
A Fast Horizon Detector and a New Annotated 

Dataset for Maritime Video Processing 
 

Yassir Zardoua 1,*, Mohammed Boulaala 2, Mhamed El Mrabet 2, and Abdelali Astito 1 

1 Smart Systems and Emerging Technologies, Faculty of Science and Technologies of Tangier (FSTT), Abdelmalek 

Essaadi University, Tetouan, Morocco 
2 Industrial Systems Engineering and Energy Conversion Team, Faculty of Science and Technologies of Tangier 

(FSTT), Abdelmalek Essaadi University, Tetouan, Morocco 

Email: yassirzardoua@gmail.com (Y.Z.); m.boulaala@gmail.com (M.B.); m.elmrabet@gmail.com (M.E.M.); 

abdelali_astito@yahoo.com (A.A.) 

*Corresponding author 

 

 

 
Abstract—Accurate and fast sea horizon detection is vital for 

tasks in autonomous navigation and maritime security, such 

as video stabilization, target region reduction, precise 

tracking, and obstacle avoidance. This paper introduces a 

novel sea horizon detector from RGB videos, focusing on 

rapid and effective sea noise suppression while preserving 

weak horizon edges. Line fitting methods are subsequently 

employed on filtered edges for horizon detection. We address 

the filtering problem by extracting line segments with a very 

low edge threshold, ensuring the detection of line segments 

even in low-contrast horizon conditions. We show that 

horizon line segments have simple and relevant properties in 

RGB images, which we exploit to suppress noisy segments. 

Then we use the surviving segments to construct a filtered 

edge map and infer the horizon from the filtered edges. We 

propose a careful incorporation of temporal in- formation for 

horizon inference and experimentally show its effectiveness. 

We address the computational constraint by providing a 

vectorized implementation for efficient CPU execution, and 

leveraging image downsizing with minimal loss of accuracy 

on the original size. Moreover, we contribute a public horizon 

line dataset to enrich existing data resources. After extensive 

tests, we report the following major findings: 1) thanks to its 

filter, our algorithm accurately detects horizon lines with low 

or weak edge response, 2) the vectorized filter takes no more 

than 1.71% of the overall computations, while most of the 

computations are taken by the Line Segment Detection (LSD) 

algorithm we integrated into our pipeline, 3) our strategy of 

incorporating the temporal information avoids outlier 

detections, mitigates the effect of strong noisy lines, and 

exhibits high robustness when using incorrect detections as a 

temporal reference. Our algorithm’s performance is 

rigorously evaluated against state-of-the-art methods, and its 

core components are validated through ablation 

experiments.  

 

Keywords—horizon line, sea-sky line, real-time execution, 

vectorized computations, maritime video processing, 

annotated dataset, maritime target tracking 

 

 
Manuscript received January 26, 2024; revised April 12, 2024; accepted 

May 13, 2024; published October 18, 2024. 

I. INTRODUCTION 

Video surveillance has become a vital tool for 

maintaining security and safety in various domains. 

Traditional systems rely primarily on manual human 

observation, typically from Close-Circuit Television 

(CCTV). The recent progress in computer vision and deep 

learning revolutionized this field, allowing automated 

surveillance with remarkable performance [1, 2]. 

Automated crowd counting enables flow monitoring and 

deploying security services [3]. During the recent 

pandemic, visual social distancing has been introduced as 

a new computer vision problem to mitigate and manage the 

spread of infectious diseases [4]. Other surveillance tasks 

include the analysis of video captured from different non-

overlapping cameras, such as person reidentification, 

aiding the identification of suspects or lost children [5].  

Within this realm, maritime target detection and 

tracking systems significantly aid in maritime security. 

The literature decomposes such systems into multiple 

algorithms [6, 7], such as maritime background 

modeling [8], video stabilization [9], and maritime horizon 

detection [10]. Our paper contributes to the maritime video 

surveillance system by developing and testing a fast and 

robust horizon detection algorithm. The maritime horizon, 

also referred to as the sea-sky line in some cases, is defined 

as the boundary line that separates the sea region from the 

region immediately above it (Fig. 1) [6, 11, 12]. We should 

note that in maritime images depicting mountains or 

coastlines, as illustrated in Fig. 1(b), the horizon according 

to the maritime video processing literature is the line 

separating the mountain from the sea [6, 7, 13–16]. This 

maritime horizon is semantically distinct from the wild 

horizon literature, which addresses the non-linear 

boundary separating the mountain from the sky [17, 18]. 

Our paper focuses on detecting the maritime horizon 

line in RGB images, which, as highlighted in [7], offer 

richer daytime information at a lower cost compared to 

infrared images. This sea horizon plays a pivotal role in 

Journal of Image and Graphics, Vol. 12, No. 4, 2024

34510.18178/joig.12.4.345-361doi: 

mailto:yassirzardoua@gmail.com
mailto:m.boulaala@gmail.com
mailto:m.elmrabet@gmail.com
mailto:astito@yahoo.com


intelligent and autonomous sea navigation [6, 7].  Previous 

studies underscored the application benefits of correctly 

detecting the sea horizon. These applications include 

digital video stabilization [9, 19, 20], improved target 

detection and tracking [13, 21], reduced search 

region [22–24], and obstacle avoidance [25–27]. We note 

that these studies include commercial surveillance systems 

like Automatic Sea Vision (ASV®) [28], which integrate 

the sea horizon detector. Survey [12] reports a strong 

trade-off between robustness and computational load. 

Therefore, further research in this specific field is 

necessary. 

 

 
(a) 

 

 
(b) 

Fig. 1. The horizon line separates (a) the sea from the sky and (b) the 

sea from the coast. 

Previous and recent research consistently underscores 

the essential role of edge information in accurately 

detecting the horizon line [6, 7, 14, 29]. The analysis in 

Section II and survey [12] suggest that the current 

literature would greatly benefit from a horizon detector 

that meets two critical criteria: (1) high robustness against 

sea clutter while preserving weak horizon edges and (2) 

efficient CPU execution with minimal computations 1 . 

Accordingly, we categorize our contributions into 

algorithmic and dataset contributions. We summarize our 

algorithmic contributions in the following four points: 

(1) We introduce a novel filter that generates a filtered 

edge map, preserving very weak horizon edges 

while suppressing various forms of sea clutter. 

This filtered edge map is then used for horizon line 

inference; 

 
1 The reader can find a discussion on the importance of criteria (2) in 

survey [12] 

(2) In the line inference stage, we propose an Outlier 

Handler Model (OHM) that effectively 

incorporates temporal information to avoid outlier 

detections; 

(3) We enhance the computational efficiency by 

vectorizing the filtering processes; 

(4) We effectively leverage image downsizing for 

faster computations by accurately projecting the 

detected horizon from the downsized image to the 

original size. 

Our dataset contribution involves: 

(1) the public sharing of 18 video clips, totaling over 

6,000 frames, which we meticulously annotated 

for the maritime horizon line; 

(2) introducing multiple new scenarios to enhance and 

complement the most extensive video dataset 

currently available, the Singapore Maritime 

Dataset (SMD), initially introduced in [6]. 

II. LITERATURE REVIEW 

In this section, we succinctly discuss an extensive set of 

horizon detection algorithms. We recommend that readers 

refer to surveys [6, 7, 12] for an in-depth literature 

analysis. Gershikov et al. [30] detect one horizon point per 

column as the pixel with the maximum vertical edge 

response. The final horizon is fit on these points using the 

least-squares technique, which is known for its high 

sensitivity to outliers. Better algorithms project edge maps 

to another space favoring the appearance of the horizon as 

a peak. The first attempt in this context was conducted by 

Bao et al. [31]. They detected image edges using LoG 

(Laplacian of Gaussian) and extracted the horizon using 

the global maximum of the transformed space. The horizon 

may not correspond to the global maximum due to image 

noises. Therefore, Zhang et al. [32] enhanced the work 

in [31] by analyzing three geometric features of local 

peaks of the transformed space. These features assume that 

noisy edges have high scatter, which is unsuitable for line-

up sea clutter. Similar to Ref. [31], Schwendeman and 

Thomson [20] detected the horizon as the global peak of 

the Hough space and suggested a contrast-based quality 

metric to remove faulty global peaks. 

Schwendeman et al. [20] report that their method is 

susceptible to lighting changes, one of the main factors 

degrading horizon edges. Similar to Ref. [20],  

Lie et al. [17] employed a Canny edge detector with an 

automatic threshold to extract the weak horizon edges 

while minimizing the noise. Subsequently, they identified 

the horizon using a dynamic programming technique to 

infer the curved horizon from the extracted edges. While 

they reported good results on low-contrast horizon of non-

maritime images, the effectiveness of this methodology in 

our case has yet to be evaluated. 

Many researchers have observed that directly inferring 

the horizon from extracted edges often leads to incorrect 

detections, primarily due to high texture in RGB 

images [6, 12]. As a result, they have incorporated various 

Journal of Image and Graphics, Vol. 12, No. 4, 2024

346



edge filtering techniques to enhance clutter suppression 

while preserving horizon edges. In this context, 

Shen et al. [10, 33] proposed an adaptive size of the 

Gaussian kernel to avoid excessive suppression of horizon 

edges. The size is established based on the image 

resolution, specifically the number of rows. Regardless of 

the Gaussian kernel’s window size, it consistently weakens 

the horizon edges due to the kernel’s built-in smoothing 

effect, reducing high-frequency components in the image. 

The authors of [30, 34] have discovered that 

morphological erosion is more effective in preserving 

weak horizon edges compared to Gaussian filters. In 

response to this, Li et al. [15] recently introduced a more 

advanced morphological filter that calculates the 

reconstruction by erosion of the edge response. This filter 

operates under the assumption that maritime clutter in 

RGB images typically manifests as blobs, such as sun 

glints on the sea surface or small waves. This assumption 

allows the filter to effectively preserve horizon edges, 

which do not appear as blobs. However, the iterative nature 

of the erosion-based reconstruction technique, even when 

applied to downsized images, impacts its processing speed. 

Numerous researchers have conducted extensive 

investigations into the utility of median filters. These 

filters have garnered attention for their superior 

performance compared to Gaussian filters, primarily due 

to their capacity to preserve intensity gradients without 

excessive smoothing. Median filters, with odd-sized pixel 

windows, prevent the creation of intermediate intensities 

that could weaken the transition across the horizon edge. 

They achieve this by ranking pixel intensities and selecting 

the central value, preserving a sharp transition across the 

horizon line [35]. 

To increase the suppression effect, it is better to use 

multiple median windows of increasing size instead of one 

large median filter [36]. This is known as the multi-scale 

median filter, an approach that has produced some of the 

best results in the maritime literature [29, 31, 37–39]. In 

alignment with this approach, Prasad et al. [38] applied 

five median scales and transformed the result into a Hough 

space where the voting rule is modified to favor longer 

edges. Such a process is resource-greedy and takes tens of 

seconds per frame. A similar and faster alternative applies 

ten median scales [37] and detects horizon candidates from 

each scale using the vertical edge response and the 

standard Hough transform. The final candidate is selected 

using a goodness score based on the strength and 

collinearity of its edges. Instead of detecting candidate 

lines on each median scale, Jeong et al. [39] significantly 

reduced the computational load of the multi-scale median 

filter by processing only one weighted edge map, which 

they computed by averaging the edges of each median 

scale. They conducted experiments that demonstrated this 

approach’s significantly improved accuracy and 

remarkable speed enhancement, being 90 times faster than 

the methods presented in [37] and [38]. Overall, multi-

scale median filtering [39] and the sophisticated 

morphological filter [15] reported the best ability to 

preserve weak horizon edges. 

Dong et al. [14] proposed a novel filter that effectively 

removes sea noise while detecting horizon lines with weak 

edges. They addressed computational speed concerns by 

extracting a Region of Interest (ROI) encompassing the 

horizon. Line segments were subsequently extracted from 

the ROI using an adaptive local threshold. The authors of 

this filter conducted experiments to demonstrate that the 

distribution of gradient angles along horizon line segments 

is significantly higher than that of the noise. Therefore, 

they stretched the line segments by a factor of 0.5, filtered 

them based on the stability of their gradient angles, and 

applied a RANSAC algorithm to obtain the horizon line. 

The same Ref. [14] justifies the 0.5 stretching by 

explaining that the horizon line segments will further span 

along the horizon, thereby enhancing their gradient angle 

stability while reducing the stability for noisy segments. 

This filtering approach effectively preserved weak horizon 

edges and outperformed median-scale filters [37, 39]. 

However, its applicability to our case is questionable 

because this algorithm was designed based on the unique 

properties of infrared imagery, which significantly differ 

from RGB images, as detailed in [6, 7]. For example, 

studies in [6, 14, 40] point out that the infrared texture on 

the sea surface is poorer compared to RGB images. This 

characteristic is advantageous for streamlining the filtering 

process since higher texture levels tend to introduce more 

noisy segments. 

Another category of algorithms incorporates regional 

properties such as pixel intensities and texture, which are 

usually fused with edge-based features to improve the 

accuracy and computational load. For instance, 

Jeong et al. [39] process only a region of interest extracted 

through analysis of color distribution difference of 

multiple sub-images. Other methods exploit the color 

properties of the sky to detect it and assume that the 

horizon is the linear boundary right below it [41, 42]. Such 

assumption easily breaks on images depicting coastal 

regions (Fig. 1(b)), where the horizon is the boundary 

separating the coast from the sea rather than the sky class. 

Ettinger et al. [43] and Fefilatyev et al. [21] consider the 

horizon as the line maximizing the intra-class variance of 

the two regions split by that line, which requires expensive 

computations even on low-resolution images. Liang and 

Liang [16] significantly enhanced the speed and accuracy 

of this approach by processing color and texture 

information in two small patches sliding along the 

considered Hough candidate. 

Simple assumptions about the color and texture of 

maritime semantic classes lead to failures even for 

machine learning-based algorithms, such as Support 

Vector Machine (SVM), decision trees [44], and Gaussian 

Mixture Model (GMM) [22, 45]. For instance, 

Kristan et al. [45] train a GMM where the feature vector 

of each class (sea, coast, and sky) is supposed to have a 

Gaussian distribution, which is unsuitable due to the non-

homogeneity of image classes (details in [12]). The 

machine learning paradigm has been investigated for use 

on non-maritime images as well. In these cases, the 

horizon is represented as a non-linear boundary separating 

ground and sky pixels. Some learning-based methods, 

Journal of Image and Graphics, Vol. 12, No. 4, 2024

347



such as those described in [46, 47], process only specific 

parts of the image. These methods focus on image patches 

centered at pixels identified by the Canny edge detection 

algorithm. Classifying all Canny edge pixels without 

applying a proper filter is time consuming, especially if we 

lower the edge detection threshold for extracting weak 

horizon edges. The edge classification approach was 

quickly adopted for maritime images by Jeong et al. [39], 

who demonstrated that using a convolutional neural 

network outperformed traditional classifiers and 

handcrafted features [46, 47]. To reduce computational 

load, they processed the input image with the multi-scale 

median filter from [39], employing two additional scales 

to limit the number of candidate edge pixels and speed-up 

the classification process. While the study in [29] reports 

excellent CNN performance on a wide range of maritime 

images, we found that the excessive use of median filtering 

scales suppresses not only weak horizon edges but also 

those with higher edge magnitudes. Therefore, the horizon 

detector in [29] is limited to horizon lines with prominent 

edges. 

III. MATERIALS AND METHODS 

A. The Proposed Dataset 

An ideal sea horizon dataset should contain carefully 

annotated video clips depicting a comprehensive set of 

maritime conditions. The horizon annotation is necessary 

for the quantitative evaluation of a given algorithm. The 

annotation files provide GT values of the horizon position 

𝑌 and tilt 𝜙, as shown in Fig. 2. 

 

 

Fig. 2. position 𝑌 and tilt 𝜙 of the horizon line (dotted green line); W 

represents the image width. 

There are several maritime datasets such as [21, 45, 48]. 

However, they lack high-resolution images [21, 45], 

horizon line annotations [45], diversity of conditions [21], 

temporal information (i.e., consecutive video frames)  

[45, 48], or low altitude images. The last case, i.e., low 

altitude images, is necessary as it reflects the conditions 

faced by surface marine vehicles [48]. As far as we know, 

the SMD [6] is the largest and most diverse public dataset 

without the previous drawbacks. Student volunteers 2 

annotated the SMD, which was collected using two setups: 

the onshore and onboard setup3. 

 
2 We had to correct several incorrect annotations of the SMD before 

using it in the experiments. 

The SMD lacks important maritime scenes, which have 

the potential to break assumptions of state-of-the-art 

algorithms. To address this gap, we introduce the Tangier 

Maritime Dataset (TMD), which comprises 18 high-

resolution, visible-range videos captured onboard a 

surface vessel navigating the Mediterranean Sea near 

Tangier city, Morocco. We carefully annotated the TMD 

using a custom software that we developed in Python and 

Tkinter [49] (Fig. 3). 

 

 

Fig. 3. A snap of the GUI of our annotation software after annotating 

the horizon line (in red). 

We verified the accuracy of each frame annotation. To 

suit both Python and Matlab users, we share the horizon 

annotations as .npy and .mat files with a description file 

(see Description of the dataset.pdf in the provided link). 

We highlight in Table I major maritime challenges existing 

in the TMD and SMD; our dataset contains nine maritime 

scenarios that do not exist in the SMD. Fig. 4 shows one 

sample frame from each video clip of the proposed TMD. 

Table II shows video properties and statistical details of 

the datasets we used in Section IV. 

TABLE I. DIVERSITY COMPARISON BETWEEN THE TANGIER MARITIME 

DATASET WITH THE SINGAPORE MARITIME DATASET. S, T, AND B MEAN 

THAT THE CONDITION EXISTS IN, THE SMD ONLY, THE TMD ONLY, AND 

BOTH SMD AND TMD, RESPECTIVELY 

Condition Category Condition Description 
Dataset 

Presence 

Sea variables 

1. Small waves B 

2. Scattered sun glints B 

3. Grouped sun glints T 

4. Smooth surface T 

5. Wakes B 

Sky variables 

6. Clear B 

7. Small clouds B 

8. Linear-edged clouds T 

9. Smooth overcast B 

10. Textured overcast T 

11. Visible Sun T 

Horizon Visibility 

12. Medium contrast B 

13. Weak horizon edges T 

14. Partial ship occlusion B 

Classes above the 

horizon 

15. Sky B 

16. Coast T 

17. Sky and coast T 

Time of the day 

18. Sunrise and sunset T 

19. Daytime B 

20. After sunset S 

3 Onshore means that the camera is mounted on a stationary shore 

platform, whereas onboard means that the camera is mounted on a 

offshore non-stationary platform (e.g., buoy or a ship). 

Journal of Image and Graphics, Vol. 12, No. 4, 2024

348



TABLE II. VIDEO PROPERTIES AND STATISTICAL DETAILS DATASETS 

 SMD 
TMD (ours) 

 Onboard Onshore 

Number of 

video files 
11 37 18 

Total frames 2813 17222 6090 

Frames per 

video 
∈ [255, 299] ∈ [206, 995] ∈ [273, 405] 

Frame size 

(height × 

width) 

1920 × 1080 1920 × 1080 1920 × 1080 

FPS 30 30 30 

Channels RGB RGB RGB 

 

 

Fig. 4. One sample frame from each video clip of the TMD. 

B. Algorithm Overview 

We will provide an overview of the proposed algorithm 

in this section before detailing its stages in Sections III.C, 

III.D, III.E, and III.F. We show the overall algorithm 

pipeline in Fig. 5. We note that the main ideas we employed 

in Stages 2 and 3 (Fig. 5) were introduced in the recent 

survey [12] as a promising research direction. The study 

in [12] motivated these ideas after examining the horizon 

line segment properties in 85 RGB images with 

challenging sea clutter. Stage 1 extracts the red channel4 of 

the input image Irgb(x, y) and applies a Line Segment 

Detector (LSD) algorithm to detect the set of line segments 

Sa. The key process is to select from 𝑆𝑎 Candidate Horizon 

Segments (CHSs), which are more likely to correspond to 

the horizon line. We denote CHSs by set 𝑆𝑓. We rely on 

two filtering stages in establishing set 𝑆𝑓  : the Length-

Slope Filter (LSF) and the Region of Interest Filter (ROIF) 

(Fig. 5). The LSF selects from 𝑆𝑎 two sets of segments, 𝑆𝑐 

and 𝑆𝑑, which contain the longest segments with a slope 

less than a threshold α𝑡ℎ. We directly consider segments of 

 
4 We applied the LSD on 9 color channels on a wide range of sea 

images, visually analyzed the results, and concluded that the red channel 

produced the best results. 

set 𝑆𝑐as CHS, i.e., 𝑆𝑐 ⊂ 𝑆𝑓 , because they are all longer 

than segments of set 𝑆𝑑 . The ROIF establishes one tight 

Region of Interest (ROI) that encompasses each segment 

of set 𝑆𝑐. Subsequently, a segment of set 𝑆𝑑 is selected as 

an additional CHS only if encompassed by at least one of 

the defined ROIs. We denote segments satisfying such a 

condition by 𝑆𝑒. We denote the set containing all CHSs by 

𝑆𝑓 , which is equal to 𝑆𝑐 ∪ 𝑆𝑒 . Stage 4 establishes the 

filtered edge map E(x, y) as pixels along each segment of 

set 𝑆𝑓. Finally, Stage 5 infers the horizon using line-fitting 

techniques and temporal information. 

 

 

Fig. 5. Pipeline of our algorithm. 

C. Detection of Line Segments 

Our method detects and evaluates image line segments 

instead of whole lines to create a filtered edge map E(x, y) 

with relevant horizon edges. The use of line segments 

provides numerous benefits. First, we gain more 

robustness against partial occlusions of the horizon (e.g., 

by ships). Such occlusion significantly changes horizon 

properties in occluded regions, making the latest line 

detectors ineffective against simple occlusions, as 

highlighted in [12]. Second, line segments are inherently 

efficient scale-invariant descriptors [50] and can be shared 

with other components of the system for efficient video 

processing. Third, as we will show in Section III.D and 

Section III.E, horizon line segments exhibit simple and 

relevant properties on a wide range of cluttered RGB 

images. Fourth, detecting line segments is an old problem, 

and the current literature offers several fast and robust 

algorithms with sub-pixel accuracy [51, 52]. 

In this paper, we detect line segments using the fast Line 

Segment Detector (LSD) developed by Gioi et al. [51], 

which combines the advantages of its antecedents while 

Journal of Image and Graphics, Vol. 12, No. 4, 2024

349



significantly limiting their inconveniences. We exploit its 

following properties to create a robust and fast horizon 

edge filter: not misled by faulty segments induced by 

highly textured regions thanks to the gradient angle; a 

significant decrease of the false positives and negatives 

related to fixed detection thresholds; adopts a novel 

criterion selecting both long and short segments; satisfying 

linear-time execution. As shown in Fig. 5, we extract the 

red channel and down-sample it by κ ∈ [0, 1]. Applying 

the LSD on the down-sampled red channel Ired reduces the 

computational time and mitigates the negative effect of 

high-frequency components. Throughout this paper, we 

denote an unknown set of segments 𝑢 by 𝑆𝑢, its number of 

elements by 𝑁𝑢, and the v-th segment of set 𝑆𝑢 by 𝑆𝑢,𝑣. 

Thus, we can express a given set 𝑢 as 𝑆𝑢 = {𝑆𝑢,𝑣}𝑣=1:𝑁𝑢. 

Given this notation, we refer to segments output by the 

LSD by 𝑆𝑎  =  {𝑆𝑎,𝑖}𝑖=1:𝑁𝑎 . Fig. 6(b) shows that despite 

the weak edge response of the horizon (Fig. 6(a)), set 𝑆𝑎 

contains enough horizon segments to allow its detection. 

We explain this result by the relative stability of gradient 

angles on the horizon, which allows the LSD [51] to grow 

longer segments on the horizon even when it is blurred. 

We favor such a possibility by setting a small gradient 

magnitude threshold for the LSD5. 

D. Length-Slope Filter (LSF) and Description and 

Motivation 

The LSF (stage 2 in Fig. 5) filters segments of set Sa 

using their slope and length. In our case, the EO sensor is 

mounted on terrestrial moving platforms whose deviation 

is much smaller than aerial-based platforms. Therefore, we 

suppress too tilted line segments, which may lead to 

detecting false sea horizons when they are remarkably long. 

Several factors can induce too-tilted segments, such as the 

vehicle’s wakes depicted by the rear camera or the long 

vertical edges (e.g., antennas) of nearby ships. Therefore, 

the LSF first filters out segments of set Sa according to the 

slope condition of Eq. (1). 

𝑆𝑎,𝑖 ∈ 𝑆𝑏 if |α𝑎,𝑖| ≤ α𝑡ℎ  (1) 

where | . | is the absolute value, α𝑢,𝑣 denotes the slope of 

segment 𝑆𝑢,𝑣, α𝑡ℎ is a scalar threshold, and 𝑆𝑏 is the set of 

segments satisfying the slope condition. Fixing 𝛼𝑡ℎ  to a 

minimal value (e.g., 𝛼𝑡ℎ  =  0.009)  can be tempting. 

However, doing so may eliminate valuable horizon 

segments. This is because cameras on small sea platforms, 

such as buoys and USVs, often experience significant 

deviations due to sea winds and waves, as noted in 

previous studies [6, 21, 45]. We further filter segments of 

set 𝑆𝑏  by removing the relatively shorter segments. 

Concretely, segment 𝑆𝑏,𝑗 will survive the filter only if it is 

among the longest 𝑁𝑐  segments of set 𝑆𝑏 . We formally 

express this condition in Eq. (2). 

𝑆𝑏,𝑗 ∈ 𝑆𝑐 if 𝐿𝑏,𝑗 ≥ 𝐿𝑠𝑟𝑡
𝑏,𝑁𝑐

  (2) 

where 𝑆𝑐  is the set containing survived segments, 𝐿𝑢,𝑣  is 

the length of the v-th segment 𝑆𝑢,𝑣, 𝑁𝑐 is a scalar threshold 

 
5 To be precise, we talk about the lowest hysteresis threshold. 
6 𝑁𝑐 is also the number of elements (segments) in set 𝑆𝑐. 

specifying the number of the longest segments to select6, 

and 𝐿𝑠𝑟𝑡
𝑢,𝑣

 is the length (in pixels) of the v-th-longest 

segment 7  of set 𝑆𝑢 . The underlying assumption of the 

filtering condition of Eq. (2) is that pixels of the horizon 

line will ideally have the same gradient orientation value, 

which allows the LSD to group horizon pixels into the 

lengthiest segments. In contrast, pixels of the most common 

sea clutter (e.g., sea waves, sun glints, wakes) will 

correspond to scattered gradient orientations. In light of 

this, Fig. 6(b) shows that despite a large number of line 

segments on the sea surface, most are shorter than the few 

segments detected on the horizon. Hence, we perform no 

further filtering on segments of set 𝑆𝑐and consider them as 

horizon segments, i.e., 𝑆𝑐 ⊂ 𝑆𝑓 (see the output of Stage 3 

in Fig. 5). Fig. 6(c) shows segments of set 𝑆𝑐 for 𝑁𝑐 = 15. 

We explain in Section E that settling for set 𝑆𝑐as the only 

horizon segments could lead to missing valuable horizon 

segments due to some factors affecting the stability 

gradient orientations of horizon pixels. Therefore, we 

select more segments by taking the next longest 𝑁𝑑 

segments from set 𝑆𝑏 as expressed in Eq. (3). 

𝑆𝑏,𝑗 ∈ 𝑆𝑑  if 𝐿𝑠𝑟𝑡
𝑏,𝑁𝑐

> 𝐿𝑏,𝑗 ≥ 𝐿𝑠𝑟𝑡
𝑏,𝑁𝑑′

  (3) 

where 𝑁𝑑′
= 𝑁𝑐 + 𝑁𝑑  and 𝑁𝑑  is a scalar threshold that 

corresponds to the number of segments in set 𝑆𝑑 (𝑁𝑑 ≫
𝑁𝑐; e.g., 𝑁𝑑 = 𝑁𝑐 × 10). Unlike set 𝑆𝑐, we do not directly 

consider segments in set 𝑆𝑑 as horizon segments because 

their length is relatively close to that of noisy segments, as 

shown in Fig. 6(d). The next stage captures additional 

horizon segments from set 𝑆𝑑 using information extracted 

from set 𝑆𝑐. 

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 6. Intermediate results of line segments filtering: (a) original image; 

(b) segments of set 𝑆𝑎; (c) segments of set 𝑆𝑐; (d) segments of set 𝑆𝑑; (e) 

segments of set 𝑆𝑒; (f) segments of set 𝑆𝑓. 

7 For instance, 𝐿𝑠𝑟𝑡
𝑏,1

 is the length value of the longest segment in set 

𝑆𝑏. 

Journal of Image and Graphics, Vol. 12, No. 4, 2024

350



E. Vectorizing the Length-Slope Filter (LSF) 

We denote Cartesian coordinates of the starting point 

and ending point of the 𝑣 -th segment 𝑆𝑢,𝑣  of set 𝑆𝑢  by 

𝑝𝑠
𝑢,𝑣: (𝑥𝑠

𝑢,𝑣, 𝑦𝑠
𝑢,𝑣) and 𝑝𝑒

𝑢,𝑣: (𝑥𝑒
𝑢,𝑣, 𝑦𝑒

𝑢,𝑣), respectively. Thus, 

we denote 𝑥𝑠
𝑢 , 𝑥𝑒

𝑢 , 𝑦𝑠
𝑢 , and 𝑦𝑒

𝑢  as vectors containing 

coordinates of segments of set 𝑆𝑢: 

 

𝑥𝑠
𝑢 = [𝑥𝑠

𝑢,1, 𝑥𝑠
𝑢,2, … , 𝑥𝑠

𝑢,𝑁𝑢
]
𝑇

∈ ℝ𝑁𝑢×1 

𝑥𝑒
𝑢 = [𝑥𝑒

𝑢,1, 𝑥𝑒
𝑢,2, … , 𝑥𝑒

𝑢,𝑁𝑢
]
𝑇

∈ ℝ𝑁𝑢×1 

𝑦𝑠
𝑢 = [𝑦𝑠

𝑢,1, 𝑦𝑠
𝑢,2, … , 𝑦𝑠

𝑢,𝑁𝑢
]
𝑇

∈ ℝ𝑁𝑢×1 

𝑦𝑒
𝑢 = [𝑦𝑒

𝑢,1, 𝑦𝑒
𝑢,2, … , 𝑦𝑒

𝑢,𝑁𝑢
]
𝑇

∈ ℝ𝑁𝑢×1 

(4) 

  

There are two processes to vectorize in the LSF: the 

slope-based (Eq. (1)) and length-based (Eqs. (2) and (3)) 

filtering conditions. The former starts by computing vector 

𝛼𝑎 according to Eq. (5). 

 

𝛼𝑎  =  [𝛼𝑎,1, 𝛼𝑎,2, … , 𝛼𝑎,𝑁𝑎
]
𝑇

∈ ℝ𝑁𝑎×1 

= (𝑦𝑒
𝑎 − 𝑦𝑠

𝑎) ⊘ (𝑥𝑒
𝑎 − 𝑥𝑠

𝑎) 
(5) 

 

where 𝛼𝑢  is the vector corresponding to the slopes of 

segments in 𝑆𝑢 and ⊘ is the Hadamard (component-wise) 

division. All filtered sets of segments in this paper (𝑆𝑏 , 

𝑆𝑐 , 𝑆𝑑 , 𝑆𝑒 , and 𝑆𝑓)  represent subsets of set 𝑆𝑎 . We 

establish these filtered sets using vectorized indexing. 

Concretely and generally, we use the different filtering 

conditions (e.g., Eqs. (1) and (2)) to establish the vector 

𝐼𝑢′,𝑢 ∈ ℝ𝑁𝑢′
×1. The elements of 𝐼𝑢′,𝑢 are used to index set 

𝑆𝑢, which produces the filtered set 𝑆𝑢′
. We will see in 

SectionIII.E.4 that vector 𝐼𝑢′,𝑢  also allows obtaining 

attributes of a given set 𝑆𝑢′
 from homologous attributes of 

one of its supersets 8  𝑆𝑢 , avoiding thus redundant 

computations. Using discussed indexing, we get segments 

of set 𝑆𝑏  by establishing vector 𝐼𝑏,𝑎 ∈ ℝ𝑁𝑏×1 , whose 

values are indices of slopes α𝑎,𝑖  (Eq. (5)) satisfying the 

condition expressed in Eq. (1). Eventually, we index set 𝑆𝑎 

by vector 𝐼𝑏,𝑎 to produce the desired set 𝑆𝑏. As set 𝑆𝑐 and 

𝑆𝑑 are established based on the length of segments of set 

𝑆𝑏, we first compute a length vector according to Eq. (6). 

 

𝐿𝑏 = [𝐿𝑏,1, 𝐿𝑏,2, … , 𝐿𝑏,𝑁𝑏
]
𝑇

∈ ℝ𝑁𝑏×1 = ((𝑥𝑒
𝑏 − 𝑥𝑠

𝑏)⊙2 −

(𝑦𝑒
𝑏 − 𝑦𝑠

𝑏)⊙2)
⊙

1

2  (6) 

 

where 𝐿𝑢,𝑣 is the length of the v-th segment 𝑆𝑢, 𝑣 and ⊙ is 

the Hadamard (element-wise) power. Then, we establish 

vector 𝐼𝑠𝑟𝑡
𝐿𝑏

∈ ℝ𝑁𝑏×1 whose values are indices that would 

sort values of 𝐿𝑏 from highest to lowest. Thus, vector 𝐼𝑐,𝑏, 

 
8 For instance, we can get the slope vector 𝛼𝑢′

 by indexing 𝛼𝑢 with 

vector 𝐼𝑢′,𝑢 . 

whose elements are indices of set 𝑆𝑏 satisfying Eq. (2), is 

established by slicing the first 𝑁𝑐  elements of vector 

𝐼𝑠𝑟𝑡
𝐿𝑏

  ∈  ℝ𝑁𝑏× 1 . Similarly, we get vector Id,b , whose 

elements are indices of set Sb satisfying Eq. (3), by slicing 

𝐼𝑠𝑟𝑡
𝐿𝑏

 from the (𝑁𝑐   +  1) -th element to the (𝑁𝑐   +  1  +
 𝑁𝑑) -th element. Eventually, we get set Sc  and Sd  by 

indexing set 𝑆𝑏 using vectors 𝐼𝑐,𝑏 and 𝐼𝑑,𝑏, respectively. 

F. Region of Interest Filter (ROIF) 

1) Motivation and assumtion 

We mentioned in Section III.D that taking the longest 

Nc   segments from set 𝑆𝑏  could miss valuable line 

segments. This issue is fundamentally caused by certain 

types of noise, such as the Gaussian noise of low-quality 

sensors and the poor horizon contrast. Such noise disturbs 

the gradient orientation of horizon pixels, thus hindering 

the LSD from growing long segments on the horizon line. 

Fig. 6(d) shows that the low contrast condition led to 

growing short segments on the horizon. The same 

disturbed property, i.e., gradient orientation, provides the 

key to mitigating this issue; we assume that, unlike noisy 

segments, short horizon segments have a much higher 

collinearity with longer horizon segments. Fig. 7(a) 

depicts a synthetic example of this assumption. We show 

the result of using this assumption on the real image in 

Fig. 6(a). Fig. 6(e) shows that additional horizon segments, 

denoted as set 𝑆𝑒 , are successfully captured from 𝑆𝑑 . 

Selecting more horizon segments from 𝑆𝑑  often leads to 

capturing more noisy segments, as shown in Fig. 6(e). 

However, having more horizon segments allows more 

performance, as we will experimentally show in 

Section IV.F. 

2) The filtering condition: Initial formulation 

We aim in this Section to formulate an initial expression 

of the filtering condition based on the collinearity 

assumption we mentioned in Section III.D.1 and illustrated 

in Fig. 7(a). To this end, we define one region of interest, 

denoted as ℛ𝑐,𝑘 , to encompass the k-th segment 𝑆𝑐,𝑘 . 

Subsequently, we consider that the l-th segment 𝑆𝑑,𝑙 is an 

additional horizon segment only if both of its endpoints fall 

in at least one and the same region ℛ𝑐,𝑘. Fig. 7(b) shows 

an example of the filtering regions corresponding to 

Fig. 7(a) in pink. Fig. 7(c) shows in yellow the segments 

of set 𝑆𝑑 satisfying the condition we just mentioned. We 

initially formulate this condition in Eq. (7). 

 

𝑆𝑑,𝑙 ∈ 𝑆𝑒 if ∃ 𝑘 : 

((𝑝𝑠
𝑑,𝑙 ∈ ℛ𝑐,𝑘) ∧ (𝑝𝑒

𝑑,𝑙 ∈ ℛ𝑐,𝑘)) = 1 
(7) 

 

where 𝑆𝑒 is the set grouping additional horizon segments 

selected from set 𝑆𝑑 , 𝑝𝑠
𝑑,𝑙

, and 𝑝𝑒
𝑑,𝑙

 are the starting and 

ending point of segment 𝑆𝑑,𝑙 , respectively. ∈  is the 

inclusion operator, ∧ is the logical and, and 1 is the true 

Boolean. 

 

Journal of Image and Graphics, Vol. 12, No. 4, 2024

351



 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 7. A synthetic example showing the assumption made in the region 

of interest filter and its usage; the green dotted line is the horizon line. 

(a) segments of set 𝑆𝑐 (in red) and 𝑆𝑑 (in blue), (b) the filtering regions 

ℛ𝒸,1  and ℛ𝒸,2  (in pink) encompassing the two segments of set 𝑆𝑐 , (c) 

segments of set 𝑆𝑑 that survived the two filtering regions (in yellow). 

3) Mathematical development of the filtering condition 

Implementing the filtering condition in Eq. (7) requires 

further mathematical development. This breaks down to 

verifying that a given endpoint of segment Sd,l is included 

in a given region ℛ𝑐,𝑘. We execute this task in four steps: 

(1) set the width (thickness) 𝑊ℛ of all regions ℛ𝑐,𝑘 to an 

arbitrarily small value; (2) define function 𝑔𝑐,𝑘(𝑥) as the 

linear curve crossing both endpoints 𝑝𝑠
𝑐,𝑘

 and 𝑝𝑒
𝑐,𝑘

 of 

segment 𝑆𝑐,𝑘; (3) compute ∀ ℎ  ∈  {𝑠,  𝑒} the quantity 𝒹ℎ
𝑘,𝑙

, 

which is the normal distance from point 𝑝ℎ
𝑑,𝑙

 to line 

𝑔𝑐,𝑘(𝑥); (4) consider that 𝑝ℎ
𝑑,𝑙   ∈  ℛ𝑐,𝑘 only if 𝒹ℎ

𝑘,𝑙   <  𝑡𝑟𝑜𝑖, 

where 𝑡𝑟𝑜𝑖 =
𝑊ℛ

2
 is the parameter controlling the width 

𝑊ℛ . We eventually express the developed filtering 

condition equivalent to Eq. (7) in Eq. (8), where quantity 

𝒹ℎ
𝑘,𝑙

 is computed using Eqs. (9) and (10). 

 

𝑆𝑑,𝑙 ∈ 𝑆𝑒 if ∃𝑘: ((𝒹𝑠
𝑘,𝑙 ≤ 𝑡𝑟𝑜𝑖) ∧ (𝒹𝑒

𝑘,𝑙 ≤ 𝑡𝑟𝑜𝑖)) = 1 (8) 

𝒹h
𝑘,𝑙 =

|𝑔𝑐,𝑘(𝑥ℎ
𝑑,𝑙)−𝑦ℎ

𝑑,𝑙|

√1+(𝛼𝑐,𝑘)
2

   ∀ℎ ∈ {𝑠, 𝑒} =
|𝛼𝑐,𝑘×𝑥ℎ

𝑑,𝑙
+𝛽𝑐,𝑘−𝑦ℎ

𝑑,𝑙|

√1+(𝛼𝑐,𝑘)
2

 (9) 

𝛽𝑐,𝑘 = 𝑦𝑠
𝑐,𝑘 − 𝛼𝑐,𝑘 × 𝑥𝑠

𝑐,𝑘 = 𝑦𝑒
𝑐,𝑘 − 𝛼𝑐,𝑘 × 𝑥𝑒

𝑐,𝑘
 (10) 

 

where 𝛼𝑐,𝑘 and 𝛽𝑐,𝑘 correspond to the slope and intercept 

of curve 𝑔𝑐,𝑘(𝑥), respectively. Note that 𝛼𝑐,𝑘  is equal to 

the slope of the k-th segment 𝑆𝑐,𝑘 and can be obtained from 

vector 𝛼𝑎. 

G. Vectorizing the Region of Interest Filter (ROIF) 

We present in this Section the details to vectorize the 

filtering condition we developed in Eq. (8). We define 

matrix 𝒟ℎ  to contain ∀ (𝑘, 𝑙)  the quantities 𝒹ℎ
𝑘,𝑙

. We 

illustrate 𝒟ℎ in Eq. (11) and compute it using Eq. (12). 

 

𝒟ℎ =

[
 
 
 
 𝒹ℎ

1,1 𝒹ℎ
1,2 ⋯ 𝒹ℎ

1,𝑁𝑑

𝒹ℎ
2,1 𝒹ℎ

2,2 ⋯ 𝒹ℎ
2,𝑁𝑑

⋮ ⋮ ⋱ ⋮

𝒹ℎ
𝑁𝑐,1 𝒹ℎ

𝑁𝑐,2 ⋯ 𝒹ℎ
𝑁𝑐,𝑁𝑑

]
 
 
 
 

= (𝒹𝑘,𝑙) ∈ ℝ𝑁𝑐×𝑁𝑑
 (11) 

𝒟ℎ = |𝛼𝑐 × (𝑥ℎ
𝑑)𝑇 + 𝐵𝑐 − 𝑌ℎ

𝑑| ⊘ ((1𝑐 + (𝛼𝑐)⊙2)
⊙

1

2 × (1𝑑)𝑇) (12) 

 

where (. )𝑇  denotes vector transpose, 𝐵𝑐 ∈  ℝ𝑁𝑐 × 𝑁𝑑
 

contains intercept values of all functions of set 𝑔𝑐   =

 {𝑔𝑐,𝑘}𝑘 = 1:𝑁𝑐 , 𝑌ℎ
𝑑  ∈  ℝ𝑁𝑐 × 𝑁𝑑

 contains 𝑦  Cartesian 

coordinates of all endpoints in set 𝑝ℎ
𝑑  =  {𝑝ℎ

𝑑,𝑙}𝑙 = 1:𝑁𝑑, and 

1𝑢  =  [1,  1, … ,  1]𝑇 ∈ ℝ𝑁𝑢×1  is an all-ones vector. We 

provide in what follows the details for getting 𝛼𝑐, 𝐵𝑐, and 

𝑌ℎ
𝑑 . We establish 𝛼𝑐  by indexing vector 𝛼𝑎  using vector 

𝐼𝑏,𝑎, which produces vector 𝛼𝑏. We index the latter using 

vector 𝐼𝑐,𝑏, producing thus desired slopes 𝛼𝑐. We already 

established both vectors 𝐼𝑏,𝑎  and 𝐼𝑐,𝑏  in Section III.D.2. 

We show elements of 𝐵𝑐 in Eq. (13) and compute them by 

calculating vector 𝛽𝑐  according to Eq. (14) and 

broadcasting the result to 𝑁𝑑  columns, as shown in 

Eq. (15). We show elements of matrix 𝑌ℎ
𝑑 in Eq. (16) and 

compute them using Eq. (17). 

𝐵𝑐 = 

[
 
 
 
𝛽𝑐,1 𝛽𝑐,1 ⋯ 𝛽𝑐,1

𝛽𝑐,2 𝛽𝑐,2 ⋯ 𝛽𝑐,2

⋮ ⋮ ⋱ ⋮

𝛽𝑐,𝑁𝑐
𝛽𝑐,𝑁𝑐

⋯ 𝛽𝑐,𝑁𝑐
]
 
 
 

∈ ℝ𝑁𝑐×𝑁𝑑
 (13) 

 

𝛽𝑐 = [𝛽𝑐,1, 𝛽𝑐,2, … , 𝛽𝑐,𝑁𝑐
]

= 𝑦ℎ
𝑐 − (𝛼𝑐 ⊙ 𝑥ℎ

𝑐) ∈ ℝ𝑁𝑐×1 
(14) 

 

𝐵𝑐 = 𝛽𝑐 × (1𝑑)𝑇 (15) 

𝑌ℎ
𝑑 = 

[
 
 
 
 𝑦ℎ

𝑑,1 𝑦ℎ
𝑑,1 ⋯ 𝑦ℎ

𝑑,𝑁𝑑

𝑦ℎ
𝑑,1 𝑦ℎ

𝑑,2 ⋯ 𝑦ℎ
𝑑,𝑁𝑑

⋮ ⋮ ⋱ ⋮

𝑦ℎ
𝑑,1 𝑦ℎ

𝑑,2 ⋯ 𝑦ℎ
𝑑,𝑁𝑑

]
 
 
 
 

∈ ℝ𝑁𝑐×𝑁𝑑
 (16) 

 

𝑌ℎ
𝑑 = 1𝑐 × (𝑦ℎ

𝑑)
𝑇

∈ ℝ𝑁𝑐×𝑁𝑑
 (17) 

 

To exploit the distances in matrix 𝒟ℎ, we define 𝑄ℎ as 

in Eq. (18) and compute it using Eq. (19). 

 

Journal of Image and Graphics, Vol. 12, No. 4, 2024

352



𝑄ℎ =

[
 
 
 
 𝑞ℎ

1,1 𝑞ℎ
1,2 ⋯ 𝑞ℎ

1,𝑁𝑑

𝑞ℎ
2,1 𝑞ℎ

2,2 ⋯ 𝑞ℎ
2,𝑁𝑑

⋮ ⋮ ⋱ ⋮

𝑞ℎ
𝑁𝑐,1 𝑞ℎ

𝑁𝑐,2 ⋯ 𝑞ℎ
𝑁𝑐,𝑁𝑑

]
 
 
 
 

= (𝑞ℎ
𝑘,𝑙) ∈ ℝ𝑁𝑐×𝑁𝑑

 

(18) 

𝑄ℎ = 𝒟ℎ ≤ 𝑇𝑟𝑜𝑖 ∈ ℝ𝑁𝑐×𝑁𝑑
  ∀ℎ ∈ {𝑠, 𝑒} (19) 

 

where 𝑞ℎ
𝑘,𝑙

 is a Boolean scalar whose truth indicates that 

endpoint 𝑝ℎ
𝑑,𝑙 ∈  ℛ𝑐,𝑘  and 𝑇𝑟𝑜𝑖   ∈  ℝ𝑁𝑐 × 𝑁𝑑

 is a matrix 

whose all elements are equal to troi  (Eq. (8)). The 

comparison performed in Eq. (19) is equivalent to that of 

Eq. (8). We further process matrix Qh using Eq. (20). 

 

𝑞𝑑 =∨̌ (𝑄𝑠 ∧̃ 𝑄𝑒) ∈ ℝ1×𝑁𝑑

= [𝑞𝑑,1, 𝑞𝑑,2, … 𝑞𝑑,𝑁𝑑
] 

 

(20) 

where ∨̌ (. )  operator computes the logical or along the 

vertical axis of matrix9 Qh, ∧̃ computes the element-wise 

logical and, 𝑞𝑑,𝑙 is a logical Boolean whose truth indicates 

that segment 𝑆𝑑,𝑙 is encompassed by at least one region of 

interest ℛ𝑐,𝑘. We note that the operator used in Eq. (20) 

reflects the operator in Eqs. (7) and (8), whereas the 

vertical or operator in Eq. (20) reflects the ∃ operator in 

Eqs. (7) and (8). Thus, Eq. (8), equivalent to Eq. (7), 

becomes equivalent to Eq. (21). Subsequently, we create 

vector 𝐼𝑒,𝑑 to contain indices where elements of vector 𝑞𝑑 

(Eq. (20)) are true Booleans. Finally, we establish set 𝑆𝑒 

by indexing 𝑆𝑑  using 𝐼𝑒,𝑑 . We compute the final filtered 

set of segments output by the ROIF (Stage 3 in Fig. 5) 

using Eq. (22). Fig. 6(b) and (f) show an example of the 

original set of segments Sa and the corresponding filtered 

set 𝑆𝑓, respectively. 

𝑆𝑑,𝑙 ∈ 𝑆𝑒 𝑖𝑓 𝑞𝑑,𝑙 = 𝟣 (21) 

𝑆𝑓 = 𝑆𝑐 ∪ 𝑆𝑒 (22) 

H. Segments to Edge Pixels (STEP) 

To get filtered edge points, we must find the coordinates 

of all pixels along each segment in set 𝑆𝑓. The number of 

pixels to locate for each segment 𝑆𝑓,𝑛 is equal to its length 

𝐿𝑓,𝑛. Thus, we represent the coordinates of pixels along 

segment 𝑆𝑓,𝑛  as in Eq. (23) and compute them using 

Eq. (24). 

𝑥𝑛 = [𝑥𝑛,1, 𝑥𝑛,2, … 𝑥𝑛,𝐿𝑓,𝑛
]
𝑇

∈ ℝ𝐿𝑓,𝑛×1  

𝑦𝑛 = [𝑦𝑛,1, 𝑦𝑛,2, … 𝑦𝑛,𝐿𝑓,𝑛
]
𝑇

∈ ℝ𝐿𝑓,𝑛×1 

 

 

 

(23)

 

 
9 In other words, ∨̌ performs the logical or operation on elements of 

each column 

𝑥𝑛 =
𝑥𝑒

𝑓,𝑛
− 𝑥𝑠

𝑓,𝑛

𝐿𝑓,𝑛 − 1
⊙ 𝑧𝑛 + 𝑥𝑠

𝑓,𝑛
 

𝑦𝑛 =
𝑦𝑒

𝑓,𝑛
− 𝑦𝑠

𝑓,𝑛

𝐿𝑓,𝑛 − 1
⊙ 𝑧𝑛 + 𝑦𝑠

𝑓,𝑛
 

(24) 

 

where 𝑧𝑛  =  [0,  1,  2,   … ,  𝐿𝑓, 𝑛  −  1]𝑇 ∈ ℝ𝐿𝑓,𝑛×1 . 

Because detected segments do not have the same length, 

we cannot further vectorize Eq. (24) as we did with 

previous equations. Therefore, we iterate over all segments 

of 𝑆𝑓. At each iteration, we compute Eq. (24) and append 

the result as expressed in Eq. (25). 

 

𝑥𝑜𝑢𝑡 ≔ 𝑥𝑜𝑢𝑡⌢𝑥𝑛; ∀𝑛 ∈ {1, 2, … , 𝑁𝑓 − 1,𝑁𝑓} 

𝑦𝑜𝑢𝑡 ≔ 𝑦𝑜𝑢𝑡⌢𝑦𝑛; ∀𝑛 ∈ {1, 2, … , 𝑁𝑓 − 1,𝑁𝑓} 
(25) 

 

where ≔ represents value assignment, ⌢ denotes vector 

appending, and 𝑥𝑜𝑢𝑡  and 𝑦𝑜𝑢𝑡  are vectors that would 

contain Cartesian coordinates of pixels along all segments 

in set 𝑆𝑓. Both 𝑥𝑜𝑢𝑡 and 𝑦𝑜𝑢𝑡 are initialized to an empty 

vector at the first iteration. Although this process is not 

fully vectorized, the effect on real-time performance is 

insignificant as the portion of survived segments in 𝑆𝑓 is 

tiny compared to other sets. We will see in Section IV that 

the execution speed achieved is satisfying. 

Next, we use vectors 𝑥𝑜𝑢𝑡 and 𝑦𝑜𝑢𝑡 to establish an edge 

map image 𝐸′(𝑥, 𝑦) (Stage 4 in Fig. 5) corresponding to 

the down-sampled image 𝐼′𝑟𝑒𝑑. Fitting the horizon line 

on E′  works well but establishing horizon parameters 

corresponding to the original frame size requires scaling 

up the horizon position 𝑌′  corresponding to 𝐸′:  𝑌  =

 𝑌′ ×
1

𝜅
. This affects the detected line because we amplify 

the error corresponding to 𝑌′ by 
1

𝜅
. Scaling up parameters 

of the horizon is necessary not only for comparison with 

Ground Truth (GT) position 𝑌𝐺𝑇 but also for subsequent 

applications. For instance, the computation of 

transformation matrices involved in stabilizing original 

video frames is directly related to horizon parameters 

{𝑌,  𝜙} [9, 20, 21]. Therefore, we infer the horizon line by 

relocating edge points of 𝐸′ on an edge map 𝐸 (Stage 4 

in Fig. 5) with the original frame size. Thus, we 

significantly mitigate the amplified error and leverage 

image downsizing. We compute 𝐸 by upsampling E′ to 

the original frame size using a bilinear interpolation 

method, which outputs grayscale image E′′ with thicker 

edges. We shrink the thickness of the latter to one pixel 

using the non-maximum suppression method, followed by 

a single-thresholding of 𝐸′′  with 𝐸𝑡ℎ  =  254 . This 

outputs image 𝐸 , which contains relocated edge points. 

Fig. 8 shows the edge map 𝐸 corresponding to challenging 

conditions, such as weak horizon edges, coastal 

boundaries, and highly textured regions induced by sea 

waves, glints, and clouds. 
 

Journal of Image and Graphics, Vol. 12, No. 4, 2024

353



   

(a) 

   

(b) 

   

(c) 

Fig. 8. Illustration of the output edge map 𝐸. (a) original images, (b) all 

detected line segments, (c) the output edge map E. For visualization 

convenience, the binary edges are dilated and inverted, and the horizon 

edges are colored in green. 

The large number of segments 𝑆𝑎 in Fig. 8(b) indicates 

the high amount of noise. Fig. 8(c) demonstrates that the 

high image clutter is significantly suppressed while 

favoring horizon edges to form the most prominent line. 

Edges of the horizon line corresponding to the right image 

of Fig. 8(a) are dramatically affected by the smooth color 

transition between the sea and sky. However, the 

corresponding edge map in Fig. 8(c) demonstrates that the 

filtering stages kept enough horizon edges for accurate 

detection. This will be further demonstrated qualitatively 

and quantitatively in Section IV. 

I. Line Inference 

We infer the horizon line in three major steps (Stage 5 

in Fig. 5). The Outlier Handler Module (OHM) verifies 

that the global maximum of the accumulated Hough space, 

denoted as {𝑌ℋ ,  𝜙ℋ}, is not an outlier. We define outlier 

lines as false-positive horizons persisting over a very brief 

period. This issue occurs on other algorithms we tested in 

this paper as well. In our case, outlier lines appear 

primarily due to noisy segments of the sea region that 

occasionally line up to survive the ROIF. The OHM 

considers {𝑌ℋ ,  𝜙ℋ} as an outlier line if the condition in 

Eq. (26) is satisfied. 

(|𝑌ℋ − 𝑌𝑝𝑟𝑣| > 𝛥𝑌𝑡ℎ)

∨ (|𝜙ℋ − 𝜙𝑝𝑟𝑣| > 𝛥𝜙𝑡ℎ)

= 𝟣 

(26) 

where ∨ is the logical or, {𝑌𝑝𝑟𝑣,  𝜙𝑝𝑟𝑣} are parameters of 

the most recent horizon line, and {𝛥 𝑌𝑡ℎ,  𝛥 𝜙𝑡ℎ} are scalar 

thresholds. If {𝑌ℋ ,  𝜙ℋ} is not an outlier, we consider it a 

coarse estimation of the horizon line: {𝑌ℋ ,  𝜙ℋ}  =
 {𝑌𝑐𝑟𝑠,  𝜙𝑐𝑟𝑠} . Otherwise, if {𝑌ℋ ,  𝜙ℋ} is an outlier, the 

OHM will consider that the coarse horizon line 

{𝑌𝑐𝑟𝑠,  𝜙𝑐𝑟𝑠} is one of the longest M Hough lines satisfying 

Eq. (26). If multiple lines satisfy such a condition, we 

select the line corresponding to the minimum value 

|𝑌ℋ   −  𝑌𝑝𝑟𝑣|. To refine the coarse line {𝑌𝑐𝑟𝑠,  𝜙𝑐𝑟𝑠}, we 

follow Jeong et al. [39] by applying the least-squares 

fitting algorithm on inlier edge points, i.e., edge points that 

voted on {𝑌𝑐𝑟𝑠,  𝜙𝑐𝑟𝑠}. 

Ettinger et al. [43] pointed out that using previous 

detections of the horizon line to infer the horizon may get 

the algorithm into a failure state, concretely. If the 

algorithm detects a faulty line, it will incorrectly update the 

parameters of the most recent horizon line {𝑌𝑝𝑟𝑣,  𝜙𝑝𝑟𝑣}. 
Therefore, the outlier condition in Eq. (26) becomes 

useless if the difference between that faulty line and the 

true horizon exceeds a certain threshold. When this issue 

occurs, the faulty horizon is unlikely to be persistently 

detected on subsequent frames, either due to the changing 

sea noise or the linear property of the horizon that would 

compete with that faulty line. Thus, the outlier condition 

triggers on a significant number of consecutive frames. 

The OHM counts this number, denoted as Nouts , and 

compares it to a threshold 𝑁𝑜𝑢𝑡𝑠
𝑡ℎ . If 𝑁𝑜𝑢𝑡𝑠  >  𝑁𝑜𝑢𝑡𝑠

𝑡ℎ , the 

OHM considers that the algorithm is in a failure state. To 

get the algorithm out of this state, the OHM avoids finding 

a substitute line and directly refines the longest Hough line 

{𝑌ℋ ,  𝜙ℋ}  using the least-squares fitting. This process 

quickly converges to correctly updating the parameters 

{𝑌𝑝𝑟𝑣,  𝜙𝑝𝑟𝑣}. The reader may question the usefulness of 

the OHM as it seems to create the same problem that it 

solves. From one hand, the OHM is supposed to correct 

outlier horizons, which are fundamentally incorrect 

detections. On the one hand, the OHM may get the 

algorithm into a failure state that may lead to incorrect 

detections again. The OHM is effective because the 

incorrect detections caused by failure states are negligible 

compared to the incorrect detections corresponding to 

outlier lines. We quantitatively justify the effectiveness of 

the OHM in Section IV.F by ablating it from the overall 

algorithm. 

IV. RESULTS AND DISCUSSION 

A. Hardware and Software 

We compare our algorithm with an extensive set of eight 

state-of-the-art algorithms: [14–17, 29, 30, 37, 39]. The 

original authors of [16, 37] provided their MATLAB 

implementation. We implemented all the remaining 

algorithms [14, 15, 17, 29, 30, 39], including ours, on 

Python 3.8, utilizing the packages Numpy, OpenCV, and 

TensorFlow [53–55]. Since the eager execution of 

TensorFlow is slow and inefficient, we built the CNN 

model of [29] as a graph instance, which allows faster and 

optimal computations using the graph execution mode. We 

ran each compared algorithm, one at a time, on a computer 

with 16GB of RAM and one Intel® Core™ i5-6300U CPU 

@ 2.40GHz, ensuring a fair comparison by halting all tasks 

that may use the computer’s CPU during each algorithm’s 

execution. 

We describe in what follows important considerations 

regarding the algorithms we implemented. Since  

Dong et al. [14] operates on infrared images and the 

authors do not specify the number of iterations used in 

their RANSAC line fitting, we used a grayscale input 

image computed by averaging the RGB channels and ran 

the RANSAC algorithm on all possible pairs of segment 

endpoints. We motivate the last modification by the 

limited number of possible pairs, which results from the 

Journal of Image and Graphics, Vol. 12, No. 4, 2024

354



small number of survived segments and the constraint of 

the pairs to belong to the same line segment. In the same 

context of fitting the horizon line, [17] use Dynamic 

Programming (DP) to infer the non-linear horizon of wild 

mountainous scenes. Since the horizon in our case is a 

straight line, we substituted the DP inference using the 

most accurate horizon line fitting [29, 39]. While the 

algorithm proposed in [17] was not originally intended for 

maritime images, we included it in our experimental 

comparison due to its reported capability to extract weak 

horizon edges from scenes captured in various wild 

environments. 

B. Parameters of Our Algorithm 

For generalization purposes, we did not perform any 

quantitative optimization study to fix the parameters of our 

algorithm. Instead, we selected their values based on our 

knowledge of their effect and our visual analysis of 

intermediate results (i.e., the output of different stages and 

modules) on a representative set of 85 images. All the 

quantitative and qualitative results reported in this paper 

use the exact values in Table III. 

TABLE III. VALUES OF OUR METHOD’S PARAMETERS 

Stages Parameter values 

Stage 1 

Down-sampling factor: 𝜅 =  0.6; 

LSD parameters: Sobel kernel = 3 × 3, Canny’s 

upper and lower thresholds: 25 and 45. 

Stage 2 𝛼𝑡ℎ  =  0.57,  𝑁𝑐   =  15;  𝑁𝑑   =  200 

Stage 3 𝑡𝑟𝑜𝑖 = 2 pixels 

Stage 4 No parameters 

Stage 5 

Hough space 𝐻(𝜌,  𝜃):  Δ 𝜌  =  2 pixels, Δ𝜃  =  1∘; 

OHM: Δ𝑌𝑡ℎ = 2.6 % × Image Height =  50 

pixels, 

Δ 𝜙𝑡ℎ  =  2∘, 𝑀 = 2, 𝑁𝑜𝑢𝑡𝑠
𝑡ℎ   =  5. 

C. Comparison Metrics 

Following the sea horizon literature [6, 12, 16, 29, 39], 

we parameterize the detected horizon line using the 

position 𝑌 and tilt 𝜙 we previously exposed in Fig. 2. We 

quantify the detection error by computing the positional 

error and angular error, as in Eqs. (27) and (28): 

𝑌𝜖 = |𝑌 − 𝑌𝐺𝑇| (27) 

𝜙𝜖 = |𝜙 − 𝜙𝐺𝑇| (28) 

where the pairs {𝑌𝐺𝑇,  𝜙𝐺𝑇}  and {𝑌,  𝜙}  correspond to 

parameters of the GT (Ground Truth) and the detected 

horizon, respectively. Additionally, we introduce a new 

composite metric 𝐶 �̃�, which we justify in Section IV.D, 

for measuring the performance of horizon detection 

algorithms, merging both 𝑌𝜖  and 𝜙𝜖  into one value, as 

shown in Eq. (29). 

𝐶 ϵ̃ = 100 × √𝑊𝑌 × 𝑌ϵ̃ + 𝑊ϕ × ϕϵ̃ (29) 

where 𝑌�̃� ∈ [0,1]  and 𝜙�̃� ∈ [0,1]  correspond to 

normalization of errors 𝑌𝜖  and 𝜙𝜖 , respectively. WY  and 

Wϕ represent weighting values summing up to 1, ensuring 

that the quantity 𝐶 �̃�  is in the range [0, 100%] (worst at 

100%, best at 0%). We assume that positional and angular 

errors are equally important and set 𝑊𝑌  =  𝑊𝜙  =  0.5. 

Eventually, we use these three errors (i.e., 𝑌𝜖, 𝜙𝜖, and 𝐶 �̃�) 

computed for each dataset to extract the following six 

statistical metrics: 𝜇, 𝜎, Q25, Q50, Q75, and Q95, where 

𝜇 and 𝜎 correspond to the mean and standard deviation, 

respectively, and QP is the P-th percentile. To quantify the 

real-time performance, we measure the mean processing 

time of all algorithms on each dataset. We also report the 

visual results of each algorithm on six representative 

maritime images. 

D. Justification of the New Composite Metric 

Researchers have been using the positional error 𝑌𝜖 and 

angular error 𝜙𝜖  as comparison metrics due to their 

interpretability. Sometimes, one of the errors (e.g., the 

angular error 𝜙𝜖 ) may be very low. However, its 

corresponding positional error may be high, as seen in 

Fig. 9, where the strong faulty line is in parallel with the 

true horizon line. Therefore, to enhance the experimental 

comparison, we introduce a third metric that we derived 

from the semantic line detection literature [56]. In this 

context, Zhao et al. [56] explained the drawbacks of 

various metrics and concluded by introducing a new metric 

that merges both angular and positional error, as shown in 

Eq. (30). 

𝑆 = (𝑆θ × 𝑆𝑑)2
 

(30)
 

where 𝑆θ and 𝑆𝑑 measure the normalized angular error and 

positional error. Thus, it is tempting to derive a similar 

metric from Eq. (30), as in Eq. (31). 

𝑆′ = (𝑌�̃� × 𝜙�̃�)
2

 (31) 

where the notation (. )̃ normalizes the value into the range 

[0, 1]. 

 

 

Fig. 9. An incorrect detection (in red) by a state-of-the-art algorithm 

caused by the strong faulty line induced by the ship edges. This line being 

almost in parallel with the true horizon (in dotted green) significantly 

reduces the angular error 𝜙𝜖, but the corresponding positional error 𝑌𝜖 is 

high. 

After applying the metric in Eq. (31) on state-of-the-art 

algorithms, we observed a significant bias of the statistical 

errors towards zero, falsely indicating a good performance 

even when a given algorithm performs poorly. This bias is 

due to the multiplication operation in Eq. (31), which 

Journal of Image and Graphics, Vol. 12, No. 4, 2024

355



reduces high errors if one of the multiplied terms is low10. 

Therefore, we devised the composite error 𝐶 ϵ̃ in Eq. (29), 

which avoids the bias caused by multiplying errors. This is 

achieved by accumulating the errors through a weighted 

sum. Additionally, square rooting makes the metric much 

more sensitive and discriminative as the composite error 

approaches zero. 

E. State-of-the-Art Comparison: Result and Discussion 

Tables IV to XII quantitatively compare the statistical 

errors of all nine algorithms on the SMD-onboard (Tables 

IV, V, and VI), SMD-onshore (Tables VII, VIII, and IX), 

and the TMD (Tables X, XI, and XII). Fig. 10 

quantitatively compares all algorithms on six challenging 

images. The statistical errors obtained for the SMD-

Onboard and SMD-Onshore show that our algorithm and 

Jeong et al.’s method [39] perform significantly better. On 

the SMD-Onboard dataset (Tables IV, V, and VI), our 

method performed the best in 12 statistical metrics (out of 

18), while Jeong et al.’s method [39] scored the best on the 

remaining six metrics. We expected this particular result 

for [39] because its multi-scale median filter is highly 

effective against various sea clutter when the horizon has 

a prominent length and edges, which is the case in most 

SMD-onboard videos. 

Compared to the SMD-Onboard dataset, the statistical 

results we obtained for the SMD-Onshore (Tables VII, 

VIII, and IX) show a performance decline for [15, 16, 29, 

39] and our method. Our decline is likely because the 

horizon in SMD-onshore videos is relatively shorter due to 

ship occlusion and mixed with additional clutter, such as 

linear wakes and ships’ contours. This interpretation may 

apply, at least to some extent, to the other methods. 

Nevertheless, these results in Tables VII, VIII, and IX, 

show that our method performs remarkably better in 17 

(out of 18) statistical metrics while scoring a very 

competitive value on the remaining metric σ in Table VII. 

Tables X, XI, and XII, show that our algorithm achieves 

the lowest errors on all the 18 statistical metrics when 

tested on the TMD, and the error gap between our method 

and all eight state-of-the-art algorithms is remarkably high. 

As the TMD introduces multiple new conditions, including 

image scenes with low horizon contrast, the last result is a 

strong indicator of the significant robustness of our method 

against weak and degraded horizon edges. While 

Dong et al. [14] report high robustness against infrared 

weak horizon edges, Tables X, XI, and XII, and Fig. 10(d) 

provide quantitative and qualitative evidence for the 

unsuitability of their infrared filter for RGB images. The 

quantitative errors corresponding to SMD videos 

(Tables IV, V, VI, VII, VIII, and IX) provide further 

evidence of the significance of customizing the algorithm 

according to the nature of the scene and image. 

Specifically, the top two performing algorithms for a 

particular dataset, excluding our own, have been 

specifically designed for maritime visible-range images 

[15, 29, 37, 39]. In contrast, the least performing methods 

have been originally designed for different types of images 

(e.g., infrared images, wild images) [14, 17] or use general 

image processing techniques [17, 30].

 

 
(a) Original images 

 
(b) Results on samples of Fig. 10(a) (Ours) 

 
(c) Results on samples of Fig. 10(a) (Li et al. [15]) 

 
(d) Results on samples of Fig. 10(a) (Dong et al. [14]) 

 
(e) Results on samples of Fig. 10(a) (Liang and Liang [16]) 

 
10 We emphasize that our work does not suggest a bias in the experiments 

of Zhao et al. [56] since their method for computing positional and 

angular errors differs from ours. 

Journal of Image and Graphics, Vol. 12, No. 4, 2024

356



 
(f) Results on samples of Fig. 10(a) (Jeong et al. [39]) 

 
(g) Results on samples of Fig. 10(a) (Jeong et al. [29]) 

 
(h) Results on samples of Fig. 10(a) (Prasad et al. [37]) 

 
(i) Results on samples of Fig. 10(a) (Gershikov et al. [30]) 

 
(j) Results on samples of Fig. 10(a) (Lie et al. [17]) 

Fig. 10. Qualitative comparison on six image samples.

In Fig. 10, Figs. 10(a) to (j) visually compare the 

algorithms’ output on six image samples. By comparing 

the first three of images (starting from the left image) in 

Fig. 10(b) with state-of-the-art, we can observe that our 

algorithm is the only one that reliably and accurately works 

under very weak horizon edges. Moreover, the last three 

images of Fig. 10(b) shows accurate results in other 

challenging conditions, including strong and connected                       

coastal boundaries, sun glints, textured clouds, and ships’ 

contours. Although the horizon in coastal images may be a 

prominent strong line (e.g., the 5th image in Fig. 10(a)), 

several state-of-the-art algorithms failed, which is in some 

cases due to the strong sky-coast edges. We observed that 

such edges do not affect our algorithm due to the instability 

of their gradient angles, which constrains the length of 

corresponding line segments and increases their 

suppression rate at Stage 2 (Fig. 5). 

The fastest algorithm is [30], while the slowest is [37]. 

From the perspective of computational speed, our 

algorithm is not the fastest as it takes, on average, 1.78 

times longer than the fastest algorithm. However, on the 

onboard and onshore datasets, we maintain a very 

competitive speed with the next fastest four methods [14, 

16, 17, 39]. Additionally, our algorithm is approximately 

four times faster than the fastest algorithm among [15, 29, 

37]. On the TMD, our algorithm is the fastest after [30]. 

This difference in speed compared to the other two datasets 

is due to the lower contrast of images, which means the 

LSD grows fewer line segments, hence less processing 

time. It is remarkable that [14], which also grows and 

filters line segments, has a more stable execution time than 

our method. This stability is likely because [14] uses an 

adaptive threshold that stabilizes the number of grown 

segments while we use fixed low thresholds on all images 

to ensure the extraction of weak horizon edges. The 

computational speed is an essential factor, but the real-time 

performance also involves error performance as well. 

While our method is 1.78 slower than the fastest 

method [30], the latter has for instance, a mean positional 

error 𝑌𝜖 that’s at least 21 times higher than ours. While we 

maintain a highly competitive speed against the most 

accurate methods, our error performance surpasses both 

the fastest [14, 16, 17, 30, 39] and the slowest algorithms 

[15, 29, 37] with a significant margin. 

TABLE IV. POSITIONAL ERROR STATISTICS (POSITIONAL ERROR Yϵ
 IN 

PIXELS) FOR THE SMD-ONBOARD 

Algorithm 𝝁 𝝈 Q25 Q50 Q95 Q95 

Ours 1.95 1.59 0.84 1.71 2.71 4.57 

Li [15] 34.64 73.96 14.35 22.72 30.84 71.49 

Dong [14] 116.95 689.88 3.78 17.87 5.34 292.55 

Liang [16] 17.77 46.93 0.90 2.13 7.65 93.43 

Jeong [39] 3.84 33.09 0.68 1.43 2.44 4.86 

Jeong [29] 13.71 214.61 0.78 1.63 2.89 10.13 

Prasad [37] 210.50 212.81 2.51 198.68 386.00 564.98 

Gershikov [30] 301.44 145.02 186.67 334.50 410.28 510.67 

Lie [17] 210.67 129.62 115.89 214.81 297.31 429.40 

TABLE V. ANGULAR ERROR STATISTICS (ANGULAR ERROR Φ
ϵ
 IN 

DEGREES) FOR THE SMD-ONBOARD 

Algorithm 𝝁 𝝈 Q25 Q50 Q95 Q95 

Ours 0.16 0.13 0.060 0.13 0.23 0.41 

Li [15] 0.85 1.46 0.37 0.64 1.0 1.70 

Dong [14] 15.78 21.93 0.34 5.43 21.43 65.29 

Liang [16] 4.71 3.38 2.53 4.27 6.28 10.09 

Jeong [39] 0.26 1.61 0.065 0.144 0.25 0.50 

Jeong [29] 0.58 4.14 0.066 0.147 0.26 0.66 

Prasad [37] 2.65 2.40 0.84 2.00 3.74 7.50 

Gershikov [30] 6.55 6.85 1.60 3.84 9.17 22.10 

Lie [17] 2.26 1.95 0.71 1.94 3.26 6.00 

 

Journal of Image and Graphics, Vol. 12, No. 4, 2024

357



TABLE VI. COMPOSITE ERROR STATISTICS (NORMALIZED COMPOSITE 

ERROR Cϵ
 IN %) FOR THE SMD-ONBOARD 

Algorithm 𝝁 𝝈 Q25 Q50 Q95 Q95 

Ours 3.51 1.11 2.75 3.48 4.21 5.36 

Li [15] 11.83 6.64 8.9 11.1 12.99 19.63 

Dong [14] 21.62 22.64 5.48 16.56 29.32 54.27 

Liang [16] 13.2 6.25 9.33 12.19 14.98 23.76 

Jeong [39] 3.75 3.31 2.62 3.35 4.14 5.66 

Jeong [29] 4.52 7.69 2.72 3.48 4.42 10.68 

Prasad [37] 26.85 18.09 8.12 31.32 43.21 52.3 

Gershikov [30] 38.47 9.88 33.18 41.0 45.04 51.39 

Lie [17] 29.86 12.12 24.28 32.75 38.21 45.45 

TABLE VII. POSITIONAL ERROR STATISTICS (POSITIONAL ERROR Yϵ
 IN 

PIXELS) FOR THE SMD-ONSHORE 

Algorithm 𝝁 𝝈 Q25 Q50 Q95 Q95 

Ours 5.66 11.20 1.20 2.56 5.15 22.62 

Li [15] 50.49 97.13 7.24 17.73 48.14 246.26 

Dong [14] 160.23 791.70 17.80 40.48 99.44 481.16 

Liang [16] 31.50 49.19 2.50 17.65 33.13 151.97 

Jeong [39] 7.86 12.56 1.68 3.61 8.60 29.62 

Jeong [29] 18.20 33.12 2.52 9.03 19.96 67.11 

Prasad [37] 12.83 37.99 1.93 3.60 7.49 43.18 

Gershikov [30] 119.03 93.29 30.62 99.83 185.74 284.41 

Lie [17] 199.23  147.25  101.05  186.07  275.21  484.29 

TABLE VIII. ANGULAR ERROR STATISTICS (ANGULAR ERROR Φ
ϵ
 IN 

DEGREES) FOR THE SMD-ONSHORE 

Algorithm 𝝁 𝝈 Q25 Q50 Q95 Q95 

Ours 0.22 0.25 0.05 0.14 0.33 0.66 

Li [15] 1.07 2.23 0.17 0.39 1.13 4.26 

Dong [14] 27.49 25.19 5.70 20.29 52.34 78.27 

Liang [16] 3.40 4.13 0.48 1.72 4.85 12.81 

Jeong [39] 0.28 0.22 0.12 0.24 0.37 0.72 

Jeong [29] 1.16 2.07 0.12 0.44 1.62 3.814 

Prasad [37] 2.16 2.29 0.30 1.86 3.75 6.33 

Gershikov [30] 5.09 5.37 1.19 2.89 7.20 17.20 

Lie [17] 1.30 1.86 0.16 0.41 1.76 5.21 

TABLE IX. COMPOSITE ERROR STATISTICS (NORMALIZED COMPOSITE 

ERROR Cϵ
 IN %) FOR THE SMD-ONSHORE 

Algorithm 𝝁 𝝈 Q25 Q50 Q95 Q95 

Ours 4.91 2.9 3.01 4.05 5.7 10.64 

Li [15] 13.06 9.65 6.67 10.36 16.41 35.81 

Dong [14] 31.65 22.44 17.2 26.7 41.72 65.03 

Liang [16] 13.04 8.4 5.28 13.66 16.68 31.48 

Jeong [39] 5.8 3.25 3.61 4.69 7.32 12.1 

Jeong [29] 8.99 6.0 4.22 8.36 11.96 19.72 

Prasad [37] 9.34 5.67 5.41 8.42 11.59 18.37 

Gershikov [30] 24.25 10.22 14.3 25.29 32.58 38.9 

Lie [17] 28.25 12.67 21.91 29.99 36.41 47.91 

TABLE X. POSITIONAL ERROR STATISTICS (POSITIONAL ERROR Yϵ
 IN 

PIXELS) FOR THE TMD 

Algorithm 𝝁 𝝈 Q25 Q50 Q95 Q95 

Ours 4.35 3.70 2.16 3.72 5.70 9.21 

Li [15] 50.32 81.28 8.83 19.21 52.85 245.61 

Dong [14] 195.01 946.18 25.23 71.40 170.32 418.30 

Liang [16] 123.57 189.78 10.31 55.66 143.41 749.97 

Jeong [39] 150.09 3785.0 2.67 5.47 28.03 225.98 

Jeong [29] 71.83 136.67 3.20 30.14 67.32 400.95 

Prasad [37] 99.62 143.73 3.54 8.00 197.49 396.20 

Gershikov [30] 148.15 100.10 63.37 143.38 205.94 331.05 

Lie [17] 118.43 108.17 16.46 95.17 197.25 313.10 

 

TABLE XI. ANGULAR ERROR STATISTICS (ANGULAR ERROR Φ
ϵ
 IN 

DEGREES) FOR THE TMD 

Algorithm 𝝁 𝝈 Q25 Q50 Q95 Q95 

Ours 0.23 0.26 0.07 0.15 0.32 0.63 

Li [15] 1.63 2.66 0.37 0.80 1.47 7.20 

Dong [14] 18.07 21.69 3.06 9.09 22.23 67.27 

Liang [16] 4.94 4.87 1.71 3.74 6.66 13.26 

Jeong [39] 1.81 7.42 0.12 0.33 0.66 6.90 

Jeong [29] 3.62 8.46 0.11 0.40 3.44 18.70 

Prasad [37] 4.89 4.37 1.72 3.78 7.01 13.19 

Gershikov [30] 7.14 5.90 2.37 5.78 10.26 19.61 

Lie [17] 2.15 2.53 0.36 1.23 3.00 7.68 

TABLE XII. COMPOSITE ERROR STATISTICS (NORMALIZED COMPOSITE 

ERROR Cϵ
 IN %) FOR THE TMD 

Algorithm 𝝁 𝝈 Q25 Q50 Q95 Q95 

Ours 4.84 1.81 3.6 4.65 5.84 7.64 

Li [15] 13.77 9.42 7.56 10.61 17.19 36.25 

Dong [14] 30.16 22.25 18.12 26.44 38.38 59.37 

Liang [16] 22.82 13.73 12.79 19.56 29.54 59.26 

Jeong [39] 10.9 25.03 4.05 6.01 12.35 34.69 

Jeong [29] 15.53 13.6 4.41 12.75 19.31 44.21 

Prasad [37] 20.47 13.36 10.21 15.02 32.64 44.72 

Gershikov [30] 28.52 8.42 22.65 28.95 33.31 44.04 

Lie [17] 21.32 12.4 9.93 22.25 32.1 39.49 

 

Table XIII shows the execution time of all methods on 

each dataset. 

TABLE XIII. MEAN COMPUTATIONAL TIME PER FRAME ON THE SMD 

(ONBOARD AND ONSHORE) AND TMD (IN MILLISECONDS) 

Algorithm SMD-Onboard SMD-Onshore TMD 

Ours 107.6 101.4 70.3 

Li [15] 486.5 426.0 418.8 

Dong [14] 87.6 87.5 88.5 

Liang [16] 73.7 79.4 74.6 

Jeong [39] 90.6 95.7 85.4 

Jeong [29] 1000.2 685.5 748.8 

Prasad [37] 1979.4 1946.1 1932.6 

Gershikov [30] 50.6 53.0 52.7 

Lie [17] 141.8 101.4 111.5 

 

Table XIV indicates that the proposed filter, i.e., stages 

2, 3, and 4, runs at a blazing speed as it does not exceed 

1.8% of the overall computations. Notably, the 

computational time of the used LSD [51] is at least 62%; 

the literature on LSD includes better algorithms. For 

instance, the LSD proposed by Akinlar and Topal [52] is 

11 times faster than the LSD [51] we used in this paper. 

Thus, we can significantly boost the computational speed 

of our method while enhancing its accuracy just by using 

an alternative LSD in stage 1 (Fig. 5). 

TABLE XIV. THE COMPUTATIONAL TIME RATIO OF COMPONENTS OF 

OUR ALGORITHM FROM THE MEAN TIME SHOWN IN THE FIRST ROW OF 

TABLE XIII 

Stage/Component SMD-Onboard SMD-Onshore TMD 

LSD [51] 75.38% 72.37% 62.96% 

Stage 1 80.52% 78.5% 71.66% 

Stage 2, 3, and 4 0.8%  1.52%  1.71% 

Stage 5 18.68%  19.94%  26.48% 

 

 

Journal of Image and Graphics, Vol. 12, No. 4, 2024

358



F. Ablation Study 

In this section, we ablate the key components of our 

algorithm. The results presented in Table XV demonstrate 

that the original algorithm, incorporating both the ROIF 

and OHM, achieves the highest accuracy with the lowest 

errors in 14 out of 18 statistical metrics. Removing either 

the ROIF or OHM component increases the errors, 

confirming the importance of both components. 

TABLE XV. THE ERROR STATISTICS COMPUTED AFTER ABLATING THE 

ROIF AND OHM COMPONENTS. THE RESULTS ARE OBTAINED ON THE 

COMBINATION OF THE SMD-ONBOARD, SMD-ONSHORE, AND THE TMD, 

AMOUNTING TO 26,125 FRAMES 

Ablated 𝝁 𝝈 Q25 Q50 Q95 Q95 

Positional 

error 𝑌𝜖 in 

pixels 

None 4.96 9.36 1.30 2.69 4.98 20.28 

ROIF 4.93 7.46 1.37 2.74 5.18 19.82 

OHM 7.51 28.12 1.31 2.73 5.12 22.15 

Angular 

error 𝜙𝜖 in 

degrees 

None 0.22 0.23 0.054 0.14 0.31 0.64 

ROIF 0.23 0.25 0.055 0.15 0.33 0.67 

OHM 0.23 0.30 0.055 0.15 0.32 0.66 

Normalized 

composite 

error 𝐶ϵ in %  

None 4.74 2.58 3.09 4.11 5.54 10.01 

ROIF 4.80 2.52 3.13 4.12 5.68 10.02 

OHM 5.07 3.96 3.10 4.13 5.61 10.60 

G. Limitations 

We illustrate the limitation of the proposed algorithm in 

Fig. 11, which occurs due to occasional scenarios 

depicting faulty lines with stable gradient orientations. The 

limitation example in Fig. 11(b) is more difficult because 

the bulk does not only induce a faulty line but shrinks the 

length property of the horizon as well. This issue occurs on 

all algorithms we tested. In our case, however, such an 

issue is mitigated thanks to the OHM; in Fig. 11(c), the 

positional error gap 𝑌𝜖 between the true horizon (in yellow) 

and the faulty line (in pink) induced by ship edges is larger 

than the other two errors. This gap allowed the OHM to 

detect and replace the incorrect horizon line with the 

correct one. 

 

  

(a) (b) 

 

(c) 

Fig. 11. Limitation examples: in (a) and (b), the green dotted line is the 

ground truth horizon, and the red line is the incorrect detection of our 

method; in (c), the incorrect detection (in pink) is successfully replaced 

with the correct line (in yellow) thanks to the OHM. 

V. CONCLUSIONS AND FUTURE WORK 

The sea horizon is a critical element in maritime video 

processing, and detecting it under a variety of conditions, 

especially when the horizon edge response is weak, is a 

challenging task. Our method’s key improvement is its 

filtering approach, which preserves weak horizon edges 

while exploiting the properties of line segments detected 

with a low edge threshold. We also addressed the 

computational constraint by proposing a vectorized 

implementation for efficient CPU execution and by 

accurately projecting the detected horizon from the 

downsized image to the original size. In addition, we have 

made a new maritime dataset (the TMD) publicly available, 

which is enriched with images from various sea conditions. 

Our algorithm’s modular design will facilitate the 

integration of its functional stages, such as our robust 

outlier handler module, into other researchers’ work. Our 

method is limited by noisy lines with stable gradient 

orientation or heavily occluded horizons. We have 

partially mitigated this limitation by incorporating 

temporal information, and we believe that further 

enhancements are attainable. Specifically, our algorithmic 

pipeline is readily scalable to integrate a Convolutional 

Neural Network (CNN)-based classification stage, 

utilizing the edges output by our filter as input and 

subsequently categorizing them as either horizon or noise. 

We think that the fusion of our filter’s speed and 

robustness with a CNN will not only address the 

algorithm’s limitations but also maintain an optimal 

execution speed, which we justify by the filter significantly 

constraining the number of input edges requiring 

classification by the CNN. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHORS CONTRIBUTIONS 

Y. Z. conducted the literature survey, proposed and 

developed the algorithmic solution, suggested and 

annotated the Tangier Maritime Dataset, designed the 

experimental setup, implemented the proposed and state-

of-the-art algorithms, and wrote the paper. M. B guided the 

different research stages, contributed to the literature 

survey, directed the paper topic, and thoroughly reviewed 

the submitted manuscript. M. M guided the different 

research stages and thoroughly reviewed the submitted 

manuscript. A. A. proposed the research and paper topic, 

initiated the filter idea, guided the different research stages, 

reanalyzed and reviewed the results and interpretations, 

and thoroughly reviewed the submitted manuscript. The 

aforementioned author contributions are not exhaustive. 

All authors verified and approved the final version of the 

manuscript. 

 

 

 

 

 

Journal of Image and Graphics, Vol. 12, No. 4, 2024

359



DATA AVAILABILITY 

Source code and dataset link will be available on 

GitHub: https://github.com/Zardoua-

Yassir/A_fast_horizon_detector_and_a_new_annotated_d

ataset_for_maritime_video_processing.git 

ACKOWLEDGEMENT 

We would like to express our gratitude to Sailor, Mr. 

Mustapha Tayebioui, for his invaluable assistance in 

collecting the Tangier Maritime Dataset. 

REFERENCES 

[1] J. Chen, K. Li, Q. Deng, K. Li, and S. Y. Philip, “Distributed deep 

learning model for intelligent video surveillance systems with edge 

computing,” IEEE Transactions on Industrial Informatics, 2019.  

[2] H.-T. Duong, V.-T. Le, and V. T. Hoang, “Deep learning-based 

anomaly detection in video surveillance: A survey,” Sensors, vol. 

23, no. 11, 5024, 2023. 

[3] Y. Li, X. Zhang, and D. Chen, “Csrnet: Dilated convolutional 

neural networks for understanding the highly congested scenes,” in 

Proc. the IEEE Conference on Computer Vision and Pattern 

Recognition, 2018, pp. 1091–1100. 

[4] M. Cristani, A. Del Bue, V. Murino, F. Setti, and A. Vinciarelli, 

“The visual social distancing problem,” IEEE Access, vol. 8, pp. 

126876–126886, 2020.  

[5] M. Ye, J. Shen, G. Lin, T. Xiang, L. Shao, and S. C. Hoi, “Deep 

learning for person re-identification: A survey and outlook,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 44, 

no. 6, pp. 2872–2893, 2021. 

[6] D. K. Prasad, D. Rajan, L. Rachmawati, E. Rajabally, and C. Quek, 

“Video processing from electro-optical sensors for object detection 

and tracking in a maritime environment: A survey,” IEEE 

Transactions on Intelligent Transportation Systems, vol. 18, no. 8, 

pp. 1993–2016, 2017. doi: 10.1109/TITS.2016.2634580  

[7] D. Yang, M. I. Solihin, and Y. Zhao et al., “A review of intelligent 

ship marine object detection based on RGB camera,” IET Image 

Processing, vol. 18, no. 2, pp. 281–297, 2024. 

[8] A. Zhou, W. Xie, and J. Pei, “Background modeling in the Fourier 

domain for maritime infrared target detection,” IEEE Transactions 

on Circuits and Systems for Video Technology, vol. 30, no. 8, pp. 

2634–2649, 2019.  

[9] C. Cai, X. Weng, and Q. Zhu, “Sea-skyline-based image 

stabilization of a buoy-mounted catadioptric omnidirectional vision 

system,” EURASIP Journal on Image and Video Processing, vol. 

2018, no. 1, 2018. https://doi.org/10.1186/s13640-017-0240-z 

[10] Y.-F. Shen, D. Krusienski, J. Li, and Z. U. Rahman, “A hierarchical 

horizon detection algorithm,” IEEE Geoscience and Remote 

Sensing Letters, vol. 10, no. 1, pp. 111–114, 2013. 

[11] M. Petkovic, I. Vujovic, and I. Kuzmanic, “An overview on horizon 

detection methods in maritime video surveillance,” Transactions on 

Maritime Science, vol. 9, no. 1, pp. 106–112, 2020. 

[12] Y. Zardoua, A. Astito, and M. Boulaala, “A survey on horizon 

detection algorithms for maritime video surveillance: Advances and 

future techniques,” The Visual Computer, vol. 39, no. 1, pp. 197–

217, 2023. 

[13] Z. Shao, L. Wang, Z. Wang, W. Du, and W. Wu, “Saliencyaware 

convolution neural network for ship detection in surveillance video,” 

IEEE Transactions on Circuits and Systems for Video Technology, 

vol. 30, no. 3, pp. 781–794, 2019. 

[14] L. Dong, D. Ma, D. Ma, and W. Xu, “Fast infrared horizon detection 

algorithm based on gradient directional filtration,” J. Opt. Soc. Am. 

A, vol. 37, no. 11, pp. 1795–1805, 2020. 

[15] F. Li, J. Zhang, W. Sun, J. Jin, L. Li, and Y. Dai, “Sea– sky line 

detection using gray variation differences in the time domain for 

unmanned surface vehicles,” Signal, Image and Video Processing, 

vol. 15, no. 1, pp. 139–146, 2021. 

[16] D. Liang and Y. Liang, “Horizon detection from electro-optical 

sensors under maritime environment,” IEEE Transactions on 

Instrumentation and Measurement, vol. 69, no. 1, pp. 45–53, 2020. 

[17] W.-N. Lie, T. C.-I. Lin, T.-C. Lin, and K.-S. Hung, “A robust 

dynamic programming algorithm to extract skyline in images for 

navigation,” Pattern Recognition Letters, vol. 26, no. 2, pp. 221–

230, 2005. 

[18] T. Ahmad, E. Emami, M. Čadík, and G. Bebis, “Resource efficient 

mountainous skyline extraction using shallow learning,” in Proc. 

2021 International Joint Conference on Neural Networks (IJCNN), 

2021, pp. 1–9. 

[19] Y. Zardoua, A. Astito, M. Boulaala, and Y. Dokkali, “A short 

overview of horizon detection methods applied to maritime video 

stabilization,” in Proc. International Conference on Advanced 

Intelligent Systems for Sustainable Development, 2022, pp. 857–

864. 

[20] M. Schwendeman and J. Thomson, “A horizon-tracking method for 

shipboard video stabilization and rectification,” Journal of 

Atmospheric and Oceanic Technology, vol. 32, no. 1, pp. 164 –176, 

2015. 

[21] S. Fefilatyev, D. Goldgof, M. Shreve, and C. Lembke, “Detection 

and tracking of ships in open sea with rapidly moving buoy-

mounted camera system,” Ocean Engineering, vol. 54, pp. 1–12, 

2012. 

[22] J. Liu, H. Li, J. Liu, S. Xie, and J. Luo, “Real-time monocular 

obstacle detection based on horizon line and saliency estimation for 

unmanned surface vehicles,” Mobile Networks and Applications, 

vol. 26, no. 3, pp. 1372–1385, 2021. 

[23] W. Kong and T. Hu, “A deep neural network method for detection 

and tracking ship for unmanned surface vehicle,” in Proc. 2019 

IEEE 8th Data Driven Control and Learning Systems Conference 

(DDCLS), 2019, pp. 1279–1283. 

[24] J. Fu, F. Li, J. Zhao, J. Tong, and H. Zhang, “Infrared small dim 

target detection under maritime near sea-sky line based on regional-

division local contrast measure,” IEEE Geoscience and Remote 

Sensing Letters, 2023.  

[25] R. Gladstone, Y. Moshe, A. Barel, and E. Shenhav, “Distance 

estimation for marine vehicles using a monocular video camera,” in 

Proc. 2016 24th European Signal Processing Conference 

(EUSIPCO), 2016, pp. 2405–2409.  

[26] B. Jia, R. Liu, and M. Zhu, “Real-time obstacle detection with 

motion features using monocular vision,” The Visual Computer, vol. 

31, pp. 281–293, 2015.  

[27] R. Polvara, S. Sharma, J. Wan, A. Manning, and R. Sutton, 

“Obstacle avoidance approaches for autonomous navigation of 

unmanned surface vehicles,” The Journal of Navigation, vol. 71, no. 

1, pp. 241–256, 2018.  

[28] A. Samama, “Innovative video analytics for maritime surveillance,” 

in Proc. 2010 International WaterSide Security Conference, ser. 

2010 International WaterSide Security Conference, 2010, pp. 1–8. 

[29] C. Jeong, H. S. Yang, and K. Moon, “A novel approach for 

detecting the horizon using a convolutional neural network and 

multi-scale edge detection,” Multidimensional Systems and Signal 

Processing, vol. 30, no. 3, pp. 1187–1204, 2019. 

[30] E. Gershikov, T. Libe, and S. Kosolapov, “Horizon line detection 

in marine images: Which method to choose?” International Journal 

on Advances in Intelligent Systems, vol. 6, no. 1, 2013.  

[31] G.-Q. Bao, S.-S. Xiong, and Z.-Y. Zhou, “Vision-based horizon 

extraction for micro air vehicle flight control,” IEEE Transactions 

on Instrumentation and Measurement, vol. 54, no. 3, pp. 1067–1072, 

2005. 

[32] H. Zhang, P. Yin, X. Zhang, and X. Shen, “A robust adaptive 

horizon recognizing algorithm based on projection,” Transactions 

of the Institute of Measurement and Control, vol. 33, no. 6, pp. 734–

751, 2011. 

[33] Y. Shen, Z. Rahman, D. Krusienski, and J. Li, “A visionbased 

automatic safe landing-site detection system,” IEEE Transactions 

on Aerospace and Electronic Systems, vol. 49, no. 1, pp. 294–311, 

2013. 

[34] I. Lipschutz, E. Gershikov, and B. Milgrom, “New methods for 

horizon line detection in infrared and visible sea images,” Int. J. 

Comput. Eng. Res, vol. 3, no. 3, pp. 1197–1215, 2013. 

[35] M. Ohki, M. E. Zervakis, and A. N. Venetsanopoulos, “3-d digital 

filters,” Control and Dynamic Systems, vol. 69, pp. 49–88, 1995. 

[36] B. M. H. Romeny, “Front-end vision and multi-scale image analysis: 

multi-scale computer vision theory and applications,” Springer 

Science & Business Media, vol. 27, 2008.  

[37] D. K. Prasad, D. Rajan, C. K. Prasath, L. Rachmawati, E. Rajabally, 

and C. Quek, “Mscm-life: Multi-scale cross modal linear feature for 

horizon detection in maritime images,” in Proc. 2016 IEEE Region 

10 Conference (TENCON), 2016, pp. 1366–1370.  

Journal of Image and Graphics, Vol. 12, No. 4, 2024

360

https://github.com/Zardoua-Yassir/A_fast_horizon_detector_and_a_new_annotated_dataset_for_maritime_video_processing.git
https://github.com/Zardoua-Yassir/A_fast_horizon_detector_and_a_new_annotated_dataset_for_maritime_video_processing.git
https://github.com/Zardoua-Yassir/A_fast_horizon_detector_and_a_new_annotated_dataset_for_maritime_video_processing.git


[38] D. K. Prasad, D. Rajan, L. Rachmawati, E. Rajabally, and C. Quek, 

“Muscowert: Multi-scale consistence of weighted edge radon 

transform for horizon detection in maritime images,” J. Opt. Soc. 

Am. A, vol. 33, no. 12, pp. 2491–2500, 2016.  

[39] C. Y. Jeong, H. S. Yang, and K. Moon, “Fast horizon detection in 

maritime images using region-of-interest,” International Journal of 

Distributed Sensor Networks, vol. 14, no. 7, 2018.  

[40] C. Li, C. Cai, W. Zhou, and K. Wu, “A sea-sky-line detection 

method for long wave infrared image based on improved swin 

transformer,” Infrared Physics & Technology, vol. 138, 105125, 

2024.  

[41] S. J. Dumble and P. W. Gibbens, “Horizon profile detection for 

attitude determination,” Journal of Intelligent & Robotic Systems, 

vol. 68, no. 3, pp. 339–357, 2012. 

[42] T. D. Cornall, G. K. Egan, and A. Price, “Aircraft attitude 

estimation from horizon video,” Electronics Letters, vol. 42, no. 13, 

pp. 744–745, 2006.  

[43] S. M. Ettinger, M. C. Nechyba, P. G. Ifju, and M. Waszak, 

“Towards flight autonomy: Vision-based horizon detection for 

micro air vehicles,” in Proc. Florida Conference on Recent 

Advances in Robotics, vol. 2002, 2002.  

[44] S. Fefilatyev, V. Smarodzinava, L. O. Hall, and D. B. Goldgof, 

“Horizon detection using machine learning techniques,” in Proc. 

2006 5th International Conference on Machine Learning and 

Applications (ICMLA’06), 2006, pp. 17–21. 

[45] M. Kristan, V. S. Kenk, S. Kovacic, and J. Pers, “Fast image-based 

obstacle detection from unmanned surface vehicles,” IEEE 

Transactions on Cybernetics, vol. 46, no. 3, pp. 641–654, 2016. 

[46] Y.-L. Hung, C.-W. Su, Y.-H. Chang, J.-C. Chang, and H.-R. Tyan, 

“Skyline localization for mountain images,” in Proc. 2013 IEEE 

International Conference on Multimedia and Expo (ICME), 2013, 

pp. 1–6. 

[47] W.-H. Liu and C.-W. Su, “Automatic peak recognition for 

mountain images,” in Proc. Advanced Technologies, Embedded 

and Multimedia for Human-centric Computing: HumanCom and 

EMC 2013, Dordrecht: Springer Netherlands, 2014, pp. 1115–1121. 

[48] M. A. Hashmani and M. Umair, “A novel visual-range sea image 

dataset for sea horizon line detection in changing maritime scenes,” 

Journal of Marine Science and Engineering, vol. 10, no. 2, 2022. 

[49] Y. Zardoua, B. B. Bergor, A. El Wahabi, A. El Mourabit, M. 

Chbeine, and A. Astito, “A horizon line annotation software for 

streamlining autonomous sea navigation experiments,” Adv. Artif. 

Intell. Mach. Learn., vol. 3, no. 4, pp. 1768–1786, 2023. 

[50] H. Zhang, Y. Luo, F. Qin, Y. He, and X. Liu, “Elsd: Efficient line 

segment detector and descriptor,” in Proc. the IEEE/CVF 

International Conference on Computer Vision, 2021, pp. 2969–

2978.  

[51] R. G. von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall, “LSD: 

A fast line segment detector with a false detection control,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 32, 

no. 4, pp. 722–732, 2010. 

[52] C. Akinlar and C. Topal, “Edlines: A real-time line segment 

detector with a false detection control,” Pattern Recognition Letters, 

vol. 32, no. 13, pp. 1633–1642, 2011. 

[53] C. R. Harris, K. J. Millman, and S. J. Van Der Walt et al., “Array 

programming with NUMPY,” Nature, vol. 585, no. 7825, pp. 357–

362, 2020.  

[54] G. Bradski and A. Kaehler, “Opencv,” Dr. Dobb’s Journal of 

Software Tools, vol. 3, vol. 2, 2000.  

[55] M. Abadi, A. Agarwal, and P. Barham et al. (2015). TensorFlow: 

Largescale machine learning on heterogeneous systems. Software 

Available from Tensorflow.org. [Online]. Available: 

https://www.tensorflow.org/.   

[56] K. Zhao, Q. Han, C.-B. Zhang, J. Xu, and M.-M. Cheng, “Deep 

hough transform for semantic line detection,” IEEE Transactions 

on Pattern Analysis and Machine Intelligence, vol. 44, no. 9, pp. 

4793–4806, 2021. 

 

Copyright © 2024 by the authors. This is an open access article 

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any 

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

 

 

Journal of Image and Graphics, Vol. 12, No. 4, 2024

361

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/



