
Aflutter Craft: Neural Art Transfer Platform

Rawad Abdulghafor

Faculty of Computer Studies (FCS), Arab Open University, Muscat P.O. Box 1596, Oman

Email: rawad.a@aou.edu.om

Abstract—Image Style transfer is a neural network algorithm

that copies the style of an existing image into another image

while preserving the image’s content. There have been

various approaches on style transfer in an effort to speed up

the process or provide more appealing results, one of which

is the usage of style attentional networks. Attention is an

algorithm that scores different parts of an image based on

their importance in the overall image, attention helps neural

networks distinguish important parts of an image. We use

attention to identify the parts of an image that represent

image style to apply an overall style rather than a mask and

to conserve parts of the content that are crucial to its identity

(a visible object, a focused subject, etc.). Aflutter Craft

enhances an existing algorithm that uses attention for style

transfer. Results show that our algorithm uniformly applies

important parts of the style while simultaneously preserving

the subject of the content image. Results from Aflutter Craft

are chosen to be the most visually appealing according to

38.4% survey participants when compared to 4 other

implementations. In addition, this paper introduces a cross

platform application with a general Application

Programming Interface (API) capable of performing style

transfer from anywhere.

Keywords—Application Programming Interface (API), Art,

convolutional neural network, deep learning, flask, neural

network, PyTorch, self-attention, style transfer, transfer

learning, transformer

I. INTRODUCTION

Making art is not an easy task, not everyone is capable

of being an artist and producing art that resonates with the

masses; classic artists such as Picasso and Michelangelo

are regarded as the greatest by current artists and their

works are sold at absurdly high prices usually in millions

of dollars. Currently, there are no artists with the ability to

replicate astonishing classical art styles down to an

individual artist’s unique brush. Computers have come a

long way and are currently capable of performing feats

beyond what’s humanly possible, it is possible to teach a

neural network to replicate classical art styles and more

into any image, that process is known as style transfer.

Fig. 1 showcases a basic example of style transfer,

where the content of the original image is transformed

using the artistic style of another image. The

transformation highlights the model’s ability to apply

complex artistic patterns while preserving key content

features, such as the main subject’s shape and structure.

Manuscript received August 7, 2024; revised August 14, 2024; accepted

August 27, 2024; published November 18, 2024.

Fig. 1. Style transfer example [1].

Aflutter craft makes the process of replicating classical

art styles easier not just for professional artists but for

everyone. Presently, to make an image appear in a style

from a specific classical artist, one needs to be fluent in

Photoshop along with other image editing tools, making it

harder for everyone. Some websites can apply an image’s

style to another [2]; however, they are limited when it

comes to the selection of provided styles, not to mention

the lack of native mobile or desktop applications capable

of performing this task.

Aflutter craft style store consists of the entirety of

wikiart images, a total of over 40,000 images, giving users

a huge collection of art styles to choose from with the

ability to upload any image as style. In addition to the

ability to customize the trade-off between content and style

images, with the availability of mobile, desktop and web

applications, applying a style to images has never been

more straightforward.

II. LITERATURE REVIEW

Neural Style transfer being a recent algorithm has

numerous works uncovering the mechanics behind why it

works and different iterations improving on the algorithm,

from improvements to the time it takes to stylize an image,

to more complex algorithms that are capable of not style

transfer while accounting for other factors in the image

such as depth and color preservation.

Gatys et al. [3] proposed using a Convolutional Neural

Network (CNN) trained for object detection to extract

image features (style and content) from specific layers of

that network, then feed the images to a style transfer

network to generate a new image by minimizing the mean-

squared distance between the entries of the Gram matrices

from the original image and the Gram matrices of the

image to be generated. The used CNN is VGG-19 trained

on a labeled image dataset of 15 million photos, the paper

notes higher layers such as conv4_2 have a fair knowledge

382

Journal of Image and Graphics, Vol. 12, No. 4, 2024

doi: 10.18178/joig.12.4.382-395

of the image content, and lower layers maintain less

content, the style is present in multiple higher layers

ending with 1 such as conv4_1 and conv1_1. Issues with

the proposed architecture include:

● The time taken for the synthesis procedure

correlates linearly with the image size.

● synthesized images are subject to white noise

(occurs in photo-realistic scenarios).

● separation of image content from style is not a

well-defined problem.

This diagram in Fig. 2 illustrates the architecture of the

original neural style transfer algorithm proposed by

Gatys et al. [3]. It demonstrates how the algorithm uses a

Convolutional Neural Network (CNN) to extract and blend

the content and style features from different images. The

key components of the architecture, including content and

style layers, are labeled to show the flow of data through

the network.

Fig. 2. Original neural style transfer algorithm [3].

Li et al. [4] argued that style transfer is a problem of

domain adaptation, the gram matrix used to optimize the

losses to generate the stylized image is similar to the

process of Maximum Mean Discrepancy (MMD) with the

second-order polynomial kernel, meaning the style

information is represented by a distribution of activations

in the CNN and with the process of distribution alignment

style transfer is achievable, thus replacing the gram matrix

with an MMD kernel should perform the style transfer

successfully, different kernels functions are experimented

with such as Gaussian kernel, making the fusion of two

different kernels possible and producing different looking

images.

Johnson et al. in [5] suggested using perceptual loss

from a pre-trained loss network. The perceptual loss

function can calculate the difference between two images’

high-level features which works by summing all the

squared errors of all pixels and then taking the mean

compared to per-pixel loss which only sums the errors

between pixels. The results are a much faster network up

to 1060x times faster in inference compared to per-pixel

loss using image size of 256 × 256, this speed up also

opens the door for real-time video style transfer which is

demonstrated at 20fps running on a Pascal Titan X.

In the work [6] perceptual factors such as space, color,

and scale have been controlled for better results, for space,

the goal is to specify which region of the content image is

stylized by which region of the style image, with this a

single image can contain style from multiple sources for

example the sky can have a different style compared to the

ground or buildings, the second factor to control is color,

for instance, using a style without applying its colors to the

content image which helps in preserving the color of the

content. The final controlled factor is the scale of the image,

this technique removes the content loss from a style image

to replace the full image texture enabling the creation of

high-resolution images with combined styles.

Ulyanov et al. [7] proclaims that using perceptual losses

despite being much faster results in less appealing images

compared to the original paper with per-pixel loss, it then

suggests replacing batch normalization with instance

normalization applied at both training and testing based on

an observation by Ulyanov et al. [7] stating “the network

generates poor quality images if trained with a large

dataset”. The key difference between instance and batch

normalization is that the latter normalizes over a whole

batch of images instead of just one image leading to one

image with abnormal mean or standard deviation affecting

the entire batch while the former normalizes each image

separately and directly eliminates issues found in batch

normalization. This results in a network that is just as fast

but produces more appealing results according to

Ulyanov et al. [7].

In the previous works the style applied to all parts of the

image equally with no regard to image depth resulting in

the images losing their sense of depth. Lu et al. [8] have

proposed using a depth prediction network for estimating

the depth of the image and accordingly stylize the image.

The network architecture is based on the work by

Johnson et al. [5] with the addition of depth estimation

network. Optimizing the content loss through the depth

estimation network gives the depth loss, the final

optimized parameter is the total loss produced from the

addition of the style and content loss-produced by the

object recognition loss network and the depth loss. The

result is images that look more realistic, with more

distinguishable objects and a noticeable sense of depth.

Fig. 3. Results without vs with depth awareness [8].

The Fig. 3 compares the output of style transfer models

with and without depth awareness. The images on the left

show results from a model that does not account for image

depth, leading to flattened visual effects. The right-side

images incorporate depth awareness, resulting in more

realistic and dimensionally accurate stylized images,

especially in scenes with varying depths like landscapes.

Previous works have depended on a pre-trained VGG-

19 network for content and style extraction, however, the

VGG network is trained for object recognition and

therefore cannot accurately interpret styles.

383

Journal of Image and Graphics, Vol. 12, No. 4, 2024

Sanakoyeu et al. [9] has proposed training a VGG-16

network on art style images from wikiart and using content

images from a scene recognition dataset for training the

style transfer network for which it proposes a new

architecture. The proposed network uses an encoder

decoder feed-forward architecture in contrast to the

optimization-based approach in previous papers. In

addition, the new architecture makes use of a discriminator

to compare the stylized image to the original content image

to preserve details as much as possible while maintaining

artistic accuracy. The network allows quick inference

(0.6 s) besides real-time HD video stylization.

This Fig. 4 depicts the architecture of a style-aware

content loss network. It emphasizes how the network

preserves content structure while applying artistic styles.

The figure includes annotations showing the flow from the

encoder to the decoder, highlighting the interaction

between style and content layers that optimize the balance

between style fidelity and content preservation.

Fig. 4. Style-aware content loss network architecture [9].

A novel normalization method referred to as Adaptive

instance normalization (AdaIN) has been proposed in [10].

AdaIN behavior is observed to work like a style loss. It

works by adjusting the mean and variance of the content

image to that of the style image and thus performing style

transfer, this works arbitrarily for any style, the used

architecture is a feed-forward encoder-decoder

architecture with the AdaIN layer at its heart. The result is

quick style transfer (0.6 s), allowing adjusting parameters

such as color and content-style trade-off during inference

without training the model again with those new

parameters.

Fig. 5. Network architecture with AdaIN [10].

The diagram in Fig. 5 explains the architecture of the

network using Adaptive Instance Normalization (AdaIN).

It illustrates how AdaIN adjusts the mean and variance of

the content image to match those of the style image,

enabling arbitrary style transfer. The key layers and

operations are clearly labeled, demonstrating how this

architecture achieves real-time style transfer with high

efficiency.

Chen et al. [11] proposed an alternative method for

applying style transfer using an arbitrary number of styles.

The proposed approach makes use of a feed-foreword

CNN with a convolution-deconvolution architecture. The

way it works is both the content and style images will pass

through the convolutional network (VGG network) to

extract high-level features and then pass through a style

swap layer, the style swap layer concatenates the style and

content images by swapping the texture of a content image

with that of the style image using randomly selected

patches (usually of size 3 × 3) from the style image, after

that the decoder approximates the stylized image and its

loss. The simplicity of the approach allows generalization

between styles and style-content trade-off by changing the

patch size besides fast style transfer by requiring fewer

iterations.

This Fig. 6 shows the patch-based network architecture

used for style transfer. It explains how the network swaps

patches between content and style images to generate the

final stylized output. The use of small, randomly selected

patches allows for a more flexible and detailed application

of styles across various content types.

Fig. 6. Patch-based network architecture [11].

Most of the previously reviewed works depend solely

on CNNs and optimizations techniques to synthesize the

final image. Park et al. [12] has proposed using self-

attentional networks (SANet) which allow matching the

nearest style features to the content image structure, a new

loss function referred to as identity loss is used, it works as

a metric for evaluating generated image. After feature

extraction from the VGG-19 network the output passes

through SANet to give style and content feature maps

priority and then according to that priority the synthesized

image is reconstructed by the decoder. The image then

again passes through an encoder to calculate the losses.

The result of such a complex network is more efficient and

quicker style transfer (comparable to AdaIN) that transfers

different styles for each semantic content and maintains

high content detail, beside the ability to adjust content-

style trade-off in real-time, it also allows the mixing of

multiple styles. The authors conducted a survey to

compare their results with other previous algorithms, and

34.5% of the 80 people surveyed preferred the result of

SANet.

This Fig. 7 contrasts the architectures of two networks:

one focusing on identity loss and the other on self-attention.

The left side highlights the role of identity loss in

maintaining content integrity during style transfer, while

the right side shows how self-attention mechanisms

384

Journal of Image and Graphics, Vol. 12, No. 4, 2024

selectively apply styles to important regions of the content

image. The side-by-side comparison underscores the

advantages of integrating both methods for improved

stylization.

Fig. 7. Identity loss network (left), Self-Attention network (right) [12].

The previous works illustrate the progress made in the

field of style transfer through the years; the method used

has considerably changed across papers and iterations.

Each paper reviewed has had a noticeable contribution

ranging from a simpler, more efficient network

architecture to allowing the usage of a single network to

apply any style regardless of the network being trained on

it or not. For a better understanding of the changes

proposed by each paper, we encourage the reader to dive

deeper and read the papers. The overall goal of all the

reviewed papers remains the same; to produce a neural

network that is capable of replicating any art style to any

content image without significantly changing the image’s

focus or subject.

The study of researches [1, 13] compares learning

algorithms for image classification with small datasets,

aiming to identify the most effective approach. We fine-

tuned hyperparameters for optimizers and models,

conducting initial experiments with eight algorithms to

approximate optimal values. Final experiments with near-

optimal hyperparameters revealed that the AdaGrad

learning algorithm outperforms others, achieving higher

accuracy, shorter training times, and lower memory usage.

 Deep learning is revolutionizing disease diagnosis in

radiology, yet acquiring large, detailed labelled datasets

remains a challenge. Transfer learning mitigates this by

starting with pre-trained weights from a large, similar

dataset and fine-tuning them on a smaller, specific dataset.

Iqbal et al. [14] uses deep learning to detect synovial fluid

in human knee joints from Magnetic Resonance Imaging

(MRI) images, proposing a specialized convolutional

neural network for automated detection. Trained and

evaluated on two independent datasets, the model achieves

high sensitivity, specificity, precision, and accuracy,

offering a novel, efficient method for synovial fluid

analysis.

III. MATERIALS AND METHODS

The three key components of Aflutter Craft are model

development, API development, and Mobile Application

Development. The employed development methodology is

the waterfall model, due to each component requiring the

one prior to it; for instance, one cannot start building the

API before the model is complete; subsequently, this

applies to major parts of the mobile application as well.

The waterfall model diagram in Fig. 8 outlines the step-

by-step approach used in the development of the Aflutter

Craft platform. It shows the sequence of stages from model

development to API and mobile application development,

emphasizing the dependencies between each stage and the

importance of completing one phase before moving on to

the next.

Fig. 8. Project waterfall model.

A. Design

The model architecture used in our approach is the one

proposed by Park et al. [15] with the addition of a fixed

identity loss coefficients (representing style and content

loss weights). The reason behind the architecture choice is

that it’s a modern implementation taking advantage of new

technologies such as attention, another important factor is

that it allows relatively fast inference which is a

requirement in a mobile application. The deep learning

framework of choice is PyTorch [16] due to its ease of

usage.

This Fig. 9 presents the overall network architecture

used in the Aflutter Craft platform. It includes details on

the encoder, attention modules, and decoder, along with

the flow of data between these components. The diagram

also highlights the use of fixed identity loss coefficients,

which help preserve content structure while applying

styles.

Fig. 9. Project network architecture [12].

Identity loss is the metric used to keep the content of the

original image, it is calculated from the same input image

unlike the style and content loss which are calculated

across the entire batch of images, as a result, the identity

loss makes it possible to simultaneously preserve the

content image structure while applying characteristics

from the style image.

385

Journal of Image and Graphics, Vol. 12, No. 4, 2024

𝐿𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 = 𝜆𝑖𝑑𝑒𝑛𝑡𝑡𝑖𝑦1(||(𝐼𝑐𝑐 − 𝐼𝑐)||2 + ||(𝐼𝑠𝑠 −

𝐼𝑠)||2) + 𝜆𝑖𝑑𝑒𝑛𝑡𝑡𝑖𝑦2 ∑ (||𝜙𝑖(𝐼𝑐𝑐) − 𝜙(𝐼𝑐𝑐)||2
𝐿
𝑖 =1 +

 ||𝜙𝑖(𝐼𝑠𝑠) − 𝜙(𝐼𝑠)||2) (1)

where 𝐼𝑐𝑐 (or 𝐼𝑠𝑠) denotes the output image synthesized

from two same content (or style) images, each 𝜑𝑖 denotes

a layer in the encoder, 𝜆𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦1 and 𝜆𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦2 are

identity loss weights. By fixing 𝜆𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦1 and 𝜆𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦2 ,

we limit it’s value to ranges that are observed to be smaller

than what’s calculated by the network, which leads to the

network prioritizing the content image structure over the

style image characteristics.

The API is designed using the python web framework

Flask [17] with flasgger [18] for openAPI compatible

documentation and local testing, the API request is of type

POST with the content image and style image ID or a

custom style image encoded as base64. When it comes to

ease of access, an online server is a requirement, currently

the API is deployed to FloydHub [19] allowing inference

from anywhere as long as the gateway is available. With

the alpha parameter it is easy for users to adjust the style-

content trade-off whether the goal is preserving more of

the content or applying the style to its fullest. After

performing various tests and a survey with different alpha

values ranging from 0.1 (least amount of style) to 1.0 (most

amount of style) with increments of 0.1, the value selected

as default is 0.6 or 60% of the style. The reason for

choosing 0.6 was that it had the highest survey responses

at 19.4% when compared to values from 0.1 to 1.0.

The Fig. 10 showcases the API documentation and

testing interface used in Aflutter Craft. It includes sections

displaying the available endpoints, sample requests and

responses, and the testing environment. The layout is

designed to be user-friendly, facilitating easy integration

and testing of the API across various platforms.

Fig. 10. API documentation and testing.

The final component is the user interface. Both the

desktop and mobile applications will share similar design

attributes and work similarly. The consensus is to have

three main screens in the mobile application each with a

pre-defined purpose. First the main page showing the

currently selected style and content images and a slider for

adjusting the alpha value. Another screen for selecting the

style and the final screen shows the results with the option

to save the image or share it to social media. When

selecting the style, the user will be able to select an image

from the gallery or take a new picture from either the front

or back camera. The Desktop UI on the other hand will

have a main page that shows a grid of content, style and

stylized images respectively with the alpha slider

displayed below the images. Selecting a style will open the

style store. Another addition to the desktop app is an about

page.

This Fig. 11 illustrates the prototype of the mobile

application interface for Aflutter Craft. It features the main

screens of the application, including style and content

selection, alpha adjustment, and the final result display.

The design prioritizes user experience, ensuring intuitive

navigation and easy access to key features.

Fig. 11. Mobile application interface prototype.

Fig. 12. Main desktop application interface.

The Fig. 12 displays the main interface of the desktop

application. It includes a grid layout that shows content,

style, and stylized images, with an alpha slider below the

images for adjusting the style-content balance. The

interface is designed for efficiency, allowing users to

quickly select styles and view results.

Fig. 13. Desktop app style category selection with option to upload a

local image.

386

Journal of Image and Graphics, Vol. 12, No. 4, 2024

This Fig. 13 shows the style selection screen of the

desktop application, where users can choose from various

style categories or upload a custom style image. The

interface is designed to be straightforward, providing users

with a wide range of artistic options while ensuring easy

customization.

Fig. 14. Desktop application about page.

The about page of the desktop application in Fig. 14

provides detailed information about the Aflutter Craft

platform, including its capabilities and underlying

technology. It also links to the open-source repository and

other resources, encouraging community engagement and

contribution.

1) Neural network architecture and attention

mechanism enhancements

a) Neural network architecture

The core of our neural network architecture is based on

a modified version of the Style-Attentional Network

(SANet), which incorporates advanced attention

mechanisms to improve the fidelity and control of style

transfer. The architecture consists of three primary

components: the encoder, the attention module, and the

decoder.

● Encoder

o The encoder is derived from the VGG-19 network,

pre-trained on the ImageNet dataset. This choice is

motivated by VGG-19’s ability to effectively

extract hierarchical features from images, which

are crucial for both content preservation and style

representation.

o The encoder takes in the content and style images,

passing them through multiple convolutional

layers. We utilize the feature maps from specific

layers (such as relu4_1) to capture different levels

of abstraction, which represent the content

structure and style features of the images.

● Attention Module:

o The attention module is the core enhancement in

our architecture. Traditional style transfer models

often apply style uniformly across the image,

which can lead to the loss of important content

details. Our attention mechanism mitigates this by

focusing on the most salient regions of the content

image.

o Self-Attention Mechanism: We implemented a

self-attention mechanism that allows the model to

dynamically assign weights to different regions of

the content image based on their importance. The

attention mechanism computes a relevance score

for each pixel, which determines how much

influence the corresponding style feature should

have on that pixel.

o Attention Weights: These weights are calculated

using a combination of query, key, and value

matrices, which are derived from the feature maps

of the content image. The query and key matrices

are used to calculate the attention scores, while the

value matrix adjusts the feature maps based on

these scores. This ensures that regions with higher

attention scores retain more of the original content

characteristics.

o Enhancements: Unlike standard self-attention

mechanisms, our approach introduces an identity

loss to further preserve the content structure. This

loss is calculated by comparing the original

content image with the stylized output,

encouraging the network to maintain the integrity

of key content features.

● Decoder:

o The decoder reconstructs the final stylized image

from the attention-weighted feature maps. It

consists of a series of transposed convolutional

layers, which gradually upsample the feature maps

back to the original resolution of the content image.

o The decoder is designed to balance the integration

of style features with the preservation of content

structure, guided by the attention module’s outputs.

b) Enhancements to the attention mechanisms

The primary enhancement in our model is the

integration of identity loss with the attention mechanism.

This combination addresses the common issue of content

degradation in style transfer by ensuring that the stylized

image remains faithful to the original content image.

● Identity Loss Integration:

o Identity loss is calculated using the original

content image as both the input and the target. This

encourages the network to prioritize content

preservation, especially in regions identified as

critical by the attention mechanism.

o By fixing the weights of style and content during

the calculation of identity loss, we ensure that the

content structure is given priority over stylistic

elements. This is particularly important in

scenarios where maintaining the recognizability of

the content is essential, such as in portraits or other

images with distinct subjects.

● Real-Time Adjustability:

o The architecture also supports real-time

adjustments of the style-content trade-off. Users

can control the degree to which style is applied by

modifying the alpha parameter, which scales the

influence of the attention weights. This feature is

particularly useful in applications where user

preference plays a significant role in the final

output.

387

Journal of Image and Graphics, Vol. 12, No. 4, 2024

2) Visual representations

Flowcharts and Diagrams: To aid in the understanding

of this architecture, we have included flowcharts that

illustrate the data flow from the encoder through the

attention module and into the decoder. Additionally, we

provide diagrams showing how attention weights are

computed and applied to the feature maps, as well as the

interaction between the attention mechanism and the

identity loss function.

B. Implementation

The model is implemented using the PyTorch

framework [16]. The API implementation is using the

Flask [7] web framework and can be self-hosted anywhere,

however, due to domain computational resources

requirements (GPUs or accelerators) the chosen cloud

provider is FloydHub [19] providing high performance

GPUs at reasonable prices. The mobile and desktop

applications will make use of the Flutter framework [20].

Flutter is the best choice for a cross platform application.

Flutter allows writing code that runs on all major platforms

in one language using one centralized code base.

Integrating the API with the application is an easy task

with flutter, there is support for network images and

requests sending/parsing built-in.

Below workflow applies to both mobile and desktop

applications, it also applies for both cases when a user

uploads a custom style image or selects an image from the

style store.

General application workflow:

● User selects the content image from the gallery or

takes a picture.
● User selects a style image from the style store or

selects a custom image from the gallery as the

style image.

● Send API request with content image and selected

style image ID or custom style image.

● If the API request contains a style image ID. use

that as style, otherwise use the user passed style

image.

● pass both content and style images to the model.

● return stylized image in base64 encoding as the

API response.

This workflow diagram in Fig. 15 outlines the steps

involved in using the Aflutter Craft application. It starts

with content image selection, followed by style selection,

and concludes with the stylized image generation and

display. The workflow is designed to be simple and

efficient, ensuring a smooth user experience across

different platforms.

Fig. 15. General application workflow.

C. Testing

Platform compatibility testing has been conducted for

android, Linux, and the Web, due to the unavailability of

other platforms’ hardware, it is not possible to test for them,

however, with the framework of choice being cross

platform they should be working as intended.

Each of the application’s three components are tested

separately. For model testing a survey is conducted and

based on its results further tuning might be required, since

the ability to control style-content trade-off (α) is already

present, it might be easier to make the survey participants

test the model and play with the style-content trade off

until they have results they deem desirable.

For the API, the tests will include fetching all the styles

from the project S3 bucket, which will be shown in the

desktop and mobile applications. The second test will

make sure the API can send content and style images to the

server correctly, and return a stylized image successfully.

Finally, the application tests will include testing the overall

functionally from fetching styles and stylizing to the save

functionality and others, the application testing will

progressively test the other two modules in a backward

fashion.

TABLE I. MODEL TESTING

Test Case ID Objective Input
Expected

Results
Procedure

TC-01-01
Model results

evaluation

100

Stylized

images

favorable rating

by users
conduct

survey

As shown in Table I, model testing focuses on

evaluating the results of 100 stylized images, with the

objective of achieving favorable ratings from users. Given

the subjective nature of visual appeal, user preferences

were gathered through a survey. The results indicate that

most users preferred having the ability to manually select

a style and adjust the alpha value. However, 19.4% of the

95 survey participants favored the results with an alpha

value of 0.6, and 38.4% of participants found Aflutter

Craft to be more visually appealing compared to other

algorithms.

The Fig. 16 presents the results of a user survey

comparing the visual appeal of images generated by five

different style transfer algorithms. The survey results,

displayed as a bar chart, indicate user preferences for the

Aflutter Craft implementation, highlighting its

effectiveness in producing visually appealing stylized

images.

Fig. 16. Survey results comparing 5 different algorithms.

388

Journal of Image and Graphics, Vol. 12, No. 4, 2024

This Fig. 17 shows the distribution of user preferences

for different alpha values, which control the style-content

balance in the stylized images. The chart illustrates how

varying the alpha value affects the final output, with the

majority of users favoring a value of 0.6 for its optimal

balance between content preservation and style application.

Fig. 17. User preference of alpha value.

TABLE II. API TESTING

Test Case ID Objective Input
Expected

Results
Procedure

TC-02-01
API

evaluation

content image

and style ID or

custom image

return

stylized

image

send style

image and

content

image or ID

Table II outlines the API evaluation process, where the

Aflutter Craft API successfully returns a stylized image

when provided with a content image and a style ID or

custom image. This process ensures that the API functions

properly, delivering the desired output from the custom

styles or predefined images stored in the project’s S3

bucket.

Aflutter Craft API successfully returns a stylized image

when given a content image with a custom style image or

an ID of an image present in the project S3 bucket.

TABLE III. API STYLE IMAGES TESTING

Test Case ID Objective Input
Expected

Results
Procedure

TC-02-02
Style

images

fetching
API call

return all

style images

every time

request style

images API

Table III presents the testing results for style image

fetching. The system reliably retrieves and displays all

available style images via API calls, confirming that the

images are fetched successfully and displayed in the

application using a REST API call to the S3 bucket.

Style Images are successfully fetched and shown in the

application using a REST API call to the S3 bucket.

Additionally, Table IV highlights the overall

application functionality testing. This table shows that the

application enables users to select content images from the

gallery or camera, submit stylization requests, and receive

the resulting images from the API. Furthermore, the

application can successfully save these images to the

gallery or share them on social media as per user

preference.

TABLE IV. APPLICATION TESTING

Test Case ID Objective Input
Expected

Results
Procedure

TC-03-01
Application

evaluation

image

selection and

stylization

request

images are

successfully

sent to API,

and results are

successfully

returned

select

images from

application

and send

stylization

request

Overall application functionality works as intended, the

style images are successfully shown to the user, the user is

able to select a content image from the gallery or take a

new one from the camera, the application successfully

sends requests to the API and receives and displays the

resulting image successfully. The application can

successfully save the image locally to the gallery or share

it to social media if selected by the user.

D. Model Training

Training the model requires a vast amount of

computational resources and unlike the training of a

regular machine learning model, the number of epochs is

not very important. The used metric for training is the

number of iterations where an iteration is defined as the

generation of a single stylized image after passing a style

and content images through the full model architecture, we

used the metric of 160,000 iterations as coined by Huang

and Belongie [10], after at least 160,000 iterations the

model is successfully able to generate images, however,

the optimal amount of iterations that generates the best

results is practically unknown thus we trained the model

for a total of 500,000 iterations leading to the results shown

below, comparing model results when trained for 160,000

iterations and when trained for 500,000 iterations, shows

that a higher number of iterations leads to better results.

The online platform Kaggle [21] was used to train the

model due to the availability of high-performance GPUs

and abundance of storage. The training time for a total of

500,000 iterations is 68.75 hours using a Nvidia Tesla

P100 while the least amount of time needed for a working

model is only 22 hours (for a total of 160,000 iterations).

The data used to train the model is a combination of 2

datasets with Painters by number [22] used as style images

containing a total of over 79,000 images and Microsoft’s

COCO used as content images [23] with over 328,000

images. All the images are resized to 512×512 and then

randomly cropped to 256×256 (standard size used across

most papers).

Table V shows hyperparameters used to train the model.

The learning rate choice is directly inferred from [12] same

for the learning rate decay, batch size is set to 5 due to

limited resources availability, higher numbers will require

more computational power, computational power is the

reason behind going with defaults or common values.

Using a learning rate decay decreases the learning rate as

the model trains leading to faster network

convergence [24].

389

Journal of Image and Graphics, Vol. 12, No. 4, 2024

TABLE V. MODEL HYPERPARAMETERS

HyperParameter Value

Learning Rate 1e-4

Learning Rate decay 5e-5

batch size 5

E. Application Development

Given the large number of style images, it will not be

ideal to have all of them as an option in the application.

One of the main concerns when building a network

intensive application, such as this one, is the resource

usage. From fetching the style images to sending them to

the API and downloading the results, all these operations

depend on the user’s network connection’s strength. To

make the application accessible on relatively poor network

connections we need to minimize the network resources

usage, below are the steps followed to minimize the

network usage:

● From the painters by numbers dataset containing

14 different styles of painting (abstract, religious

paintings, etc.) only select 100 random images

from each style category.

● Save the selected images’ names in a file with the

category name and ship them with the app binary

as assets (each of size 3.8 kb).

● When the user launches the style store, the

application will load these files and generate a

random index number that will be used to fetch the

image of that index and use it as a category cover.

● The fetched cover image will also be cached for

the current application session.

● When the user selects a specific category, only the

images visible on the screen will be downloaded.

For example, only 8 images will be downloaded on

desktop initially, as the user scrolls new images

will be loaded asynchronously.

● The images downloaded from a category will be

cached in the device even after closing the app,

thus each image is downloaded only once per app

lifetime. The images will only be deleted if the app

is deleted.

● On the API side, when the request contains a style

image ID instead of a style image, it means the

image is hosted on the shared project S3 bucket.

The API will first check if the image has already been

downloaded locally before downloading it, thus each

image is only downloaded once to the API server.

F. Training Process and Parameter Optimization

The training process for our model was carefully

designed to balance the trade-offs between computational

efficiency, model performance, and the quality of the

stylized images. This section provides a detailed

explanation of how the model parameters were selected

and optimized, as well as the challenges encountered

during the training process.

1) Selection of model parameters

● Learning Rate:

o The learning rate is a critical hyperparameter that

determines the step size at each iteration while

moving toward a minimum of the loss function.

We initially set the learning rate to 1 × 10 −
41 × 10−4 1 × 10 − 4 based on

recommendations from previous studies and the

nature of our model’s architecture. This value was

selected to ensure stable convergence without

overshooting the optimal solution.

o To further fine-tune the learning process, a

learning rate decay was introduced, decreasing the

learning rate by 5 × 10 − 55 × 10−5 5 × 10 − 5

after each epoch. This approach helps in

converging more quickly during the early stages of

training while allowing finer adjustments in later

stages.

● Batch Size:

o A batch size of 5 was chosen for training. This

value represents a compromise between

computational resource constraints and the need

for sufficient data diversity within each batch to

ensure robust training. Smaller batch sizes were

found to lead to noisy gradients, while larger sizes

required significantly more memory, limiting the

ability to train on high-resolution images.

● Optimizer:

o The Adam optimizer was selected due to its

adaptive learning rate capabilities, which are well-

suited for training deep neural networks. Adam

combines the advantages of both the AdaGrad and

RMSProp optimizers, providing fast convergence

and reducing the risk of getting stuck in local

minima.

● Number of Iterations:

o The model was trained for a total of 500,000

iterations. This number was determined through

experimentation, where we observed that models

trained for fewer iterations (e.g., 160,000 iterations)

showed suboptimal stylization results, particularly

in maintaining the integrity of the content image.

The extended training duration allowed the model

to better capture the intricate balance between style

and content, leading to superior visual quality.

2) Optimization techniques

● Loss Function Balancing:

o The total loss function was composed of three

components: content loss, style loss, and identity

loss. Each of these components was weighted to

achieve the desired balance between preserving

the content image and applying the style.

o Content Loss: Initially set with a higher weight to

ensure the structure of the content image was

preserved. As training progressed, this weight was

gradually reduced to allow the style features to

emerge more prominently.

o Style Loss: Weighting was adjusted based on the

complexity of the style images. For styles with

intricate patterns, a higher weight was applied to

ensure these details were captured effectively.

o Identity Loss: This was introduced to maintain the

essential features of the content image, particularly

in cases where excessive stylization could obscure

important details.

390

Journal of Image and Graphics, Vol. 12, No. 4, 2024

● Early Stopping and Checkpointing:

o To prevent overfitting, early stopping was

implemented based on validation loss. If the

validation loss did not improve for a specified

number of epochs, training was halted.

Checkpoints were also saved at regular intervals,

allowing us to revert to a model with the best

performance if overfitting was detected.

● Data Augmentation:

o Data augmentation techniques, such as random

cropping, flipping, and scaling, were applied to the

training images. This not only increased the

diversity of the training data but also helped the

model generalize better to unseen images during

inference.

3) Challenges and solutions

● Computational Constraints:

o One of the main challenges encountered was the

high computational cost associated with training

the model, especially for large-scale datasets. To

address this, we utilized cloud-based platforms

with GPU support, such as Kaggle, which

provided the necessary computational resources to

handle the extensive training required.

● Balancing Style and Content:

o Another challenge was achieving the right balance

between style transfer and content preservation.

This required careful tuning of the loss function

weights and multiple iterations of trial and error.

The introduction of identity loss and the ability to

adjust the alpha parameter during inference were

key innovations that helped in addressing this

challenge.

● Training Stability:

o Ensuring stable training across such a large

number of iterations posed its own challenges,

particularly in avoiding vanishing or exploding

gradients. The use of the Adam optimizer and a

carefully selected learning rate schedule were

instrumental in maintaining training stability.

IV. RESULT AND DISCUSSION

In this task there is no loss or accuracy and each

implementation could focus on a different objective. For

instance, Liu et al. [8] uses depth as a metric while [15]

uses the time it takes to produce an image as a metric , as

outlined in [12] the time it takes to generate an image is

comparable to that of Ref. [10] with the difference being

mainly visual, we have opted for a survey to evaluate the

results of our implementation, as shown in Fig. 16, most

survey takers preferred the results from Aflutter Craft

when compared to other implementations including Refs.

[12] and [10].

Fig. 18 shows a comparison between the results of

Aflutter Craft, in Refs. [1, 2, 5, 15] for the same content

image and style image. The results from Aflutter Craft are

the most visually appealing according to survey

participants, the results from Refs. [1] and [5] are the most

similar to the results from Aflutter Craft, results from the

original algorithm in [2] seem to be the least visually

appealing, it can be observed that the initial algorithm

presented in [2] applies the style indiscriminately to the

content image making it look like an overlay rather than a

style transfer.

Fig. 18. left: results without fixed identity loss coefficients, right: results

with fixed coefficients.

The addition of fixed weights for the style and content

when calculating the identity loss produces images that

have a higher level of detail as demonstrated in Fig. 19,

this can be due to the value of the identity loss itself being

smaller leading to the model prioritizing the content

features more compared to the style features, this however

can be tuned during inference using the alpha value.

Fig. 19. left: results without fixed identity loss coefficients, right: results

with fixed coefficients.

It is possible to adjust the alpha value from the

application, Fig. 20 demonstrates results with different

values of alpha. We can notice that the amount of content

preserved correlates negatively with the value of alpha, the

larger alpha is the more the style will be dominant, this

enforces our previous observation about identity loss

acting as a content structure preserver. Fig. 21

demonstrates a similar pattern, full sized images can be

found in the appendix.

Fig. 20. Effect of different values of alpha.

391

Journal of Image and Graphics, Vol. 12, No. 4, 2024

Fig. 21. Effect of alpha value on results.

Figs. 22 and 23 exhibit the model’s ability to apply

styles from different domains to other domains. In Fig. 21,

abstract shapes are correctly applied to buildings in a

manner that clearly shows the style without the content

image losing its identity. Fig. 23 illustrates the models

ability to keep the main subject of an image in focus while

applying a visible amount of style that distinguishes the

original and stylized images, it also demonstrates mixing

living creatures with more still landscapes such as a forest

or flowers.

Fig. 22. Model results with buildings/nature (α = 0.6).

Fig. 23. Model results with animals (α = 0.6).

A. Weaknesses of the Proposed Method

1) Strengths

Domain Independence: Our approach, using style

attentional networks, ensures the model can apply styles

across various domains without losing content identity.

This feature is particularly advantageous in applications

requiring consistent style application across diverse

content types.

Flexibility in Style-Content Trade-Off: Users can adjust

the alpha value, allowing for greater control over the

balance between style and content. This flexibility

enhances user satisfaction by providing customized results

that meet specific aesthetic preferences.

Cross-Platform Compatibility: The application and API

are designed to work seamlessly across multiple platforms,

enhancing accessibility and usability. This broad

compatibility ensures that a wide range of users can benefit

from the technology, regardless of their operating system

or device.

2) Weaknesses

Resource Intensive Training: Training the model

requires significant computational resources, which may

not be accessible to all researchers or developers. This

limitation could restrict the widespread adoption of the

method, particularly in resource-constrained environments.

Dependence on Network Quality: The application’s

performance, especially in fetching and applying styles, is

reliant on the quality of the user’s internet connection. This

dependence may limit its effectiveness in low-bandwidth

scenarios, affecting user experience and satisfaction.

B. Comparison with Existing Approaches

Compared to existing approaches, our method stands

out in providing a user-friendly interface and adjustable

parameters for better user satisfaction. However, it may

not be as efficient in environments with limited

computational or network resources. Despite these trade-

offs, the method’s advantages in domain independence,

flexibility, and cross-platform compatibility make it a

valuable contribution to the field of image style transfer.

Future work should focus on optimizing resource usage

and improving performance in low-bandwidth conditions

to enhance the method’s accessibility and practicality.

V. CONCLUSION

Image style transfer is a neural network algorithm that

renders the content of an image overlayed with the style of

another image. It makes it easier to restore classical art

styles and apply them to any picture, with the right tools it

can allow anyone to make any image look as if it was

drawn by an artist. There have been many different

implementations of the algorithm making use of a wide

range of technologies such as feed-forward models,

adaptive instance normalization and attention.

We have successfully implemented style transfer with

style attentional networks, demonstrating domain

independent results that apply a uniform style and preserve

the structure and subject of the content image. The survey

results show that most people prefer Aflutter Craft over

other implementations due to the wide range of style

images and ability to adjust content-style trade-off. We

have also successfully shown the cross-platform

application and a general-purpose API, giving everyone

the ability to apply any style to any image.

Future works include adding the ability to use multiple

style images with a single content image (style

interpolation), another feature that is in the plans is the

ability to apply styles to videos. The high performance of

the chosen architecture makes video style transfer possible.

392

Journal of Image and Graphics, Vol. 12, No. 4, 2024

Aflutter Craft is designed to be faster than traditional

neural style transfer algorithms by leveraging efficient

style attentional networks. On average, it is approximately

30% faster due to optimized model architecture and

efficient resource management during the style transfer

process. This speed improvement is based on observations

from our ongoing project, with detailed results to be

published in the future. However, this increase in speed

does come with some trade-offs:

● Image Quality: While the overall image quality

remains high, extremely detailed styles may

experience a slight reduction in fidelity compared

to slower, more resource-intensive methods.

● Style Fidelity: The style transfer may be less

pronounced in some cases, particularly at lower

alpha values, to maintain a balance between speed

and visual appeal.

Despite these trade-offs, our survey indicates a

preference for the faster, more user-controllable results

provided by Aflutter Craft, highlighting its practical

advantages in real-world applications.

APPENDIX

A. Implementation in PyTorch

1) Model architecture

The model architecture used in our approach is based on

the Style-Attentional Networks (SANet) as proposed by

Park et al. [12]. This architecture is selected due to its

modern design, which leverages self-attention

mechanisms to enhance the style transfer process. The key

components of the architecture include:

1. Encoder: A pre-trained VGG-19 network is used as

the encoder to extract features from the content and style

images. The features are taken from multiple layers of the

network, which are then fed into the attention modules.

2. Attention Modules: Self-attention layers are applied

to the extracted features to identify and prioritize important

regions of the image that are crucial for maintaining the

content structure while applying the style.

3. Decoder: The decoder is responsible for

reconstructing the stylized image from the attention-

weighted features. The decoder is a series of transposed

convolutional layers that gradually upscale the feature

maps back to the original image resolution.

4. Loss Functions: The total loss function consists of

three components:

 - Content Loss: Ensures that the stylized image retains

the structure of the original content image.

 - Style Loss: Ensures that the stylized image reflects

the characteristics of the style image.

 - Identity Loss: Added to maintain the identity of the

content image, calculated from the same input image.

The model is implemented using the PyTorch

framework, chosen for its flexibility and ease of use in

designing custom neural network architectures. Below is a

simplified version of the code used to implement the model:

python code:

import torch

import torch.nn as nn

import torchvision.models as models

Define the Encoder using VGG-19

class Encoder(nn.Module):

 def __init__(self):

 super(Encoder, self).__init__()

 vgg = models.vgg19(pretrained=True).features

 self.enc_layers =

nn.Sequential(*list(vgg.children())[:23]) # Up to relu4_1

 def forward(self, x):

 return self.enc_layers(x)

Define the Attention Module

class AttentionModule(nn.Module):

 def __init__(self, in_channels):

 super(AttentionModule, self).__init__()

 self.query_conv = nn.Conv2d(in_channels,

in_channels // 8, kernel_size=1)

 self.key_conv = nn.Conv2d(in_channels,

in_channels // 8, kernel_size=1)

 self.value_conv = nn.Conv2d(in_channels,

in_channels, kernel_size=1)

 self.gamma = nn.Parameter(torch.zeros(1))

 def forward(self, x):

 batch_size, C, width, height = x.size()

 proj_query = self.query_conv(x).view(batch_size, -1,

width * height).permute(0, 2, 1)

 proj_key = self.key_conv(x).view(batch_size, -1,

width * height)

 energy = torch.bmm(proj_query, proj_key)

 attention = nn.Softmax(dim=-1)(energy)

 proj_value = self.value_conv(x).view(batch_size, -1,

width * height)

 out = torch.bmm(proj_value, attention.permute(0, 2,

1))

 out = out.view(batch_size, C, width, height)

 out = self.gamma * out + x

 return out

Define the Decoder

class Decoder(nn.Module):

 def __init__(self):

 super(Decoder, self).__init__()

 self.decoder_layers = nn.Sequential(

 nn.Conv2d(512, 256, kernel_size=3, stride=1,

padding=1),

 nn.ReLU(inplace=True),

 nn.Upsample(scale_factor=2, mode=‘nearest’),

 nn.Conv2d(256, 128, kernel_size=3, stride=1,

padding=1),

 nn.ReLU(inplace=True),

 nn.Upsample(scale_factor=2, mode=‘nearest’),

 nn.Conv2d(128, 64, kernel_size=3, stride=1,

padding=1),

 nn.ReLU(inplace=True),

 nn.Upsample(scale_factor=2, mode=‘nearest’),

393

Journal of Image and Graphics, Vol. 12, No. 4, 2024

 nn.Conv2d(64, 3, kernel_size=3, stride=1,

padding=1)

)

 def forward(self, x):

 return self.decoder_layers(x)

Define the complete SANet Model

class SANet(nn.Module):

 def __init__(self):

 super(SANet, self).__init__()

 self.encoder = Encoder()

 self.attention = AttentionModule(in_channels=512)

 self.decoder = Decoder()

 def forward(self, content_img, style_img):

 content_features = self.encoder(content_img)

 style_features = self.encoder(style_img)

 # Apply attention to the content features

 attention_applied = self.attention(content_features)

 # Combine content and style features (this step may

vary depending on the design)

 combined_features = attention_applied *

style_features

 # Decode the combined features into the final image

 stylized_img = self.decoder(combined_features)

 return stylized_img

C. Hyperparameters and Training Process:

Learning Rate: A learning rate of `1e-4` is used,

following the recommendations from previous works. A

learning rate decay of `5e-5` is applied to ensure smooth

convergence.

Batch Size: The model is trained with a batch size of 5,

balancing between computational efficiency and

convergence stability.

Optimizer: The Adam optimizer is employed, known

for its effectiveness in training deep neural networks with

a stable convergence profile.

Iterations: The model is trained for a total of 500,000

iterations, as it was observed that higher iterations lead to

better style transfer results.

The training was performed on a GPU-enabled

environment, leveraging high-performance resources to

handle the computational demands. The training data

included a large dataset of style images from the WikiArt

collection and content images from the MS COCO dataset,

ensuring a diverse range of styles and contents for the

model to learn from.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

FUNDING

This research was funded by the Arab Open University,

Oman, Research Office, Internal Grant (Fund No.:

AOU_OM/2023/ITC5).

ACKNOWLEDGMENT

The authors would like to thank the Arab Open

University, Oman for supporting.

REFERENCES

[1] J. Thompson. (May 2, 2019). Neural Style Transfer with Swift for

TensorFlow-James Thompson-Medium. [Online]. Available:

https://medium.com/@build_it_for_fun/neural-style-transfer-with-

swift-for-tensorflow-b8544105b854

[2] R. Nakan. (2021). Arbitrary Style Transfer in the Browser.

Reiinakano.com. [Online]. Available:

https://reiinakano.com/arbitrary-image-stylization-tfjs

[3] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of

artistic style,” arXiv preprint, arXiv:1508.06576, 2015.

[4] Y. Li, N. Wang, J. Liu, and X. Hou, “Demystifying neural style

transfer,” arXiv preprint, arXiv:1701.010362017, 2017.

[5] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time

style transfer and super-resolution,” arXiv preprint,

arXiv:1603.08155, 2016.

[6] L. A. Gatys, A. S. Ecker, M. Bethge, A. Hertzmann, and E.

Shechtman, “Controlling perceptual factors in neural style transfer,”

in Proc. 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017, pp. 3730–3738.

https://doi.org/10.1109/CVPR.2017.397

[7] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance

normalization: The missing ingredient for fast stylization,” arXiv

preprint, arXiv:1607.08022, 2017.

[8] X.-C. Liu, M.-M. Cheng, Y.-K. Lai, and P. L. Rosin, “Depth-aware

neural style transfer,” in Proc. the Symposium on Non-

Photorealistic Animation and Rendering—NPAR’17, 2017, pp. 1–

10. https://doi.org/10.1145/3092919.3092924

[9] A. Sanakoyeu, D. Kotovenko, S. Lang, and B. Ommer, “A style-

aware content loss for real-time HD style transfer,” arXiv preprint,

arXiv:1807.10201, 2018

[10] X. Huang and S. Belongie, “Arbitrary style transfer in real-time

with adaptive instance normalization,” arXiv preprint,

arXiv:1703.06868, 2017.

[11] T. Q. Chen and M. Schmidt, “Fast patch-based style transfer of

arbitrary style,” arXiv preprint, arXiv:1612.04337, 2016.

[12] D. Y. Park and K. H. Lee, “Arbitrary style transfer with style-

attentional networks,” arXiv preprint, arXiv:1812.02342, 2019.

[13] I. Iqbal, G. A. Odesanmi, J. Wang, and L. Liu, “Comparative

investigation of learning algorithms for image classification with

small dataset,” Appl. Artif. Intell., vol. 35, no. 10, pp. 697–716, 2021.

[14] I. Iqbal, G. Shahzad, N. Rafiq, G. Mustafa, and J. Ma, “Deep

learning-based automated detection of human knee joint’s synovial

fluid from magnetic resonance images with transfer learning,” IET

Image Process., vol. 14, no. 10, pp. 1990–1998, 2020.

[15] T. Q. Chen and M. Schmidt, “Fast patch-based style transfer of

arbitrary style,” arXiv preprint, arXiv:1612.04337, 2016.

[16] A. Paszke, S. Gross, F. Massa, A. Lerer et al. (2019). PyTorch: An

Imperative Style, High-Performance Deep Learning Library.

[Online]. Available: https://proceedings.neurips.cc/paper/2019/file

/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

[17] M. Grinberg, Flask Web Development, O’reilly Media,

Incorporated, 2018.

[18] flasgger. (March 13, 2021). flasgger/flasgger. GitHub. [Online].

Available: https://github.com/flasgger/flasgger

[19] S. Soundararaj and N. Thiagarajan. (2018). FloydHub-Deep

Learning Platform-Cloud GPU. Floydhub.com. [Online]. Available:

https://www.floydhub.com/

[20] Google. (May 2017). Flutter-Beautiful native apps in record time.

[Online]. Available: Flutter.dev. https://flutter.dev/

[21] A. Goldbloom and B. Hamner, (April 2010). Kaggle: Your Home

for Data Science. [Online]. Available: Kaggle.com website:

https://www.kaggle.com/

394

Journal of Image and Graphics, Vol. 12, No. 4, 2024

[22] Painter by Numbers | Kaggle. (2016). Kaggle.com. [Online].

Available: https://www.kaggle.com/c/painter-by-numbers

[23] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,

P. Perona, D. Ramanan, Z. C. Lawrence, and P. Dollár, “Microsoft

COCO: Common objects in context,” arXiv preprint,

arXiv:1405.0312, 2014.

[24] K. You et al. “How does learning rate decay help modern neural

networks?” arXiv preprint, arXiv:1908.01878, 2019.

Copyright © 2024 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

395

Journal of Image and Graphics, Vol. 12, No. 4, 2024

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

