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Abstract—Remote sensing technology and its applications 

have attracted the attention of researchers. Background 

variation and the small objects in remote sensing images 

make the classification process a challenging task. In several 

domains, Generalized Additive Models (GAMs) have 

demonstrated their ability to capture nonlinear interactions 

between explanatory variables and a response variable. This 

research evaluates the GAM with Scale Invariant Feature 

Transform (SIFT) for airplane remote sensing image 

classification. SIFT is a widely used local feature detection 

algorithm that performs best under scale and image rotations. 

We compared their performance with different methods, 

such as Harris-Stephens (HARRIS), Features from 

Accelerated Segment Test (FAST), Maximally Stable 

Extremal Regions (MSER), Oriented FAST Rotated BRIEF 

(ORB), and Binary Robust Invariant Scalable Keypoints 

(BRISK). To evaluate the results of the GAM with SIFT, 

Support Vector Machine (SVM), Discriminant Function 

Analysis (LDA), Quadratic Discriminant Function Analysis 

(QDA), and K-Nearest Neighbors (KNN) were applied. 

Accuracy rate, recall, precision, F-measure, and Receiver 

Operating Characteristic (ROC) curve were used as 

evaluation indexes. Based on the test dataset, SIFT features 

with the GAM increase precision, accuracy, recall, F-

measure, and ROC curve compared to other applied 

classifiers. We show the performance  of the applied airplane 

classification technique using two benchmark datasets from 

Google Earth, which are NWPU-RESISC-45 and UCAS-

AOD.   

 

Keywords—object classification, Generalized Additive Model 

(GAM), local feature descriptors, remote sensing images, 
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I. INTRODUCTION 

Airplane classification is essential in various military 

applications, such as airport surveillance, to face 

challenges like security-relevant areas surrounding the 

monitored zone [1] and transportation activity analysis to 

assess airport efficiency [2]. Besides, it has many 

applications in the industrial and civil arenas. When 
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algorithms are applied to extract features from remote 

sensing images, there is some interference from external 

factors. Furthermore, images of airplanes on the ground 

are frequently small with multiple scales. All these factors 

make the classification process a challenging task. This 

research evaluates the Generalized Additive Model 

(GAM) as a classification tool based on Scale Invariant 

Feature Transform (SIFT) to find out an optimal method 

for airplane detection in remote sensing images. SIFT is 

the nominated feature extraction method for multiple 

reasons: it gains the highest score on a comparison of 

object recognition algorithms [3, 4], enables correct 

matching, is robust in extracting small objects [5], and is 

used in many tasks such as image registration, motion 

tracking, the image stitching process [6], and plant species 

classification [7]. Besides, we adopt the GAM since it 

creates a great compromise between accuracy and 

interpretability, which are two opposing objectives, 

representing a challenge in a machine learning model as it 

usually has to choose between accuracy and 

interpretability. The GAM algorithm produces more 

accurate results compared with other statistical algorithms 

such as the neural network-based method [8, 9]. 

Furthermore, it outperforms the mathematical calculation 

approach as shown in [10–12]. The GAM is widely used 

in a variety of fields, including business, healthcare, 

ecology, and climatology.  In general, object detection 

algorithms are made up of three major modules. 

A. Proposal Generation 

Proposal generation is one of the main distinctions 

between published object classification algorithms. It can 

be achieved by sliding windows, distinct points or marks, 

image segmentation, a Circle-Frequency Filter (CFF), or 

symmetric line segments [13]. Many methods have been 

presented to build descriptors; one method presents a log-

polar grid with high central contrast, another forms them 

from the intensity difference between a pixel and the center 

pixel inside a window, and another estimates a picture’s 
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scale and orientation first, then normalizes the image in 

terms of scale and rotation, and finally characterizes the 

normalized image. SIFT is an example of such a 

representation [14]. 

Fig. 1. A variety of detection and extraction techniques for local features.

B. Feature Extraction

The two basic stages of obtaining local features are

feature detection and feature description. Fig. 1 shows 

their common methodology and the related algorithms. 

SIFT, the method used in this research, deploys blobs for 

feature detection.  

C. Classification

In this research, GAM is compared with Support Vector

Machine (SVM), Discriminant Function Analysis (LDA), 

Quadratic Discriminant Function Analysis (QDA), and K-

Nearest Neighbors (KNN) models as they are the most 

commonly used classifiers [15, 16]. The target of GAMs is 

to enable the linear model to learn nonlinear 

relationships [17]. 

II. LITERATURE REVIEW

This section is divided into two parts. The first 

subsection focuses on a variety of feature extraction 

techniques. The second subsection reviews airplane 

classification directions. 

A. Feature Extraction Techniques

Different methods of feature extraction have been

suggested for airplane detection, for example, 

Yu et al. [18] proposed a strategy based on global and local 

multiscale feature fusion, Kang et al. [19] proposed an 

innovative Scattering Feature Relation Network (SFR-

Net), and Ying et al. [20] fused local and global features. 

SIFT is the most accurate algorithm compared with 

Oriented FAST Rotated BRIEF (ORB), Speeded-up 

Robust Features (SURF), and Binary Robust Invariant 

Scalable Keypoints (BRISK) [21]. Researchers have never 

stopped improving SIFT algorithms such as PCA-SIFT, 

Global context SIFT (GSIFT), a SIFT descriptor with color 

invariant characteristics (CSIFT), Affine-SIF (ASIFT), 

and patch-SIFT [15], but SIFT performs the best under 

scale, rotation, blur, and affine changes [22]. In contrast, 

CSIFT does not illuminate change, PCA-SIFT is always 

the second in different circumstances, and both GSIFT and 

ASIFT have lower matching correct rates. 

B. Airplane Classification Direction

Recently, there have been two directions that many have

used for object classification techniques in an image: 

traditional and deep learning-based. Recently, many object 

classification algorithms have been based on deep learning 

frameworks [23, 24], especially Convolutional Neural 

Network (CNN) [25, 26]. Deploying CNN algorithms is 

mainly classified into two groups. The first is airplane 

identification based on regional proposals, such as Spatial 

Pyramid Pooling (SPP-Net), Region-based Fully 

Convolutional Networks (R-FCN), and Region-based 

Fully Convolutional Network (R-CNN). The second group 

predicts object bounding boxes for an image in a one-stage 

process that does not take into account the region proposal 

stage and runs detection directly on a dense sampling of 

locations, such as You only look once (YOLO) and Single 

Shot MultiBox Detector (SSD) [27, 28]. There are many 

directions for improving them [29, 30]. One-stage 

detectors have a high processing speed, but their accuracy 

is low for high-precision applications [31]. On the other 

hand, two-stage detectors provide high accuracy but are 

inefficient and more time-consuming. Another challenge 

is classifying objects at different scales. Although YOLO 

uses fast techniques, it is not perfect at being 

computationally intensive or sensitive to changes in 

lighting [32].  

As shown in Table I, there is a contrast between deep 

learning and traditional methods. Deep neural networks 

require extensive training and a lot of computing power 

because they require many processes, such as convolutions 

and transformations, and on limited sample data sets, 

traditional machine learning has a greater solution impact. 

Thus, traditional computer vision techniques remain very 

useful even in the age of deep learning [33-34]. For 

airplane classification, traditional methods such as 

Deformable Parts Model (DPM) have been used with 

Histogram of Oriented Gradients (HOG), Bag-of-Words 

(BoW) features with a cascaded AdaBoost classifier [35], 

features by sparse coding and constraint pooling with 

SVM [36], and Gabor filter with SVM [37]. 
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TABLE I. COMPARISON BETWEEN DEEP LEARNING AND TRADITIONAL 

IMAGE PROCESSING 

Criteria Traditional methods Deep learning 

Training dataset Small Large 

Computing power Low High 

Feature engineering Required Unnecessary 

Training time Short Long 

Annotation time Short Long 

Algorithm transparency High Low 

Domain expertise High Low 

Priors Few Many 

Deploying flexibility High Low 

Expense Low High 

III. MATERIALS AND METHODS 

A. Scale Invariant Feature Transform (SIFT) 

SIFT first identifies what are called blobs or areas of 

interest at different scales. It uses a 2-D Gaussian filter 

smoothing over the whole photo and extracts normalized 

Log Gaussian values at various sigma (the value of 

Gaussian variance is known as sigma). It just so happens 

that these Gaussian values are rather helpful at 

differentiating blobs at various scales. It is possible to 

identify certain blobs at 1 sigma, others at n sigma, and so 

on. SIFT constructs the detectors and descriptors in four 

steps; Fig. 2 shows the sequence of those steps. The goal 

of feature detection is to identify the characteristics of the 

location, while the goal of feature description is to 

represent the feature. In this research, image features serve 

as words in BoW, which has a significant performance in 

terms of computation time and gives effective and 

validated results [38]. 

 

 

 

 

 

Fig. 2. Steps of SIFT execution. 

1) Constructing a scale space  

SIFT creates blurrier versions of the original image by 

using the Gaussian blur technique. To ensure being scale- 

independent, the original image shrank to half of its 

original size, then produced blurry images once more, and 

kept doing so for multiple octaves. Scale invariance occurs 

when the candidate keypoint is selected from the scale with 

the highest frequency measurement across multiple 

scales [39]. After creating the scale space, the algorithm 

uses linear diffusion to create Difference-of-Gaussian 

(DoG) images for identifying blobs at various scales. 

2) Keypoint localization 

The target is to filter the selected keypoints and get rid 

of unusual ones, using measures of their stability. Second, 

edges that are difficult to detect get rejected because they 

may not be noise-resistant.  

3) Orientation assignment 

To ensure rotation invariance, orientations are assigned 

to each keypoint location based on local image gradient 

directions. In addition, an orientation histogram depicting 

all gradients around each keypoint is produced. The 

orientation for that keypoint is determined by selecting the 

peak in the histogram that has the dominant direction.  

4) Keypoint description 

The target is to find out a unique fingerprint for each 

keypoint, so the neighborhood of every interest point is 

represented by a feature vector. Each point is given a 128-

D feature vector by the descriptor based on 4 by 4 

surrounding subregions. 

B. Generalized Additive Model (GAM) 

We use logistic GAMs in classification. The main 

advantage of GAMs is that they can deal with highly 

nonlinear and nonmonotonic relationships between the 

class and the predictors without the need for the explicit 

use of variable transformations or polynomial terms. This 

is because the GAM smoothing functions do these tasks 

automatically. In this respect, the smoothing functions are 

similar to the hidden layer in an artificial neural network. 

The flexible smoothing in GAMs is actually constructed 

out of many smaller functions called basis functions. Each 

smoothing function is the sum of a number of basis 

functions, and each basis function is multiplied by a 

coefficient [40]. For each predictor, the typical GAM 

employs a univariate form function, e.g., Eq. (1): 

y~Binomial(n,μ) 

g(μ)=log μ/(1−μ) = c+f1(x1)+f2(x2)+⋯+fp(xp)    (1) 

where y is a response variable that applies the binomial 

distribution with the probability of positive class μ in n 

observations. A logit link function is represented by g(μ), 

and c is an intercept or constant term. fi(xi) is the i-th 

predictor’s univariate shape function, which is a boosted 

tree for a predictor tree. 

C. Classifiers Comparison 

LDA and QDA are both frequently utilized because of 

their ability to address various multiclass issues without 

the need to tweak hyperparameters to increase 

classification accuracy. In this research, a multivariate 

normal distribution is used. The classification model for 

LDA has the same covariance matrix for all classes; in 

contrast, the means and covariances change between 

classes for QDA. The cosine KNN is applied as it has the 

best accuracy among the other distance metrics, such as 

Euclidean and Minkowski, with 10-nearest neighbors after 

trying different k values. In KNN, each normalized cluster 

histogram serves as a point in an N-dimensional space. 
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Airplane                         Negative                             Airplane                 Negative 

Fig. 3. Sample images of the training set in the NWPU-RESISC45 and UCAS-AOD datasets. 

 

IV. DATASET DESCRIPTION AND EXPERIMENTAL SETTINGS 

All the algorithms are implemented in MATLAB 

R2021b with Computer Vision Toolbox and Machine 

Learning Toolbox. They were carried out on a workstation 

with an Intel (R) Core (TM) i5-8265U CPU, 1.60 GHz, 

1.80 GHz, and 8.0 GB of RAM. 

A. Dataset  

For this experiment, we used two benchmark datasets, 

which are NWPU-RESISC45 [41] and UCAS-AOD [42]. 

NWPU-RESISC45 is a classical remote sensing image 

scene classification that includes 45 classes. Each class 

includes 700 images. The dataset was created by 

Northwestern Polytechnical University (NWPU). In our 

experiment, we used 600 samples from airplane class and 

600 samples from airport class as negative images. UCAS-

AOD is a remote sensing image dataset that is on a large 

scale and is annotated by the University of the Chinese 

Academy of Sciences. It includes car and aircraft classes, 

as well as negative images. Fig. 3 shows samples of each 

dataset and illustrates the rich image variations in airplane 

scales and viewpoint in NWPU-RESISC45 dataset. We 

used 600 samples from the airplane class and 600 from the 

negative, with Google Earth as the data source for both of 

them. Table II shows the descriptions of these datasets.  

TABLE II. DATASETS DESCRIPTION 

Dataset 
Airplane 

images 

Total 

number 
Object Year 

NWPU-RESISC45 700 31,500 2 2016 

UCAS-AOD 1,000 2,410 45 2015 

B. Experimental settings 

In order to train and validate the proposed solutions, 500 

images are used. The positive image set contains 250 

images that have at least one airplane in each, and the 250 

images that represent airport images do not contain any 

targets. For the testing process, 100 new images have been 

used.  

In this research, the study’s analysis steps are applied 

with MATLAB, as shown in Fig. 4, and can be listed as 

follows: 

Input: Manage 500 images of our datasets as an object 

for training and validation, and 100 images for testing as 

shown in Fig 5, image preprocessing has been done by 

converting the images to grayscale and resizing all the 

images to 256×256. 

Step 1: Extract the features’ descriptors by creating the 

Bag-of-SIFT model. The bag has an extractor function, 

which contains detect and extract functions. 

Step 2: Encode and compute vocabulary for each image 

with BoW into a feature vector by computing the 

histogram of visual word occurrences for each image. 

Step 3: Train and validate the dataset with the model 

classifier using GAM, KNN, SVM, QDA, and LDA. 

Step 4: Test the performance of the model. Classify the 

testing dataset using an ensemble of classification models. 

Step 5: Evaluate the results using accuracy, precision, 

recall, and the F1-Score. The formulas for these metrics 

are listed in Eqs. (2)–(5):  

   Accuracy = TP +  
𝑇𝑁

𝑇𝑃
 + TN + FP + FN       (2) 

    Precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                            (3) 

Recall =   
𝑇𝑃

𝑇𝑃+𝐹𝑁
                           (4) 

F1-Score = 
2 × (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
               (5) 

Step 6: Test the accuracy of the models that were trained 

on the entire dataset, including training and validation data, 

using predict functions. 

 

 

Fig. 4. Airplane classification methodology. 
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Fig. 5. Illustration of the proposed method process. 

 

C. Experiment Parameter Settings 

The goal of the parameter modification is to improve 

GAM’s accuracy based on the dependencies between the 

parameters and accuracy. The accuracy is good as the data 

contain the same numbers of positive and negative images. 

The accuracy of all methods was compared over multiple 

runs, and the best was chosen. 

1) Classifier parameters 

GAM, SVM, KNN, QDA, and LDA were used in 

classification based on SIFT descriptors. After trying a 

different number of fold settings, 10-fold cross-validation 

was used as it increases the accuracy. With SVM, the 

optimal kernel function was the Radial Basis Function 

(RBF). In KNN, after comparing different distinction 

models between classes such as cubic, cosine, and  

weighted, the cosine distance metric got the best accuracy 

with 10-nearest neighbors after trying different values of 

nearest neighbors. Finally, QDA and LDA used the full 

covariance structure. 

2) Bag of visual words parameter 

The branching factor and the fraction of the strongest 

features are two effective parameters. The best SIFT-GAM 

accuracy of 86.4 was achieved with 100 branching factors 

and the strongest feature percentage of 80%, as shown in 

Figs. 6 and 7, respectively. 

 

 

Fig. 6. The effect of the branching factor on GAM’s accuracy. 

  

 

 

Fig. 7. The effect of the strongest feature percentage on GAM’s 

accuracy. 

3) SIFT parameters 

To define the optimal values, we use empirical analysis 

to see the effects of changing SIFT parameters on GAM’s 

accuracy. Parameters like sigma, the number of scales 

sampled in each octave, and the contrast threshold have a 

powerful effect [43]. The optimal SIFT parameter values 

resulting from GAM are listed in Table III. 

TABLE II. PARAMETERS OF SIFT 

Parameter 
Starting 

value 

Step 

size 

Final 

value 
Optimal Default 

Contrast threshold 0 0.01 0.08 0.03 0.0133 

Sigma 1 0.1 2 1.3 1.6 

Strongest point 50 50 2000 450 All 

Edge threshold 5 5 20 10 10 

D. Result and Discussion 

The results found can be divided into two orientations: 

results extracted from descriptor technique comparisons 

applied with GAM and results from the comparison 

between classifiers using SIFT.  

As the NWPU-RESISC45 dataset classification results 

are better than those of UCAS-AOD, as shown in Table IV, 

the research will focus on this dataset. NWPU-RESISC45 

has a variety of scales and directions for airplanes, so the 

discussion will concentrate on the results of NWPU-

RESISC45. 
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TABLE IV. CLASSIFICATION ACCURACY OF THE DATASETS USING 

DIFFERENT CLASSIFIERS IN PERCENTAGE 

Classifier GAM 
Cosine 

KNN 

Quadratic 
SVM 

LDA QDA 

UCAS-AOD 81.4 77.4 82 78 74 

NWPU-RESISC45 89.4 86.2 87.4 88.8 83.2 

E. Descriptor Technique Results 

For comparison purposes, we applied HARRIS, FAST, 

MSER, ORB, and BRISK in addition to SIFT. Table V 

shows the results in terms of accuracy and visualizes 450 

of the strongest points and types of features.  

TABLE V. COMPARISON OF THE APPLIED FEATURE EXTRACTION METHODS 

Blobs Corners-Single-scale detection 
Regions of uniform 

intensity 
Corners-Multiscale detection 

SIFT HARRIS FAST MSER ORB BRISK 

89.20% 85.20% 80.60% 81.00% 82.60% 73.60% 

 

 

 

Fig. 8. Comparison of the prediction time in seconds between the 

applied classifiers. 

F. Classification Results Evaluation 

The accuracy, recall, precision, and F1-Score are the 

most common measurements to evaluate the performance 

of classification [27]. These parameters are calculated 

using the confusion matrix, which contains the numbers of 

True Positive (TP), True Negative (TN), False Positive 

(FP), and False Negative (FN) values. Table IV shows the 

confusion matrix results obtained using the applied 

classifiers. Accuracy focuses on the overall correctly 

classified observations, while precision is a measure of 

result relevancy, and recall is a measure of how many truly 

relevant results are returned. The F1-Score is calculated as 

the harmonic mean of precision and recall, which evaluates 

a model’s predictive abilities by analyzing its performance 

in each class separately, rather than considering total 

performance as accuracy does. Based on SIFT features 

classification, GAM has the best results in accuracy, recall, 

and F1-Score with 500 samples. Fig. 8 shows the 

comparison between them in terms of accuracy, recall, 

precision, and F1-Score in percentage.  
After we assess the models based on their validation 

accuracy, we test the models with 100 new images. Fig. 9 

shows the time that was consumed to predict the new data. 

The best classification time is obtained by SVM, which 

requires 0.007 s. To evaluate the classification accuracy, 

six basic measures are used: accuracy, recall, precision, 

F1-Score, Area under the Curve (AUC), and ROC 

(receiver operating characteristic). The results shown in 

Fig. 9 demonstrate that GAM has the best results in 

accuracy, recall, and F1-Score with 500 samples. Table VI 

shows the number of TP, TN, FP, and FN values for each 

classifier. To summarize GAM’s performance, Fig. 10 

shows the confusion matrix chart of SIFT feature 

classification with GAM, which compares the predicted 

labels of a classification model to the real labels. 

Furthermore, Fig. 11 shows the comparison between the 

applied classifiers using 100 new test samples. 

TABLE VI. CORRECTLY AND INCORRECTLY CLASSIFIED VALIDATION 

DATA INSTANCES 

Classifiers TP TN FP FN 

GAM 219 224 31 26 

KNN 227 204 23 46 

SVM 223 214 27 36 

LDA 223 221 27 29 

QDA 200 216 50 34 
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Fig. 9. Classifiers performance on the validation data in terms of accuracy, precision, recall, and F1-Score. 

 

Fig. 10. Confusion matrix chart of SIFT feature classification with GAM. 

 

Fig. 11. Classifiers performance on the test set in terms of accuracy, precision, recall, and F1-Score. 
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(a) GAM: = 0.85 (b) LDA: = 0.83 (c) QDA= 0.70 (d) KNN: 0.76 (e) SVM: 0.84 

Fig. 12. Comparison between the applied classifiers using test data in terms of AUC. 

 

GAM has the best-performing models based on their 

test dataset. Table VII shows the correctly and incorrectly 

classified test instances. 

TABLE VII. CORRECTLY AND INCORRECTLY CLASSIFIED TEST 

INSTANCES 

Classifiers TP TN FP FN 

GAM 39 41 11 9 

KNN 35 36 15 14 

SVM 33 42 17 8 

LDA 39 34 11 16 

QDA 17 46 33 4 

 

AUC and ROC curves are two machine learning metrics 

that are used to assess how well binary classification 

models perform. ROC is a plot of the proportion of True 

Positives (TPR) versus the proportion of False Positives 

(FPR) at different probability cutoffs. TPR is also called 

recall or sensitivity. The formulas for FPR are listed in 

Eqs. (6)–(8): 

     1FPR Specificity= −                                 (6)  

          FPR     
FP

FP
TN

= +                                 (7) 

Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                     (8) 

 

AUC represents the probability that a randomly selected 

positive sample will be ranked higher by the model than a 

randomly selected negative. The higher the AUC score, the 

better the model. In general, an AUC of 0.8 to 0.9 is 

considered excellent. GAM has the biggest AUC value, as 

shown in Fig. 12, which means it has the best capability 

for differentiating between classes with an AUC of 0.85. 

It indicates that there is an 85% probability that the model 

will be able to discriminate between classes that are 

positive and negative. This is due to the classifier detecting 

more TP and TN than FN and FP values. 

The results of GAM’s performance may be affected by 

using the BoW technique. The histogram is the base to 

train a classifier as well as to classify images. Fig. 13 

shows a histogram of visual word occurrences for one 

training image. For improving the results, future work can 

extend to using another image representation method. 

 

Fig. 13. The histogram of visual word occurrences. 

GAM’s results capture nonlinear interactions between 

explanatory variables and a response variable. This can 

represent weaknesses when it comes to effectively 

capturing nonlinear patterns which require larger sample 

sizes. Thus, we will study the effect of data size on GAMs 

in the future work. 

V. CONCLUSION 

In this paper, we proposed a technique for locating 

airplanes based on GAM using a bag of SIFT with a 10-

fold stratified cross-validation technique. The first 

objective was to compare the results of SIFT based on the 

GAM classifier with different local feature detection 

methods, such as HARRIS, FAST, MSER, ORB, and 

BRISK. GAM achieved the highest accuracy, with SIFT 

reaching 89.4%. The second goal was to assess the 

effectiveness of the suggested strategy. We compared 

GAM-SIFT results with KNN, SVM, LDA, and QDA 

using accuracy, recall, precision, F1-Score, and AUC. 

According to the evaluation, GAM was better than the 

others in terms of accuracy, F1-Score, and recall with 

values of 89.4, 89.5, and 89.6, respectively, using the 

validation set, and the best of accuracy, recall, precision, 

F1-Score, and AUC using the test set with values of 80, 

79.59, 78.00, 81.25, and 0.85, respectively. With the test 

set, GAM had an acceptable prediction time of 0.010 s. 

Experimental results demonstrated that the GAM classifier 

had a good performance, but with a performance close to 

that of other classifiers used in this research.  
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In this paper, we focus on the traditional learning-based 

methods to classify airplane satellite images. Deep 

learning represents another working direction as it requires 

huge data, extensive training, and a lot of computing power 

because it requires many processes, such as convolutions 

and transformations. In future work, we will deploy deep 

learning-based models by designing different Deep 

Convolutional Neural Networks (DCNN) for multiple 

objects using several layers, multiple filters, and 

parameters and compare their performance with other deep 

learning models. We will also study the effect of data size 

on GAM’s results. Future work can extend to using other 

feature extraction techniques and image representation 

methods as well. 
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