

function: 

ℎ(𝑥) = ∑ ∑ 𝑏𝑖𝑗
𝑁
𝑗=1

𝑙
𝑖=1 𝜓 ((𝑐𝑜𝑠 𝜃𝑖 , 𝑠𝑖𝑛 𝜃𝑖) ⋅ 𝑥 𝑐𝑗)  (18) 

where l is the number of orientations for which an edge is 

checked, N is the total number of pixels in the image, bij is 

the edge weight, 𝑐𝑗 ∈  {0,
1

𝑁−1
,

2

𝑁−1
, … ,1}  is the position of 

the pixel, and 𝜃𝑖 is the orientation of the edge. Since l is 

the number of orientations for which an edge is checked, 

we get that 𝜃𝑖 ∈ {0,
2𝜋

𝑙
, 2 (

2𝜋

𝑙
) , … , (𝑙 − 1) (

2𝜋

𝑙
)}   

Combinine Eqs. (16) nn  (18), z cnn be npproximnte  

by the followine:   

𝑓(𝑥) = ∑ 𝑑𝑖𝐾(𝑥, 𝑥𝑖)

𝑁

𝑖=1

+ 

∑ ∑ 𝑏𝑖𝑗𝜓 ((𝑐𝑜𝑠 𝜃𝑖 , 𝑠𝑖𝑛 𝜃𝑖) ⋅ 𝑥 + 𝑐𝑗)𝑁
𝑗=1

𝑙
𝑖=1         (19) 

 

If we let 𝑓 = (𝑓(𝑡1), 𝑓(𝑡2), … 𝑓(𝑡𝑛))′  represent a 

discretization of f on the grid 𝑡𝑖 = (𝑥𝑖 , 𝑦𝑖) ∈ [0,1] × [0,1], 

where 𝑖 =  1,2, … , N. Using matrices, the image 𝑓
 
(whose 

pixels are arranged lexicographically in a single column) 

can be written as 𝑓 = 𝐾𝑑 + 𝛹𝛽 where 𝐾𝑚𝑛 = 𝐾(𝑥𝑚, 𝑥𝑛) 

and Ψ contains the values of ψ((cosθi, sinθi) x+cj) arranged 

into a matrix, and β is a column vector containing each bij 

in lexicographical order. Now suppose that 𝑧̂  is a 

discretization of an analog image z which we wish to 

approximate using Kmn and approximated Heaviside 

functions. Then, d and β can be determined via the 

following minimization model: 

 

𝑚𝑖𝑛
𝑑,𝛽

1

2
‖𝑧 − (𝐾𝑑 + 𝛹𝛽)‖2 + 𝛾𝑑𝑇𝐾𝑑 + 𝛼‖𝛽‖1 +

                                    𝜈𝑔𝑇|𝛻(𝐾𝑑 + 𝛹𝛽)| (20) 

where γ, α, and ν are constants, and g = g(Ψβ) is an edge 

stopping function. The purpose of the first term in Eq. (20) 

is to ensure that the approximation, Kd+Ψβ, closely 

matches the original discretized image 𝑧̂  The second term 

penalizes non-smoothness, and the third term promotes the 

sparsity of β since {ψ((cosθi, sinθi) · x + cj)} is a redundant 

dictionary. Finally, the last term penalizes low contrast 

near the edges and high contrast in smooth regions. The 

minimization of Eq. (20) can be carried out efficiently 

using the Alternating Direction Method of Multipliers 

(ADMM). 

C. Marker Placement and Geodesic Distance Maps 

Since the edges in-between the muscle regions are often 
too weak to pick up (even using the RKHS edge descriptor) 
we require the user to draw both markers and anti-markers 
for each of the three muscle groups. The purpose of the 
markers is to be able to identify which group is being 
segmented. The anti-markers are required in order to fill in 
for the weak edges and to prevent the segmenting contour 
from leaking into the other two muscle groups. 

The markers are drawn in the form of a polygon using 
the roipoly command in MATLAB. Ideally, the markers 
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should coincide with each of the muscles in the group 
being segmented and should not overlap with any of the 
other muscles. 

Just like the markers, the anti-makers are also drawn in 
the shape of a polygon, and they should overlap with all of 
the muscles that do not belong to the group being 
segmented. While neither the markers or the anti-markers 
need to be drawn with a high level of precision, the anti-
markers should be drawn carefully along the boundary of 
the muscle group being segmented in order to help fill in 
for the missing edges. 

In order to incorporate the markers into the geometric 
flow (see Section III.E), it is necessary to compute distance 
maps from the markers and anti-markers. This can be done 
efficiently by using the fast-sweeping method [38] to 
compute the viscosity solution to the Eikonal equation: 

|𝛻𝒟(𝑥)| = 𝑓(𝑥),  𝑥 ∈ 𝑅𝑛, nn  

𝒟(x) = ϕ(x) 𝑥 ∈ ℳ ⊂ 𝑅𝑛                (21)  

where 𝒟 (x) is the  istnnce of point x from the set of 

mnrkers M. Note thnt if 𝜙 (𝑥) ≡ 0 nn  f(𝑥) ≡ 1, then 𝒟(𝑥) 
is simply the Eucli enn  istnnce. 

In order to arrive at the geodesic distance which 
incorporates information about the edges in-between the 
muscles, the distance from the user drawn markers DM 

(𝒟AM is defined similarly) is given by: 

|𝛻𝒟ℳ(𝑥)| = 𝜖 + 𝜔|𝛹𝛽|,  𝑥 ∈ 𝑅𝑛, and 
                  𝒟ℳ(x) = 0,  𝑥 ∈ ℳ ⊂ 𝑅𝑛                     (22) 

where Ψβ is the same as in Section III.B, ω > 0 and is a 

small positive constant that ensures the distance between 

any two different points is non-zero. 

Once the distance maps have been obtained for both the 

markers and the anti-markers, they can be combined to 

form a single distance penalty: 

𝒟𝒫 =
1

2
(𝒟ℳ +

𝑒−𝛼𝒟𝒜ℳ −𝑒−𝛼

1−𝑒−𝛼 )                       (23) 

thnt will be incorpornte  into the seementntion nleorithm. 

If a 3-D version, the fast-sweeping method is used to 
solve the Eikonal equation then it is only necessary to draw 
markers and anti-markers on only a fraction of the slices. 
The exact number will depend upon the resolution of the 
images in the z direction and the level of noise. 

D. Marker Placement Using Atlas-Based Segmentation 

It is possible to cut the amount of user input in half by 
using atlas-based segmentation to draw the markers. 
Suppose that the ground truth segmentation is available for 
a template image T, and we wish to segment a reference 
image R. Let M be the 3-D binary mask that represents the 
known segmentation for T. Registering the template and 
reference images we arrive at a transformation φ(x) such 

that T(φ(x)) ≈ R(φ(x)). Then, the markers M̂  for the 
reference image R can be taken as:   

ℳ̂ = φ(ℳ)                                (24) 

While it is also technically possible to automate the 
placement of the anti-markers in the exact same way, 
doing so often leads to poor segmentation results. This is 

because the anti-markers help to fill in for the missing 
edges, and they need to be drawn more precisely than the 
markers need to be drawn. 

E. Segmentation Using Geometric Flow 

In order to represent the closed curve C that defines the 
segmentation we adopt the level-set method that was 
introduced by Osher and Sethian [39]. In other words, C is 

defined as the zero level-set of a Lipschitz function ϕ(x). 

  

𝐶 = {𝑥: 𝜙(𝑥) = 0},

𝑖𝑛𝑠𝑖𝑑𝑒(𝐶) = {𝑥: 𝜙(𝑥) > 0},

𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝐶) = {𝑥: 𝜙(𝑥) < 0}.

                  (25) 

𝜙 (x) is initinlize  to be 1 insi e of severnl user plnce  

see s, nn  −1 everywhere else. 

After being initialized, 𝜙 (x) is propagated along the 
normal direction with velocity F according to the 
following partial differential equation [40]: 

𝜕𝜙

𝜕𝑡
= (𝐹 + 𝑞𝜅)|𝛻𝜙|                            (26) 

where q > 0 and 𝜅 = 𝑑𝑖𝑣(𝛻𝜙/|𝛻𝜙|) is the curvature of ϕ. 
Usine Euler’s metho , φ is updated at time T as follows: 

𝜙T(𝑥) = 𝜙T-1(𝑥) + ℎ(𝐹 + 𝑞𝜅)|𝛻𝜙(𝑥)|    (27) 

While F is typically taken to be an edge stopping 

function, using such a simple force is insufficient for 

muscle segmentation. Rather, we define a new force: 

𝐹 = 𝑔 − 𝛾𝒟𝒫 − 𝜂𝐼                     (28) 

where g =  
1

1+𝛼|∇𝛹𝛽|
 is an edge stopping function that uses 

the edge descriptor Ψβ, DP is the distance penalty 

calculated in Section IIII.D, γ, η > 0 are constants, and I is 

an intensity fitting term which is defined below. 
The data fitting term has a similar function as the 

fidelity terms in the Chan-Vese model. Suppose 𝜉 is the 
average intensity of the of pixels inside C prior to the first 
iteration of the algorithm. Then, if z is the bias corrected 
image, 

𝐼(𝑥) = {
|𝑧(𝑥) − 𝜉|,   𝑖𝑓 𝑧(𝑥) − 𝜉 < 0

𝜓|𝑧(𝑥)  −  𝜉| , 𝑖𝑓 𝑧(𝑥)  −  𝜉 ≥ 0
  (29) 

where 0 < ψ < 1 helps to address the asymmetry between 

the average differences between muscle and fat, and 

muscle and background intensity values. 
Note that the only positive contribution to the force 

comes from the edge stopping function g. While the edge 
stoppine function is boun e  between zero nn  one, it isn’t 
possible to plnce rieorous boun s on γDP and ηI. 
Consequently, we round and value of F that are less than 
−1 up to −1 so thnt −1 ≤ F < 1. A  itionnlly, n me inn filter 
is also applied to F to remove outliers. 

F. Summary of Proposed Approach 

The follow list of steps summarizes the proposed 

segmentation algorithm: 
1. Perform intensity correction using PBCFCM. Note 

this step can be skipped or changed for different 
data. 

2. Cnlculnte Ψβ according to Eq. (20). 
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3. Draw the markers and anti-markers and calculate 
the distance penalty DP for each muscle group. 

4. Assemble F according to Eq. (28) and perform the 
segmentation using geometric flow for each of the 
muscle groups. 

IV. RESULTS 

We apply the proposed segmentation algorithm from 

Section III to six different subjects and compare with some 

related work. In addition, we also assess the performance 

of the newly proposed PBCFCM approach to removing 

intensity inhomogeneity against that of BCFCM [26] and 

LGMM [29]. The performance of the proposed 

segmentation algorithm is tested on all three thigh muscle 

groups for six different subjects. The high resolution T1 

images were collected using a 3T MRI scanner (SkyraFit, 

Siemens) with an 18-channel flex coil. The TR/TE was 

795/10 ms, the Field-of-View (FOV) was 400×312×140 

mm3, and the image size was 512×299×28. For the fat 

fraction images, the TR/TSE was 16.37/0.94, 2.05, 3.16, 

4.27, 5.38, 6.49, the FOV was 400×300×140 mm3, and the 

image size was 256×191×28. 

A. Intensity Correction 

Unfortunately, since there is no way to obtain a ground 

truth MRI image with no intensity inhomogeneity there is 

no simple way of qunntifyine PBCFCM’s performnnce. 

Fig. 1 provides a visual comparison between the proposed 

method, BCFCM, and a Local Gaussian Mixture Model 

(LGMM) based approach from which it can be seen that 

PBCFCM yields the best result. The original image is 

shadowed, and the tops of the quadriceps appear to be 

illuminated. The LGMM is able to do a good job correcting 

the top half of the image, but the bottom half still suffers 

from the effects of intensity inhomogeneity. The BCFCM 

corrected image looks better than the LGMM image, but 

there are still significant levels of intensity inhomogeneity 

present within the muscle portions of the image. The 

PBCFCM corrected image, on the other hand, has much 

better contrast, and the image is much closer to being 

piece-wise constant. It is nlso worth notine thnt the imnee’s 

finer details, in particular the intramuscular fat, are not 

washed out by the correction process. 

 

 

Fig. 1. A comparison between the newly proposed method for intensity 

correction (bottom right), LGMM (top right), and BCFCM (bottom left). 

Fig. 2 provides an example of a high-resolution image 

next to its corresponding fat fraction image. As described 

previously in Section III.A, both images are used to create 

the three masks that are needed for PBCFCM. While the 

fat fraction image contains much less intensity 

inhomogeneity than the high-resolution image, it is not 

practical to use it to perform the segmentation because its 

resolution is too low. Fig. 2 also shows the estimated bias 

field, β, for the original image, which is subtracted from 

the original image in order to get the PBCFCM corrected 

image. 

Another way of evaluating the performance of 

PBCFCM is by observing its impact on other image 

processing tasks such as segmentation and registration. 

Section IV.B presents the Dice values for the proposed 

approach, all of which are greater than 85%. The proposed 

seementntion nleorithm erently  epen s on the imnee’s 

intensity vnlues, nn  if PBCFCM isn’t use  to correct the 

intensity values prior to performing the segmentation then 

it is difficult to obtain meaningfully accurate results. For 

the subjects that exhibit the most intensity inhomogeneity, 

the accuracy of the segmentation falls below 50% if 

PBCFCM is not applied, which further demonstrates the 

value that PBCFCM provides. 

 
PBCFCM Bins Fiel  & Correcte  Imnee 

 

Fig. 2. The original high-resolution image (top left), the fat fraction image 

(top right), the PBCFCM corrected high resolution image (bottom left), 

and the estimated bias field (bottom right). 

B. Segmentation Results 

For the sake of consistency, the markers and anti-

markers for all six of the subjects were drawn by the same 

person. Out of the 28 slices, markers and anti-markers 

were drawn on slices 3, 8, 13, 18, 23, and 26. For the 

Eikonal Eq. (22), ɛ = 1 and ω = 104 were used. In order to 

define the force F = g−γDP −ηI, Eq. (28) for the geometric 

flow, γ and η were both chosen to be between five and ten 

depending on the subject and the muscle group being 

segmented. Larger values of η nn  γ were chosen when the 

edges in-between the muscle groups were more clearly 

defined, while smaller values were used when the edges 

were more blurred. 

The accuracy of the segmentation was quantified using 

the Dice coefficient which is given by: 
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𝐷𝑆𝐶 =
2|𝑋∩𝑌|

|𝑋|+|𝑌|
                               (30) 

where X and Y are two sets, and | · | denotes the cardinality 

of a set. Table I shows the Dice values of the proposed 

scheme for each of the three different muscle groups for 

all six subjects, along with the averages for each of the 

three groups across all the subjects. 

We compare the results of our segmentation with two 

other related methods, namely M1—a non-parametric 

diffeomorphic image registration approach based on 

Thirion’s  emons nleorithm [30] and M2—a Joint 

Registration-Segmentation algorithm [31]. The results for 

M1 and M2 have been outlined in Tables II and III 

respectively. We also show some cross section comparison 

in Fig. 3 for one slice of a subject. Note that in M2 [32], 

two things are processed separately, and we only show one 

of them. We can notice that our segmentation method 

outperforms M1 by a significant measure across all 3 

muscle groups. Fig. 4 shows a 3-D visualization for a 

sample segmentation from the proposed approach. 

It should be noted that our method is semi-supervised 

requiring no moving image, whereas M1 is completely 

automatic requiring one moving image that is preferably 

from the same dataset. We used PID 102 as the moving 

image while compiling the results for M1. 

TABLE I. DICE VALUES—PROPOSED METHOD WITH HAND DRAWN 

MARKERS 

PID Quads Hams Others 

101 95.25 88.04 89.41 

102 92.00 88.80 90.57 

103 90.53 85.71 74.28 

104 90.34 79.36 79.73 

105 93.95 85.59 86.87 

106 92.73 84.45 90.78 

AVG 92.47 85.33 85.27 

TABLE II. DICE VALUES—MAGE REGISTRATION ALGORITHM (M1) 

PID Quads Hams Others Moving PID 

101 80.53 77.43 72.97 102 

102 73.59 73.38 63.04 101 

103 71.75 80.13 69.25 102 

104 50.83 65.72 43.71 102 

105 81.65 74.38 73.75 102 

106 80.19 82.34 72.89 102 

AVG 73.09 75.56 65.93  

TABLE III. DICE VALUES—SIMULTANEOUS SEG-REG ALGORITHM 

(M2) 

PID Quads Hams Others Moving PID 

101 82.96 70.01 60.57 NA 

102 77.76 64.3 58.84 NA 

103 16.47 5.70 5.51 NA 

104 43.51 60.31 20.05 NA 

105 23.15 5.25 14.3 NA 

106 32.86 5.65 16.71 NA 

AVG 46.12 35.2 29.33  

 

 
(n)                                   (b)                                   (c) 

Fig. 3. Sample outputs from our proposed (a) framework, (b) M1, and 

(c) M2. 

 

Fig. 4. 3D visualization of a sample segmentation. 

Comparisons with M2 led to similar conclusions, with 

our method outperforming M2 across all muscle groups. It 

should be noted that M2 performs exceptionally well when 

the moving image is chosen to be close to the fixed image. 

In fact, this algorithm would outperform our algorithm in 

such cases. However, having a moving image from the 

dataset may not always be feasible. Thus, we used a 

moving image from outside the dataset to compile the 

results for this method. Moreover, the results from M2 

reflect how the performance of the algorithm may vary 

greatly depending on the nature of intensity correction in 

the subjects. Specifically, the algorithm performed sub 

optimally with patients 103–106 where the intensity 

correction was not perfect. 

V. CONCLUSION AND FUTURE WORK 

We proposed a semi-automatic local region of interest 

segmentation algorithm to handle images with missing 

boundaries and intensity inhomogeneity. Our 

segmentation method starts with an initial contour (labeled 

by markers) inside the region of interest and evolves the 

contour using a geometric flow that incorporates anti-

markers as guidance for the stopping criterion. We also 

presented a new approach to remove intensity 

inhomogeneity, called PCBCFCM, that leverages a fat 

fraction image and fuzzy clustering. Numerical 

comparison with related work shows significantly better 

results. For future work, we also plan on using registration 

for placing the markers and anti-markers automatically. 

 

 

Journal of Image and Graphics, Vol. 12, No. 1, 2024

29



CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

Paramjyoti Mohapatra and Michael Judkovich worked 

on implementation of the code and created all numerical 

experiments. Weihong Guo guided the entire project and 

provided the ideas of the paper. These authors also wrote 

most of the paper. Richard Lartey and Xiaojuan Li helped 

the group understand the practical applications and 

evaluate the results. All authors had approved the final 

version. 

REFERENCES 

[1] S. An rews nn  G. Hnmnrneh, “The eenernlize  loe-ratio 

transformation: Learning shape and adjacency priors for 

simultnneous thieh muscle seementntion,” IEEE Transactions on 

Medical Imaging, vol. 34, no. 9, pp. 1773–1787, 2015. 

[2] P. Y. Bnu in, N. Azznbou, P. G. Cnrlier, nn  N. Pnrneios, “Prior 

knowledge, random walks and human skeletal muscle 

seementntion,” in Medical Image Computing and Computer-

Assisted Intervention, Springer, Berlin Heidelberg, 2012, 7510, pp. 

569–576. 

[3] Y. Chen, W. Guo, F. Hunne, D. Wilson, nn  E. A. Geiser, “Usine 

prior shnpe nn  points in me icnl imnee seementntion,” in Energy 

Minimization Methods in Computer Vision and Pattern Recognition, 

Springer, Berlin Heidelberg, 2003, 2683, pp. 291–305. 

[4] J. Kemnitz, F. Eckstein, A. G. Culvenor, A. Ruhdorfer, T. 

Dannhauer, S. Ring-Dimitriou, A. M. Sänger, and W. Wirth, 

“Vnli ntion of nn nctive shnpe mo el-based semi-automated 

segmentation algorithm for the analysis of thigh muscle and adipose 

tissue cross-sectionnl nrens,” Magnetic Resonance Materials in 

Physics, Biology and Medicine, vol. 30, no. 5, pp. 489–503, 2017. 

[5] J. M. Lötjönen, R. Wolz, J. R. Koikkalainen, L. Thurfjell, G. 

Wnl emnr, H. Soininen, D. Rueckert, nn  A. D. N. Initintive, “Fnst 

and robust multi-atlas segmentation of brain magnetic resonance 

imnees,” Neuroimage, vol. 49, no. 3, pp. 2352–2365, 2010. 

[6] A. L. Troter, A. Fouré, M. Guye, S. Confort-Gouny, J.-P. Mattei, J. 

Gondin, E. Salort-Cnmpnnn, nn  D. Ben nhnn, “Volume 

measurements of individual muscles in human quadriceps femoris 

using atlas-bnse  seementntion nppronches,” Magnetic Resonance 

Materials in Physics, Biology and Medicine, vol. 29, no. 2, pp. 245–

257, 2016. 

[7] S. Mesbah, A. M. Shalaby, S. Stills, A. M. Soliman, A. Willhite, S. 

J. Harkema, E. Rejc, and A. S. El-Bnz, “Novel stochnstic 

framework for automatic segmentation of human thigh MRI 

volumes nn  its npplicntions in spinnl cor  injure  in ivi unls,” 

PloS One, vol. 14, no. 5, e0216487, 2019. 

[8] M. K. Sharma, M. Jas, V. Karale, A. Sadhu, and S. Mukhopadhyay, 

“Mnmmoernm seementntion usine multi-atlas deformable 

reeistrntion,” Computers in Biology and Medicine, vol. 110, pp. 

244–253, 2019. 

[9] F. Yokota, Y. Otake, M. Takao, T. Ogawa, T. Okada, N. Sugano, 

nn  Y. Snto, “Automnte  muscle seementntion from CT imnees of 

the hip and thigh using a hierarchical multi-ntlns metho ,” 

International Journal of Computer Assisted Radiology and Surgery, 

vol. 13, no. 7, pp. 977–986, 2018. 

[10] H. Li, W. Guo, J. Liu, L. Cui, nn  D. Xie, “Imnee seementntion with 

n nptive spntinl priors from joint reeistrntion,” nrXiv preprint, 

arXiv:2203.15548, 2022. 

[11] E. Ahmn , M. H. Ynp, H. Deeens, nn  J. S. McPhee, “Atlns-

registration based image segmentation of MRI human thigh 

muscles in 3D spnce,” in Proc. Medical Imaging 2014: Image 

Perception, Observer Performance, and Technology Assessment, 

2014, SPIE, 9037, pp. 424–435. 

[12] E. Jolivet, E. Dion, P. Rouch, G. Dubois, R. Charrier, C. Payan, and 

W. Sknlli, “Skeletnl muscle seementntion from MRI  ntnset usine 

a model-bnse  nppronch,” Computer Methods in Biomechanics and 

Biomedical Engineering: Imaging and Visualization, vol. 2, no. 3, 

pp. 138–145, 2014. 

[13] M. Molnie nn  R. A. Zoroofi, “A knowle ee-based modality-

independent technique for concurrent thigh muscle segmentation: 

npplicnble to CT nn  MR imnees,” Journal of Digital Imaging, vol. 

33, no. 5, pp. 1122–1135, 2020. 

[14] A. Ogier, L. Heskamp, C. P. Michel, A. Fouré, M.-E. Bellemare, A. 

Le Troter, A. Heerschnp, nn  D. Ben nhnn, “A novel seementntion 

framework dedicated to the follow-up of fat infiltration in 

in ivi unl muscles of pntients with neuromusculnr  isor ers,” 

Magnetic Resonance in Medicine, vol. 83, no. 5, pp. 1825–1836, 

2020. 

[15] W. Guo, M. Ju kovich, R. Lnrtey, D. Xie, M. Ynne, nn  X. Li, “A 

marker controlled active contour model for thigh muscle 

segmentation in MR imnees,” in Proc. ISMRM, 2021 

[16] A. Ogier, M. Sdika, A. Foure, A. Le Troter, and D. Bendahan, 

“In ivi unl muscle seementntion in MR imnees: A 3D propagation 

through 2D non-linenr reeistrntion nppronches,” in Proc. 39th 

Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society, IEEE, 2017, pp. 317–320. 

[17] T. F. Chnn nn  L. A. Vese, “Active contours without e ees,” IEEE 

Transactions on Image Processing, vol. 10, no. 2, pp. 266–277, 

2001. 

[18] D. Mumfor  nn  J. Shnh, “Optimnl npproximntions by piecewise 

smooth functions nn  nssocinte  vnrintionnl problems,” 

Communications on Pure and Applied Mathematics, vol. 42, no. 5, 

pp. 577–685, 1989. 

[19] M. Knss, A. Witkin, nn  D. Terzopoulos, “Snnkes: Active contour 

mo els,” International Journal of Computer Vision, vol. 1, no. 4, 

pp. 321–331, 1988. 

[20] V. Cnselles, R. Kimmel, nn  G. Snpiro, “Geo esic nctive contours,” 

International Journal of Computer Vision, vol. 22, no. 1, pp. 61–79, 

1997. 

[21] C. Gout, C. Le Guyn er, nn  L. Vese, “Seementntion un er 

geometrical conditions using geodesic active contours and 

interpolntion usine level set metho s,” Numerical Algorithms, vol. 

39, no. 1–3, pp. 155–173, 2005. 

[22] J. Spencer nn  K. Chen, “A convex nn  selective vnrintionnl mo el 

for imnee seementntion,” Communications in Mathematical 

Sciences, vol. 13, no. 6, pp. 1453–1472, 2015. 

[23] M. Roberts, K. Chen, nn  K. L. Irion, “A convex eeo esic selective 

mo el for imnee seementntion,” Journal of Mathematical Imaging 

and Vision, vol. 61, no. 4, pp. 482–503, 2019. 

[24] D. A. Wicks, G. J. Barker, and P. S. Tofts, “Correction of intensity 

nonuniformity in MR imnees of nny orientntion,” Magnetic 

Resonance Imaging, vol. 11, no. 2, pp. 183–196, 1993. 

[25] D. L. Phnm nn  J. L. Prince, “An n nptive fuzzy c-means algorithm 

for image segmentation in the presence of intensity 

inhomoeeneities,” Pattern Recognition Letters, vol. 20, no. 1, pp. 

57–68, 1999. 

[26] M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, and T. 

Morinrty, “A mo ifie  fuzzy C-Means algorithm for bias field 

estimation and segmentation of MRI  ntn,” IEEE Transactions on 

Medical Imaging, vol. 21, no. 3, pp. 193–199, 2002. 

[27] D. Zosso, J. An, J. Stevick, N. Takaki, M. Weiss, L. S. Slaughter, 

H. H. Cno, P. S. Weiss, nn  A. L. Bertozzi, “Imnee seementntion 

with  ynnmic nrtifncts  etection nn  bins correction,” Inverse 

Problems and Imaging, vol. 11, no. 3, pp. 577–600, 2017. 

[28] W. M. Wells, W. E. L. Grimson, R. Kikinis, and F. A. Jolesz, 

“A nptive seementntion of MRI  ntn,” IEEE Transactions on 

Medical Imaging, vol. 15, no. 4, pp. 429–442, 1996. 

[29] J. Liu nn  H. Zhnne, “Imnee seementntion usine n locnl GMM in a 

vnrintionnl frnmework,” Journal of Mathematical Imaging and 

Vision, vol. 46, no. 2, pp. 161–176, 2013. 

[30] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, 

“Diffeomorphic  emons: Efficient non-parametric image 

reeistrntion,” NeuroImage, vol. 45, no. 1, pp. S61–S72, 2009. 

[31] H. Li, W. Guo, J. Liu, L. Cui, nn  D. Xie, “Imnee seementntion with 

n nptive spntinl priors from joint reeistrntion,” Siam J. Imaging 

Sciences, vol. 15, no. 3, pp. 1314–1344, 2022. 

[32] S. Ghosh, N. Rny, nn  P. Boulnneer, “A structure   eep-learning 

based approach for the automated segmentation of human leg 

muscle from 3D MRI,” in Proc. 14th Conference on Computer and 

Robot Vision, IEEE, 2017, pp. 117–123. 

[33] J. Kemnitz, C. F. Baumgartner, F. Eckstein, A. Chaudhari, A. 

Ruh orfer, W. Wirth, S. K. E er, nn  E. Konukoelu, “Clinicnl 

evaluation of fully automated thigh muscle and adipose tissue 

segmentation using a U-Net deep learning architecture in context of 

Journal of Image and Graphics, Vol. 12, No. 1, 2024

30



osteonrthritic knee pnin,” Magnetic Resonance Materials in Physics, 

Biology and Medicine, vol. 33, pp. 483–493, 2020. 

[34] R. Ni, C. H. Meyer, S. S. Blemker, J. M. Hart, and X. Feng, 

“Automntic seementntion of nll lower limb muscles from hieh-

resolution magnetic resonance imaging using a cascaded three-

dimensional  eep convolutionnl neurnl network,” Journal of 

Medical Imaging, vol. 6, no. 4, 044009, 2019. 

[35] Z. Guo, H. Zhang, Z. Chen, E. van der Plas, L. Gutmann, D. 

The ens, P. Nopoulos, nn  M. Sonkn, “Fully nutomnte  3D 

segmentation of MR-imaged calf muscle compartments: 

Neighborhood relntionship enhnnce  fully convolutionnl network,” 

Computerized Medical Imaging and Graphics, vol. 87, 101835, 

2021. 

[36] L. Burrows, W. Guo, K. Chen, nn  F. Torelln, “Repro ucible kernel 

hilbert spnce bnse  elobnl nn  locnl imnee seementntion,” Inverse 

Problems & Imaging, vol. 15, no. 1, 1, 2020. 

[37] L.-J. Deng, W. Guo, and T.-Z. Hunne, “Sinele imnee super-

resolution by npproximnte  henvisi e functions,” Information 

Sciences, vol. 348, pp. 107–123, 2016. 

[38] H. Zhno, “A fnst sweepine metho  for Eikonal equntions,” 

Mathematics of Computation, vol. 74, no. 250, pp. 603–627, 2005. 

[39] S. Osher nn  J. A. Sethinn, “Fronts propnentine with curvnture-

dependent speed: Algorithms based on Hamilton-Jacobi 

formulntions,” Journal of Computational Physics, vol. 79, no. 1, pp. 

12–49, 1988. 

[40] W. Guo, Y. Chen, nn  Q. Zene, “A eeometric flow-based approach 

for  iffusion tensor imnee seementntion,” Philosophical 

Transactions of the Royal Society A: Mathematical, Physical and 

Engineering Sciences, vol. 366, no. 1874, pp. 2279–2292, 2008. 

 

Copyright © 2024 by the authors. This is an open access article 

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any 

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made. 

 

 

Journal of Image and Graphics, Vol. 12, No. 1, 2024

31

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	4-Conf.-9076-CVIT2023-BE2002-周婷-美国



