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Abstract—Research in the field of Inpainting and Region 

filling has nowadays gained immense momentum to account 

for historical and ancient mural conservation and the 

technological advancements as regards the need for image 

processing applications. This work proposes a complete 

Composite Patch Sampling Scheme (CCPSS) incorporating 

four refinements over Criminisi and other state-of-the-art 

techniques. The earlier Criminisi patch matching approach 

is supported by adding alien patches generated from 

independent color components of the existing known or valid 

patches. The dependency of confidence and data terms used 

in the priority function had been removed by selecting 

unknown pixels based on their neighborhood unknowns. The 

proceeding estimated unknown pixel patches are considered 

in estimating successive invalid pixel patches. Lastly, the 

highest similar or consistent known patch concerning an 

unknown patch is not finalized but retained until all the 

unknown patches are estimated. The true value of any 

unknown pixel is computed using the mean and median of all 

retained values. The inpainting, region filling, and 

reconstruction quality of the CCPSS scheme is superior in 

terms of visual perception when tested over high-resolution 

texture-structure images at the cost of computational 

overhead. 

 

Keywords—inpainting, region filling, complete-composite 

patch matching, Composite Patch Sampling Scheme 
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I.   INTRODUCTION 

Recent technological developments in image painting 
have played a great role in computer vision applications in 
reconstructing images, removing targeted regions, and 
restoring objects including texture regeneration.  Quality 
inpainting is limited by many factors which include image 
resolution, image noises, amount of area to be inpainted, 
the similarity between the known and unknown patches, 
structure-texture contents of the image, and finally the 
inpainting algorithm. Most often, the algorithm becomes 

image-dependent and generates blurred regions, 
introduces artifacts, or is even pruned to produce 
meaningless patch components inconsistent with the target 
region. The paint mechanism lies in filling the lost areas 
nearer and closer to the reasonable real semantic details of 
the image.  The problem is typical in that the defects are 
often unclear and usually the inpainting methods are based 
on mathematical and physical approaches which are 
analyzed and worked out according to human cognitive 
states or rules.  

Many different schemes are suggested in the literature 
to deal with texture synthesis for generating substantial 
regions and inpainting for region filling. Few methods 
such as Criminisi et al. [1], deal with both aspects and 
concentrate on the order of pixels to be in which they are 
estimated. The existing methods consider only single-pass 
estimated values of the pixels and do not reuse the 
inpainted region at the next inpainting iteration. The single 
pass estimated values are accepted as the algorithm is 
unable to find a better match from the known patches and 
on the other hand, the inpainted values are not treated to 
be useful. Such methods are therefore limited to inpaint 
missing regions from simple texture-structure images but 
their performance drastically degrades for complex 
structures.   

Bertalmio et al. [2] worked on processing small missing 
regions and small texture and color disparities between the 
unknown area and neighborhood pixels. The region of 
interest to be inpainted is selected manually by a user 
which is then automatically filled using the details in the 
vicinity of the region under construction. The idea is to 
complete the isophote lines reaching the region boundaries 
from the inside. The time complexity of the region-filling 
approach is low and able to complete missing areas 
comprising different structures and backgrounds. The 
proposed inpainting algorithm is carried out independently 
on each color component which alleviates the problem of 
spurious color by using a color space model like LUV 
where one of the components represents the luminance and 
the rest of the two indicates the chrominance. A similar 
approach was carried out in [3, 4] to find optimal texture 
pixels in immediately surrounding areas for filling missing 
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or defective areas. Chen et al. [3] carried out tongue 
texture analysis by isolating the tongue coating and the 
body by a Gaussian Mixture Model. The color change of 
the tongue body image concerning texture continuity was 
ensured using a generative image inpainting along with 
contextual attention. The work aimed to classify tough and 
tender tongues based on a Deep Neural Network utilizing 
the ResNet101 residual model. The work introduced in [4] 
concentrated on the mismatch between the features and 
intensity of inpainted regions using the neighborhood. The 
former was handled using a feature-based sparsity while 
the latter used an adaptive intensity technique suitably 
matching the intensity labels. False matching and 
excessive texture region extensions were avoided using a 
patch-based sparse approach. Criminisi et al. [1] 
accelerated the restoration process by finding the target 
blocks around the missing region. An adaptive technique 
using sparse reconstruction was suggested by  
Guleryuz et al. [5] which obtained the best estimation of 
defective areas. The author focused on inpainting missing 
areas primarily concerned with textures, image features, 
and edges which were not handled properly by other 
inpainting methods.  The area to be restored was 
transformed to provide sparse decomposition so that the 
transform coefficients are zero or approximately zero. 
Further, the small value coefficients were determined 
using an adaptive thresholding mechanism. The inpainting 
method suggested by the author was a simple denoising 
process without requiring any complex preconditions. An 
iterative method to restore the background of an image by 
searching the most suitable patch was the work concerned 
by Barnes et al. [6]. The novel work to reduce the time for 
finding the best patch match in the image was simplified 
using a random sampling technique. They concentrated on 
patch natural coherence and used them to propagate such 
coherent patches quickly in the surrounding areas or 
regions. They conducted experiments to show that their 
interactive editing tool offered high-quality inpainting 
with reduced time. The fast patch match nearest neighbor 
field technique reduced the computational complexity by 
using the continuity of the picture and range of computing 
the similarity. The valid part of the image was extended to 
recover the invalid part for small or narrow areas [7]. A 
complex patch-based approach relying on finding the 
similarity between the background and the area under 
repair and copying similar parts to the defective regions 
was proposed in [8, 9].  

Concerning the traditional (non-learning) approach, we 
used the patch search and match scheme for image 
inpainting, region filling, and generating texture patterns. 
The modifications incorporated in the proposed CCPSS 
scheme are summarized in the succeeding paragraphs.  

Almost all methods found in the literature used distance 
measure between the target patch around any pixel P in 
region Ω and patch Q in region Ø, the proposed work 
introduces in addition an independent color patch 
matching mechanism that not only creates new patches 
(composite patches) but also improves the quality of 
inpainting for complex textures and structures. This was 
advantageous when the area of region Ø was scarce as 
compared to the area of region Ω. 

Also, the most similar patch to estimate the target patch 

was found in region Ø only, and the pixels estimated 

during the inpainting process in the Ω region were not 

included or considered for subsequent matching. That is, 

the look-up table consists of patches only from the known 

region and the look-up table remains un-updated with the 

patch that had been estimated in the preceding epoch(s). 

We updated the list of known patches at each iteration 

whenever a new pixel in the Ω region was estimated. The 

scheme improved correlation in the neighborhood and 

decreased the inpainting errors. 
The pixels estimated during the process were used to 

update the look-up table and were not finalized and set for 
the final or true value. Instead, all the estimations for any 
pixel (Estimated being a center pixel or estimated during 
estimation of any other unknown pixel as a part of the 
neighborhood) were stored until all the unknown pixels 
were exhausted from the Ω region. The final value was 
calculated using the average and median of all such 
estimations. It eliminated the diffusion error and improved 
the perceptual quality of the inpainted image.   

A new priority function was introduced and the 
dependency of the confidence and data term was 
eliminated. The pixel P patch ɸP neighborhood was 
scanned and the pixel with minimum unknown (zero 
values) was selected on a priority basis for estimation.  For 
the presence of multiple pixels with the same priority, the 
scheme considers pixel patches on a first come first served 
basis. 

III.   RELATED WORK 

Most of the past work is focused on non-learning 
techniques for region filling and reconstruction which is 
based on the idea of patch matching and diffusion filling 
approaches. The patch matcher scheme is clear and relies 
on finding a high similarity patch in the valid region 
whereas the diffusion filler spreads the extremes of the 
complete area to compensate for the holes. These methods 
were based on partial differential equations which 
included the Mumford-Shah model [10], Eulers 
model [11], total variation models [12], etc. Patch 
matching based on Markov models [13], annihilation filter 
and low-rank structured matrix [14], two stages [15] and 
gradient-based low-rank approximation [16], low gradient 
regularization [17], statistical regularization-Markov 
random models [18], non-local matching and nonlinear 
filtering [19], sum of squared difference [20] are some of 
the techniques used for image inpainting. Diffusion-based 
inpainting models are based on Fourier transform and 
fractional order derivatives [21], neighborhood distance-
direction-based coefficients between valid and invalid 
pixels [22], and inter-intra channel variance-based 
features [23].  

Texture-synthesis-based inpainting gained momentum 
after the texture-based non-parametric method was 
introduced in [24]. New texture images were generated by 
sampling and finding similar pixels from the same image 
known as neighborhood pixels. Efros and Leung [24] in 
their work effectively synthesized textures that showed a 
higher resemblance to the input. Their approach was 
simple and treated as the basis of many other texture-
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synthesis-based inpainting due to high-quality results. The 
main objective of the work proposed in [24] was to fill in 
the missing region with enhanced reconstruction. 
However, texture synthesis-based inpainting brought 
different difficulties as compared to classical inpainting 
schemes. One of the outstanding works that gained 
immense attention was introduced by Criminisi et al. [1] 
which contributed to removing large objects from images.  

Criminisi’s work [1] governed linear structures’ 
repetition of two-dimensional and one-dimensional 
textures and structures. The destroyed pixels were filled 
on a priority basis and the selection were a function of the 
multiplication of confidence and data terms. The 
dependency of both the components limits their value, i.e., 
when one reaches zero the other attains a small  
value [23, 25]. The issue of dependencies was worked out 
in [23, 26]. Criminisi et al. [1] represented the valid region 
by Ø, the invalid region by Ω, and dΩ to represent the 
boundary between Ø and Ω. The pixel P to be inpainted 
and its rectangular patch is shown in the Fig. 1 below 

where ∇Ip and np are the tangents and normal to the 
boundary surface.  

 

Fig. 1. Criminisi et al. [1] inpainting scheme denoting region Ø, region, 

pixel P, and patch ɸP. 

Criminisi et al. [1] expressed the priority function as the 

product of confidence and data term by the following 

Eq. (1). Eqs. (2) and (3) provide the confidence and the 

data term with area | ɸP | of the patch around P. The factor 

α is the normalization factor. 

P(p) = C(p)  D(p)   (1) 

C(p) = 
∑ 𝐶(𝑞)𝑞𝜖𝜑𝑝∩𝜑

|𝜑𝑝|
    (2) 

D(p) = 
|𝛻 𝐼𝑝

⊥ .  𝑛𝑝|

𝛼
    (3) 

For pixels in Ø, confidence is C(p) = 1 and C(p) = 0 in 

region Ω (Eq. (4)). The pixel to be estimated over the 

boundary between Ø and Ω is selected on priority based 

on its confidence value. The patch around P is then 

compared with all other patches in Ø. The highest similar 

patch ɸ’P = Øq from the available patches is found using 

the SSD distance metric given by Eqs. (5) and (6). 

 

𝐶(𝑝) = {
0,              ∀𝑝𝜖𝛺

1,              ∀𝑝𝜖Ø
      (4) 

SSD(p, q) = arg 𝑚𝑖𝑛
∅𝑞∈∅

𝑆𝑆𝐷(∅𝑝, ∅𝑞)    (5) 

𝑆𝑆𝐷(∅𝑝, ∅𝑞) =  √∑ ∑ [(𝑝𝑖𝑗
𝑅 − 𝑞𝑖𝑗

𝑅 )
2

+ (𝑝𝑖𝑗
𝐺 − 𝑞𝑖𝑗

𝐺 )
2

+ (𝑝𝑖𝑗
𝐵 − 𝑞𝑖𝑗

𝐵 )
2
]𝑛

𝑗=1
𝑚
𝑖=1

3
           

(6) 

 
Three terms correspond to the three-color components 

(R, G, and B), and (i, j) cover the patch window rows m 
and columns n.  The center pixel of the winning patch Øq 
obtained corresponding to minimum SSD is then 
substituted at the target pixel of patch ɸP. Subsequently, 
the C(p) of the target pixel is changed and the confidence 
of the whole image is updated. The procedure is repeated 
until all pixels in Ω are estimated.   

In recent times, complex techniques exploiting various 
artifacts within images and in-depth structure analysis in 
the vicinity of the area to be inpainted were introduced. A 
patch-matching method was presented in [13] which used 
a Markov Random field while the same was done using an 
annihilation property filter and a low-rank structured 
matrix in [14]. Jin and Ye [14] limited the search process 
to the surrounding background of the unpainted region in.  
A similar approach was used in [27] using a target object 
selection method again restricting the search operation to 
the background. On the other hand, the work introduced 
in [15] and [16] focused on recovering corrupted regions 
(blocks) using low-rank approximation and gradient-based 
extended schemes respectively.  

Some authors worked on another sub-area of 
representing the image by translating or transforming it to 
some other representation which primarily included the 
DWT domain, DFT, DCT, etc. Using the transformation 
technique and then inpainting produced remarkable results 
as in [28, 29] and retaining the uniformity of the inpainted 
area, however, they were prone to ugly artifacts at the 
textural edges and mad such techniques garbage. 
Transforming and using conventional inpainting or mixed-
mode solutions were adopted in [30, 31]. The mixed-mode 
techniques included diffusion schemes and texture 
synthesis. Work explored in [32] combined a PDE-based 
solution in collaboration with patch synthesis and 
coherence map. A similar approach was used in [33, 34] 
where local features like edges were reconstructed using 
exemplar-based techniques and anisotropic diffusion with 
transport equation respectively.  

The sequence of inpainting using the patch-based or 
exemplar-based techniques is to search for the best order 
of filling, locate the best patch to approximate the target 
patch, and finally copy the matched patch. The last step 
can be governed by some pre-processing if required to 
ensure the textural similarity within the region to be 
inpainted. However, every such patch match inpainting 
method introduces artifacts similar to the diffusion 
schemes. The artifacts were analyzed by Criminisi and 
more recently in [9]. Various artifacts such as texture 
mismatch, blur, and staircases are examples of susceptible 
artifacts. Color or texture mismatch is the result of unfit 
patches being copied to the missing areas by the inpainting 
algorithm. Jaggy edges or staircase effects are the cause of 
the inability of the inpainting scheme to accurately 
replicate the delicate or fine details, especially along high-
frequency edges. Blurs result due to averaging operations 
during the patch copying process while tackling intricate 
textures or high-contrast edge regions.        
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III. METHODS AND MATERIALS 

We propose a CCPSS scheme for inpainting, region 
filling, and regeneration in images based on a complete 
color patch matching window and priority-based selection 
of unknown pixels. The scheme maintains a list of Lk of all 

known pixels with their 33 color neighborhood and 

another list of Luk of 33 patches surrounding unknown 
pixels that need to be reconstructed.  The similarity 
between the unknown pixel patch (ɸp) in Luk and the 
known patch (ɸq) in Lk is estimated using the Euclidean 
distance on one hand and similarity based on individual 
color 1D components LkR, LkG, and LkB respectively on the 
other hand. Almost all the state-of-the-art techniques in the 
literature follow the former similarity measure including 
Criminisi et al. [1], The latter method finds similar patches 
in the red, green, and blue component 1D patches 
independently.  This ensures greater depth matching even 
though there is the possibility of new patch generations 
since the matched individual 1D patches are concatenated 

to form a complete 33, 3D color patch from individual 
color 1D patches. We found experimentally that individual 
1D color component patch matching scheme is very 
effective when the list Lk has fewer entries, that is when 
the image is degraded to a greater extent (Luk > Lk). When 
a known patch is found consistent with the unknown pixel 
neighborhood patch, the same is retained and not finalized 
until all the unknown pixels have been estimated from 
region Ω. 

We have considered a 33 neighborhood while 
estimating the similarity measure for greater accuracy. 
Any pixel (Ø) is highly correlated to its neighborhood 
pixel (Ø’) in the unknown nearest dimension. Considering 

33 neighborhoods will not suitably correlate the 
estimated value with other neighborhood candidates. The 
neighboring candidates may at that instant be known or 
unknown and the degree of correlation depends on 

candidate distance and spatial location. Based on 33, 3D 
patch similarity, if the pixel (Ø) is finalized, the 
reconstruction may suffer from under or overfitting issues 
and the quality of reconstruction will be very poor.  

Therefore, we estimate two different similarity measures 

as given by the Eqs. (7)−(10): 

Dcolor = ∑ {√∑ [(𝑃𝐿𝑘𝑅 − 𝑃𝑅)2] 9
𝑖=1

3
𝑑=1 +  √∑ [(𝑃𝐿𝑘𝐺 − 𝑃𝐺)2] 9

𝑖=1 +

 √∑ [(𝑃𝐿𝑘𝐵 − 𝑃𝐵)2] 9
𝑖=1 }     (7) 

where, PLkR, PLkG, and PLkB are individual R, G, and B one-

dimensional color patches from list Lk. PR, PG, and PB are 

individual R, G, and B 1D color patches from List Luk. 

Fig. 2 shows the computation of distance Dcolor.  

 

Fig. 2. Computation of complete patch distance Dcolor 

The best matching patch (Complete patch) ɸP = Øq is 

selected corresponding to the minimum distance Dcolor 

obtained for all patches in Lk.  

Eqs. (8)−(10) are used for computing the distance 

between similar color components. The individual 2D 

color patch corresponding to each color is scanned 

respectively in list Lk.  

 

Dr = √∑ [(𝑃𝐿𝑘𝑅 − 𝑃𝑅)2] 9
𝑖=1  → ListframeR (8) 

Dg = √∑ [(𝑃𝐿𝑘𝐺 − 𝑃𝐺)2] 9
𝑖=1  → ListframeG  (9) 

Db = √∑ [(𝑃𝐿𝑘𝐵 − 𝑃𝐵)2] 9
𝑖=1  → ListframeB (10) 

The 2D color patch having a minimum distance in Lk is 

then selected and concatenated using the following 

Eq. (11).  

Pnew = C {𝐷𝑟 , 𝐷𝑔 , 𝐷𝑏}           (11) 

Here, C is concatenation operator. The patch 

corresponding to a minimum distance from R, G, and B 

entries of list Lk are concatenated to form a new patch 

(Composite patch) Pnew shown in Fig. 3. 

 

 

Fig. 3. Construction of new patch (composite patch). 

We need to find the new distance concerning the new 

patch Pnew with the unknown patch from Luk. The new 

distance DRGB is given by the following Eq. (12): 

 

DRGB = E [Pnew, Puk]  (12) 

where Puk represents the unknown patch under 

consideration from Luk and ‘E’ is the Euclidian distance. 

The best match from {Pm, Pnew} is obtained by comparing 

the distances Dcolor and DRGB as represented by Eq. (13). 

(Patch having Minimum distance) 

P = Patch ϵ Minimum {Dcolor, DRGB}    (13) 

The pixels in patch P (center pixel and its 33 

neighborhood) are not final and are therefore temporarily 

stored but the list Lk is updated with this new entry. The 

estimated unknown entry Puk under consideration for 
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which the estimation is carried out is deleted from the list 

Luk. The list Luk is sorted to find the new unknown patch to 

be estimated on priority. The process is repeated until all 

unknown pixels in list Luk are estimated. 

The selection of an unknown patch from the list Luk is 

governed by the concentration of holes in the patch. The 

patch having the lowest number of unknown pixels is 

estimated on priority concerning others. Fig. 4 

demonstrates the priority mechanism, shows an example 

with 5 different patches available in the list Luk. The first, 

second, third, fourth, and fifth patches have respectively 4, 

3, 2, 2, and 1 unknown elements. Our patch on priority will 

be the last (Fig. 4(e)) patch having 1 unknown element 

first. Patch (c) and (d) will be next, followed by patch (b) 

and then patch (a) since it has the highest unknown (4) 

elements. 

 
(a)                             (b)                        (c)                                      (d)                               (e) 

Fig 4. Patch configurations. (a) shows a patch with 4 holes (zero/unknown elements) in the list Luk. (b) shows a patch with 3 unknowns. (c) & (d) 

depict a patch with 2 unknowns.  (e) contains a patch with one unknown from region Ω..

The criteria to select the patch ɸP on priority is given by 

the following Eq. (14), 

Min (R) = 
𝑍𝐸

𝑁𝑍𝐸
       (14) 

where R represents the ratio of several holes (zero 

elements (ZE)) to non-zero (NZE) elements in P. 

This controls the flow of error across neighboring 

unknown pixels to a considerable extent and thus 

improves the quality of inpainting. 

The distance between the unknown patch and the 

patches in the list Lk is computed after matching their 

element pattern. Matching element pattern here means 

matching holes in Lk patches concerning the unknown 

patch from Luk under consideration. This is done to 

minimize the effect of extra overhead in distance 

calculation and prevent false patch hits. Fig. 5 

demonstrates the pattern matching of Lk patches in 

correspondence to an unknown patch.  Fig. 5(a) is the list 

Lk entry and Fig. 5(b) is the unknown patch to be estimated 

from Luk. The patch in Fig. 5(b) has three unknown 

elements (holes) so it exhibits a pattern having 5 known 

and 3 unknown elements around the center pixel P. 

Therefore, to match patch PLk concerning P, 3 elements in 

PLk are made zero. Fig. 5(a) will be converted to Fig. 5(c) 

while patch P remains the same, the distance between PLk 

and P will be computed then.

 
(a)                                (b)                                                   (c)                             (d) 

Fig. 5. Patch adjustment for matching. (a) shows the Patch entry from list Luk. (b) shows a Patch p with 3 holes (unknown neighbors) to be reconstructed. 

(c) depicts a List Lk patch with substituted zero elements corresponding to indices of zero elements of patch P. (d) shows an Unaltered Patch P. 

The following Eq. (15) explains the mechanism. 

 

PLk (N) = 0 (if, PN ϵ Ω = 0)  (15)  

The intensity values 5, 7, and 8 in the PLk entry have 

been assigned value 0 as per the positions of zero elements 

ZE of patch P. The assignment is done for all three color 

components of the patch PLk entry in list Lk. 

The estimated pixel value is temporary and limited to 

the use of updating the list Lk. The estimated value for a 

certain unknown pixel (as principal or center pixel) and 

when the same pixel is estimated as a neighboring pixel 

for any other principal pixel, is stored until all the 

unknown pixels in Luk are estimated likewise or the list Luk 

is completely emptied. The estimated values for each 

unknown pixel are saved till the last iteration.  

Considering Z0 as the unknown pixel to be estimated, 

the patches containing Z0 are represented in Fig. 6. In 

patch p1, Z0 is the unknown pixel and while targeting U1, 

U7, U8, and U9 different values of Z0 are expected from 

the matched list entries. 

 

 
Fig. 6. Unknown patches P1–P5 to be estimated which includes Z0. 

Journal of Image and Graphics, Vol. 12, No. 4, 2024

324



We experimented using different statistical approaches 
for finalizing the value from available estimated values. 
The objective was to paint for the best match and preserve 
the textural and structural aspects of the given image 
regarding the missing elements. We succeeded in finding 
the best statistic over the estimated values which proved 
accurate for inpainting the missing values. The best 
accurate match was found by substituting the average and 
median of all estimated values as the final substitute for 
any unknown pixel. For inpainting, the median value 
proved to be much better than the average value while for 
region filling the average value superseded the median 
value. We used an array of dimension 50 (higher side) for 
each unknown pixel to store estimated values during the 

inpainting process. The dimension was assumed on a test 
conducted on several images. It was seen that any 
unknown pixels are estimated at least twice. We used the 
MATLAB feature of the sparse array to save the amount 
of memory for the allocation to store estimated values. 

For texture repetition, we used the proposed inpainting 
or region-filling technique with some modifications in the 
initial stage. In the inpainting case, the region to be 
reconstructed is selected and cropped using a polygon. The 
pixel corresponding to the cropped region for our 
reconstruction scheme is set to R = 0, G = 0, and B = 0 
for all the three color components, that represent a black 
mask as shown in Fig. 7 below.  

Our proposed inpainting Algorithm 1 is listed below.  

 

 

Fig. 7. Original images and their inpainting regions. The original house and the mural image. black polygonal regions  

are to be imprinted in both cases. 

Algorithm 1: Inpainting 
 Input: Original Image A 

 Output: Reconstructed Image F, G using Median Value & the Average Value 

  

1 Select the portion to reconstruct 

2 Prepare Mask of the region to reconstruct - Mask 

3 Construct the list of indices of the region to reconstruct - Ridx 

  

4 Sort the patches of unknown pixels in Luk to find the Priority - priority_sort 

5 Create Lk using the known pixels with complete neighborhood - prepare_Lk 

  

6 Sort the list, Luk  

7 While Luk becomes empty 

8                  Get the highest-priority patch 

9                  Find the indices of zero elements in the patch 

10                  Mask all elements in Lk entries corresponding to indices 

11                  Reshape patch as per Lk entry for mathematical calculations 

12                  Repeat patch Luk as per size of Lk 

13                  Calculate Distance for Similarity – Complete and Composite color component match 

14                  Find the best patch match from two approaches 

15                  Copy target pixel value and neighboring pixel values from matched patch 

16                  Store values of all unknown pixels for final estimation 

17                  Remove entry from Luk 

18                  Update Lk with new entry and sort as per Original image indices- prepare_Lk 

19                  Sort Luk for priority -  priority_sort 

20 End 

  

21 For m = 1 to total estimated values 

22                  Get all  values of unknown pixels – R, G, and B 

23                  Find the average/median of values for R, G, and B – MR, MG, and MB 

24                  Substitute the values at pixel location in the images – F 

25 end; Output G and F 

  
27 Display the performance parameters 

    

Fig. 8 below shows the output of inpainting by our 

proposed algorithm. The third image represents the 

reconstruction when the average value is considered 

instead of the median value of the predicted pixel from all 

predictions. The perception shows that the inpainting 

result using the average value is inferior to the result 
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obtained using the median value. The region indicated by 

the red circle shows the region to be inpainted and the 

result of our algorithm considers the average and median 

of the predicted value of each pixel. Fig. 9 shows another 

image with high texture and its reconstruction using the 

median value. The proposed CCPSS technique can 

efficiently paint high-texture structures and degraded 

regions.

 
(a)                                                         (b)                                                         (c)                                                            (d) 

Fig. 8. Results of proposed inpainting scheme. (a) Input image. (b) Polygon region to be inpainted. (c) Reconstructed image using average value. (d) 

Reconstructed image using median value. (Red circle shows the region of interest). 

 
(a)                                                           (b)                                                                          (c) 

Fig. 9. Inpainting results on high textured image. (a) Input image. (b) Polygon region to be inpainted. (c) Reconstructed image using median value. 

IV.  RESULTS AND DISCUSSION 

The performance of our CCPSS-based statistical 

inpainting is shown in Figs. 10 (a)−10(e). The images are 

part of the well-known high-resolution Pristine Dataset 

images. The dimensions of images vary and the average 

dimension is about 500 pixels  350 pixels (rows  

columns).  The result shows that CCPSS can reconstruct 

regions with background when objects are removed. We 

used a variety of images about homogeneous and 

heterogeneous backgrounds, the average value of 

estimations produces perceptual quality reconstructions. 

Fig. 11 shows how the unknown pixels are selected using 

the priority mechanism adopted under the CCPSS in this 

paper and explained earlier for Figs. 10(d) and 10(e) 

respectively.  The pixel index represents the one-value 

index or location of the unknown pixel. Table I represents 

the time taken to fill the targeted area using MATLAB 

2012b, Intel 11th Generation i5 processor, 2.71 GHz, 16 

GB RAM, and 256 GB SSD. We already quoted that the 

quality of inpainting is achieved at the cost of computation 

time. Since we used a dual patch matching approach to 

improve the quality of reconstruction, the computation 

time is larger and so is the time. Also, the final value of 

the pixel is set when all the unknown pixels are estimated 

and during all iterations, the estimated values are 

temporarily stored which requires extra sparse storage.

 
(a)  

 
(b)  

 
(c)  
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(d)  

 
(e)  

Fig. 10. Original image in the first column, marked region (sheep, bird, left sheep, football, helicopter, and left object) to be reconstructed in the 

second column and Missing region filled the last column, (a) Single sheep image, (b) Bird image, (c) Multiple sheep image, (c) Football image, 

(e) Helicopter image. 

 

 
(a) 

 
(b) 

Fig. 11. Pixel’s index inpainted on priority for football and helicopter image, (a) Football image, (b) Helicopter image. 

 

In this paper, we are dealing with those images, where 

the scenes need to be repeated along any direction viz. 

horizontally left or right, vertically up or down, or outward 

concentric in all directions of the given image. The region 

to be generated in any of the directions mentioned is in 

priory created using a black mask ([0, 0, 0]) for R, G, and 
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B colors as shown in the figure. It is the requirement of our 

algorithm that can pinpoint a region based on the known 

regions from the same image. Fig. 12(a) shows a mask 

generated on the horizontally left side which is equal to the 

column size of the given mural image and Fig. 12(b) 

shows a similar mask on the right side. Fig. 13 shows the 

regeneration to be followed in vertically up (b) and down 

direction (a) whereas Fig. 14 demonstrates a concentric 

construction.  

 
TABLE I. TIME REQUIRED TO FILL THE REGION FOR EACH IMAGE 

Sr. No. Image (Pristine Dataset) 
Inpainting time 

(MATLAB 2021b) 

1 Sheep 4915.217109 s 

2 Bird 15142.912378 s 

3 Multiple sheep 17722.121274 s 

4 Football 12058.300869 s 

5 Helicopter 19162.968409 s 

 

 
(a) (b) 

Fig. 12. Mask formation. (a) Region to be generated horizontally left. (b) Region to be generated horizontally right. 

 

 
(a) (b) 

Fig. 13. Mask formation. (a) Region to be generated downward. (b) Region to be generated vertically upward. 

 

Fig. 14. Mask created to construct the texture in all directions (Concentric). 
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The length of the mask along the dimension along 

which it is to be generated is not limited and depends on 

choice. The generation process will identify the pixel with 

higher priority and continue likewise after the list Luk is 

updated and sorted each time depending upon the number 

of zero elements in the patch. Inpainting repeating texture 

pattern, the case is different from the within region 

inpainting case, since all the boundary pixels that are to be 

constructed will possess almost equal priority. Therefore, 

the pixels will be served on a first come first basis as they 

appear in the list Luk. Inpainting time is dependent on the 

area to be inpainted, the larger the area, the more time will 

be required. For generating textures, we have selected 

different patches or window sizes depending upon the 

class of texture the image holds to overcome time 

complexity in inpainting. For fine textures, a smaller 

window (w = 3, 5) works well, while when the texture 

pattern is quite large, a larger window size (w = 7, 9, 11, 

13, and 15) is required to construct or repeat patterns 

accurately. A smaller window in a later case tends to get 

stuck at the wrong known patch since larger texture 

patterns have great similarity to their neighboring patches.    

We have used a medium window size w = 9 for all the 

texture generation shown below to reduce time and 

computational complexity. Fig. 15(a) and Fig. 15(b) show 

the result of the region generated horizontally in the right 

and left direction, and vertically in the north and south 

direction whereas Fig. 16 indicates the all-direction 

(concentric) generation. We have used images with 

regular (repetitive) and irregular (non-repetitive) textures 

so that the performance can be evaluated even through 

human perception. As seen from the results obtained, the 

quality of generation is acceptable as far as texture pattern 

is concerned. The generated regions show some amount of 

inconsistency with the original image when perceived 

properly. This is due to the irregular texture pattern in the 

image and the size of the window (w = 9) used. The 

performance can be improved using a smaller window (say 

w = 3, 5) increasing overheads (time and computation). 

The all-direction generation using the bricks in Fig. 16 is 

accurate since the textural pattern is larger and repetitive.  

Also, the mural image in Fig. 17 is exactly generated. All 

three soldiers have been generated on the right side since 

the texture pattern is regular and large. 

 

 (a) 

   

 (b) 

Fig. 15. Texture generation. (a) shows generated textures in the horizontal direction. (b) shows texture generated in the vertical direction. 
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(a)                                                 (b) 

Fig. 16. Concentric region generation. (a) Original image. (b) Regenerated texture. 

 

(a)                                                            (b) 

Fig. 17. Regeneration using a mural image. (a) Original image. (b) Regenerated texture in horizontally right direction.

As seen from Refs. [1, 35−40], different authors have 

used different sets of images for the region-filling 

approach. No standard dataset with the ground truth is 

available to validate the results based on performance 

metrics. Authors have claimed the based-on disparities 

between the original and the resultant image. The 

background texture replaces the object in the image and 

decides the visual quality. Therefore, a comparative 

approach is not possible in this case. The proposed work 

is based on our TSCPMA (Texture-Structure Conserving 

Patch Matching Algorithm) [41] approach used for region-

filling. 

V.  CONCLUSION 

TSCPMA can preserve the color, textural, and 

structural quality of an image which have deteriorated due 

to various natural factors. We have proposed an efficient 

inpainting and background generation CCPSS over 

Criminisi and other state-of-the-art conventional 

algorithms to generate regular and irregular texture-

structure patterns in all possible directions concerning a 

given image. The overheads can be controlled by using 

varying matching window sizes at the cost of texture-

structure pattern generation quality. Analysis showed that 

for finer textures, smaller matching windows are 

suggested while for large textures can be generated using 

a larger matching window. The matching criteria are 

improved by including individual color component patch 

matches based on minimum distance and then combining 

them to introduce new patches. The minimum distance 

patch is temporary for any center pixel and finalized when 

all the unknown pixels are estimated. But the temporary 

patch is used to update the known patch list for estimating 

other unknown pixels thus inventing and introducing new 

patches. The technique eliminates any error that can 

penetrate and diffuse in the neighboring pixel when 

estimated. The inpainting achieved by our method 

outperforms any other method. Our method has the extra 

burden of comparing individual color component patches 

and statistical calculations with increased storage which 

makes the technique somehow time and computationally 

complex. The CCPSS method introduced in this paper can 

paint high-resolution, irregular regions, generate quality 

perceived and acceptable background when the object is 

removed, and generate the textural pattern. 
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