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Abstract—Image Style transfer is a neural network algorithm 

that copies the style of an existing image into another image 

while preserving the image’s content. There have been 

various approaches on style transfer in an effort to speed up 

the process or provide more appealing results, one of which 

is the usage of style attentional networks. Attention is an 

algorithm that scores different parts of an image based on 

their importance in the overall image, attention helps neural 

networks distinguish important parts of an image. We use 

attention to identify the parts of an image that represent 

image style to apply an overall style rather than a mask and 

to conserve parts of the content that are crucial to its identity 

(a visible object, a focused subject, etc.). Aflutter Craft 

enhances an existing algorithm that uses attention for style 

transfer. Results show that our algorithm uniformly applies 

important parts of the style while simultaneously preserving 

the subject of the content image. Results from Aflutter Craft 

are chosen to be the most visually appealing according to 

38.4% survey participants when compared to 4 other 

implementations. In addition, this paper introduces a cross 

platform application with a general Application 

Programming Interface (API) capable of performing style 

transfer from anywhere.  

Keywords—Application Programming Interface (API), Art, 

convolutional neural network, deep learning, flask, neural 

network, PyTorch, self-attention, style transfer, transfer 

learning, transformer 

I. INTRODUCTION

Making art is not an easy task, not everyone is capable 

of being an artist and producing art that resonates with the 

masses; classic artists such as Picasso and Michelangelo 

are regarded as the greatest by current artists and their 

works are sold at absurdly high prices usually in millions 

of dollars. Currently, there are no artists with the ability to 

replicate astonishing classical art styles down to an 

individual artist’s unique brush. Computers have come a 

long way and are currently capable of performing feats 

beyond what’s humanly possible, it is possible to teach a 

neural network to replicate classical art styles and more 

into any image, that process is known as style transfer. 

Fig. 1 showcases a basic example of style transfer, 

where the content of the original image is transformed 

using the artistic style of another image. The 

transformation highlights the model’s ability to apply 

complex artistic patterns while preserving key content 

features, such as the main subject’s shape and structure. 

Manuscript received August 7, 2024; revised August 14, 2024; accepted 

August 27, 2024; published November 18, 2024.  

Fig. 1. Style transfer example [1]. 

Aflutter craft makes the process of replicating classical 

art styles easier not just for professional artists but for 

everyone. Presently, to make an image appear in a style 

from a specific classical artist, one needs to be fluent in 

Photoshop along with other image editing tools, making it 

harder for everyone. Some websites can apply an image’s 

style to another [2]; however, they are limited when it 

comes to the selection of provided styles, not to mention 

the lack of native mobile or desktop applications capable 

of performing this task. 

Aflutter craft style store consists of the entirety of 

wikiart images, a total of over 40,000 images, giving users 

a huge collection of art styles to choose from with the 

ability to upload any image as style. In addition to the 

ability to customize the trade-off between content and style 

images, with the availability of mobile, desktop and web 

applications, applying a style to images has never been 

more straightforward. 

II. LITERATURE REVIEW

Neural Style transfer being a recent algorithm has 

numerous works uncovering the mechanics behind why it 

works and different iterations improving on the algorithm, 

from improvements to the time it takes to stylize an image, 

to more complex algorithms that are capable of not style 

transfer while accounting for other factors in the image 

such as depth and color preservation. 

Gatys et al. [3] proposed using a Convolutional Neural 

Network (CNN) trained for object detection to extract 

image features (style and content) from specific layers of 

that network, then feed the images to a style transfer 

network to generate a new image by minimizing the mean-

squared distance between the entries of the Gram matrices 

from the original image and the Gram matrices of the 

image to be generated. The used CNN is VGG-19 trained 

on a labeled image dataset of 15 million photos, the paper 

notes higher layers such as conv4_2 have a fair knowledge 
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of the image content, and lower layers maintain less 

content, the style is present in multiple higher layers 

ending with 1 such as conv4_1 and conv1_1. Issues with 

the proposed architecture include: 

● The time taken for the synthesis procedure 

correlates linearly with the image size. 

● synthesized images are subject to white noise 

(occurs in photo-realistic scenarios). 

● separation of image content from style is not a 

well-defined problem. 

This diagram in Fig. 2 illustrates the architecture of the 

original neural style transfer algorithm proposed by  

Gatys et al. [3]. It demonstrates how the algorithm uses a 

Convolutional Neural Network (CNN) to extract and blend 

the content and style features from different images. The 

key components of the architecture, including content and 

style layers, are labeled to show the flow of data through 

the network. 

 

 
Fig. 2. Original neural style transfer algorithm [3]. 

Li et al. [4] argued that style transfer is a problem of 

domain adaptation, the gram matrix used to optimize the 

losses to generate the stylized image is similar to the 

process of Maximum Mean Discrepancy (MMD) with the 

second-order polynomial kernel, meaning the style 

information is represented by a distribution of activations 

in the CNN and with the process of distribution alignment 

style transfer is achievable, thus replacing the gram matrix 

with an MMD kernel should perform the style transfer 

successfully, different kernels functions are experimented 

with such as Gaussian kernel, making the fusion of two 

different kernels possible and producing different looking 

images. 

Johnson et al. in [5] suggested using perceptual loss 

from a pre-trained loss network. The perceptual loss 

function can calculate the difference between two images’ 

high-level features which works by summing all the 

squared errors of all pixels and then taking the mean 

compared to per-pixel loss which only sums the errors 

between pixels. The results are a much faster network up 

to 1060x times faster in inference compared to per-pixel 

loss using image size of 256 × 256, this speed up also 

opens the door for real-time video style transfer which is 

demonstrated at 20fps running on a Pascal Titan X. 

In the work [6] perceptual factors such as space, color, 

and scale have been controlled for better results, for space, 

the goal is to specify which region of the content image is 

stylized by which region of the style image, with this a 

single image can contain style from multiple sources for 

example the sky can have a different style compared to the 

ground or buildings, the second factor to control is color, 

for instance, using a style without applying its colors to the 

content image which helps in preserving the color of the 

content. The final controlled factor is the scale of the image, 

this technique removes the content loss from a style image 

to replace the full image texture enabling the creation of 

high-resolution images with combined styles. 

Ulyanov et al. [7] proclaims that using perceptual losses 

despite being much faster results in less appealing images 

compared to the original paper with per-pixel loss, it then 

suggests replacing batch normalization with instance 

normalization applied at both training and testing based on 

an observation by Ulyanov et al. [7] stating “the network 

generates poor quality images if trained with a large 

dataset”. The key difference between instance and batch 

normalization is that the latter normalizes over a whole 

batch of images instead of just one image leading to one 

image with abnormal mean or standard deviation affecting 

the entire batch while the former normalizes each image 

separately and directly eliminates issues found in batch 

normalization. This results in a network that is just as fast 

but produces more appealing results according to  

Ulyanov et al. [7].  

In the previous works the style applied to all parts of the 

image equally with no regard to image depth resulting in 

the images losing their sense of depth. Lu et al. [8] have 

proposed using a depth prediction network for estimating 

the depth of the image and accordingly stylize the image. 

The network architecture is based on the work by  

Johnson et al. [5] with the addition of depth estimation 

network. Optimizing the content loss through the depth 

estimation network gives the depth loss, the final 

optimized parameter is the total loss produced from the 

addition of the style and content loss-produced by the 

object recognition loss network and the depth loss. The 

result is images that look more realistic, with more 

distinguishable objects and a noticeable sense of depth. 

 

  

Fig. 3. Results without vs with depth awareness [8]. 

The Fig. 3 compares the output of style transfer models 

with and without depth awareness. The images on the left 

show results from a model that does not account for image 

depth, leading to flattened visual effects. The right-side 

images incorporate depth awareness, resulting in more 

realistic and dimensionally accurate stylized images, 

especially in scenes with varying depths like landscapes. 

Previous works have depended on a pre-trained VGG-

19 network for content and style extraction, however, the 

VGG network is trained for object recognition and 

therefore cannot accurately interpret styles.  

383

Journal of Image and Graphics, Vol. 12, No. 4, 2024



 

Sanakoyeu et al. [9] has proposed training a VGG-16 

network on art style images from wikiart and using content 

images from a scene recognition dataset for training the 

style transfer network for which it proposes a new 

architecture. The proposed network uses an encoder 

decoder feed-forward architecture in contrast to the 

optimization-based approach in previous papers. In 

addition, the new architecture makes use of a discriminator 

to compare the stylized image to the original content image 

to preserve details as much as possible while maintaining 

artistic accuracy. The network allows quick inference 

(0.6 s) besides real-time HD video stylization. 

This Fig. 4 depicts the architecture of a style-aware 

content loss network. It emphasizes how the network 

preserves content structure while applying artistic styles. 

The figure includes annotations showing the flow from the 

encoder to the decoder, highlighting the interaction 

between style and content layers that optimize the balance 

between style fidelity and content preservation. 

 

  
Fig. 4. Style-aware content loss network architecture [9]. 

A novel normalization method referred to as Adaptive 

instance normalization (AdaIN) has been proposed in [10]. 

AdaIN behavior is observed to work like a style loss. It 

works by adjusting the mean and variance of the content 

image to that of the style image and thus performing style 

transfer, this works arbitrarily for any style, the used 

architecture is a feed-forward encoder-decoder 

architecture with the AdaIN layer at its heart. The result is 

quick style transfer (0.6 s), allowing adjusting parameters 

such as color and content-style trade-off during inference 

without training the model again with those new 

parameters. 

  

Fig. 5. Network architecture with AdaIN [10]. 

The diagram in Fig. 5 explains the architecture of the 

network using Adaptive Instance Normalization (AdaIN). 

It illustrates how AdaIN adjusts the mean and variance of 

the content image to match those of the style image, 

enabling arbitrary style transfer. The key layers and 

operations are clearly labeled, demonstrating how this 

architecture achieves real-time style transfer with high 

efficiency. 

Chen et al. [11] proposed an alternative method for 

applying style transfer using an arbitrary number of styles. 

The proposed approach makes use of a feed-foreword 

CNN with a convolution-deconvolution architecture. The 

way it works is both the content and style images will pass 

through the convolutional network (VGG network) to 

extract high-level features and then pass through a style 

swap layer, the style swap layer concatenates the style and 

content images by swapping the texture of a content image 

with that of the style image using randomly selected 

patches (usually of size 3 × 3) from the style image, after 

that the decoder approximates the stylized image and its 

loss. The simplicity of the approach allows generalization 

between styles and style-content trade-off by changing the 

patch size besides fast style transfer by requiring fewer 

iterations. 

This Fig. 6 shows the patch-based network architecture 

used for style transfer. It explains how the network swaps 

patches between content and style images to generate the 

final stylized output. The use of small, randomly selected 

patches allows for a more flexible and detailed application 

of styles across various content types. 

 

 
Fig. 6.  Patch-based network architecture [11]. 

Most of the previously reviewed works depend solely 

on CNNs and optimizations techniques to synthesize the 

final image. Park et al. [12] has proposed using self-

attentional networks (SANet) which allow matching the 

nearest style features to the content image structure, a new 

loss function referred to as identity loss is used, it works as 

a metric for evaluating generated image. After feature 

extraction from the VGG-19 network the output passes 

through SANet to give style and content feature maps 

priority and then according to that priority the synthesized 

image is reconstructed by the decoder. The image then 

again passes through an encoder to calculate the losses. 

The result of such a complex network is more efficient and 

quicker style transfer (comparable to AdaIN) that transfers 

different styles for each semantic content and maintains 

high content detail, beside the ability to adjust content-

style trade-off in real-time, it also allows the mixing of 

multiple styles. The authors conducted a survey to 

compare their results with other previous algorithms, and 

34.5% of the 80 people surveyed preferred the result of 

SANet. 

This Fig. 7 contrasts the architectures of two networks: 

one focusing on identity loss and the other on self-attention. 

The left side highlights the role of identity loss in 

maintaining content integrity during style transfer, while 

the right side shows how self-attention mechanisms 
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selectively apply styles to important regions of the content 

image. The side-by-side comparison underscores the 

advantages of integrating both methods for improved 

stylization. 

 

  

 
Fig. 7. Identity loss network (left), Self-Attention network (right) [12]. 

The previous works illustrate the progress made in the 

field of style transfer through the years; the method used 

has considerably changed across papers and iterations. 

Each paper reviewed has had a noticeable contribution 

ranging from a simpler, more efficient network 

architecture to allowing the usage of a single network to 

apply any style regardless of the network being trained on 

it or not. For a better understanding of the changes 

proposed by each paper, we encourage the reader to dive 

deeper and read the papers. The overall goal of all the 

reviewed papers remains the same; to produce a neural 

network that is capable of replicating any art style to any 

content image without significantly changing the image’s 

focus or subject. 

The study of researches [1, 13] compares learning 

algorithms for image classification with small datasets, 

aiming to identify the most effective approach. We fine-

tuned hyperparameters for optimizers and models, 

conducting initial experiments with eight algorithms to 

approximate optimal values. Final experiments with near-

optimal hyperparameters revealed that the AdaGrad 

learning algorithm outperforms others, achieving higher 

accuracy, shorter training times, and lower memory usage. 

 Deep learning is revolutionizing disease diagnosis in 

radiology, yet acquiring large, detailed labelled datasets 

remains a challenge. Transfer learning mitigates this by 

starting with pre-trained weights from a large, similar 

dataset and fine-tuning them on a smaller, specific dataset. 

Iqbal et al. [14] uses deep learning to detect synovial fluid 

in human knee joints from Magnetic Resonance Imaging 

(MRI) images, proposing a specialized convolutional 

neural network for automated detection. Trained and 

evaluated on two independent datasets, the model achieves 

high sensitivity, specificity, precision, and accuracy, 

offering a novel, efficient method for synovial fluid 

analysis. 

III. MATERIALS AND METHODS 

The three key components of Aflutter Craft are model 

development, API development, and Mobile Application 

Development. The employed development methodology is 

the waterfall model, due to each component requiring the 

one prior to it; for instance, one cannot start building the 

API before the model is complete; subsequently, this 

applies to major parts of the mobile application as well. 

The waterfall model diagram in Fig. 8 outlines the step-

by-step approach used in the development of the Aflutter 

Craft platform. It shows the sequence of stages from model 

development to API and mobile application development, 

emphasizing the dependencies between each stage and the 

importance of completing one phase before moving on to 

the next. 

 

 
Fig. 8. Project waterfall model. 

A. Design 

The model architecture used in our approach is the one 

proposed by Park et al. [15] with the addition of a fixed 

identity loss coefficients (representing style and content 

loss weights). The reason behind the architecture choice is 

that it’s a modern implementation taking advantage of new 

technologies such as attention, another important factor is 

that it allows relatively fast inference which is a 

requirement in a mobile application. The deep learning 

framework of choice is PyTorch [16] due to its ease of 

usage. 

This Fig. 9 presents the overall network architecture 

used in the Aflutter Craft platform. It includes details on 

the encoder, attention modules, and decoder, along with 

the flow of data between these components. The diagram 

also highlights the use of fixed identity loss coefficients, 

which help preserve content structure while applying 

styles. 

 

  
Fig. 9.  Project network architecture [12]. 

Identity loss is the metric used to keep the content of the 

original image, it is calculated from the same input image 

unlike the style and content loss which are calculated 

across the entire batch of images, as a result, the identity 

loss makes it possible to simultaneously preserve the 

content image structure while applying characteristics 

from the style image. 
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𝐿𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦  =  𝜆𝑖𝑑𝑒𝑛𝑡𝑡𝑖𝑦1(||(𝐼𝑐𝑐 − 𝐼𝑐)||2 + ||(𝐼𝑠𝑠 −

𝐼𝑠)||2) + 𝜆𝑖𝑑𝑒𝑛𝑡𝑡𝑖𝑦2 ∑ (||𝜙𝑖(𝐼𝑐𝑐) − 𝜙(𝐼𝑐𝑐)||2
𝐿
𝑖 =1 +

 ||𝜙𝑖(𝐼𝑠𝑠) − 𝜙(𝐼𝑠)||2)                       (1) 

where 𝐼𝑐𝑐 (or 𝐼𝑠𝑠 ) denotes the output image synthesized 

from two same content (or style) images, each 𝜑𝑖 denotes 

a layer in the encoder,  𝜆𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦1  and 𝜆𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦2  are 

identity loss weights. By fixing 𝜆𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦1 and 𝜆𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦2 , 

we limit it’s value to ranges that are observed to be smaller 

than what’s calculated by the network, which leads to the 

network prioritizing the content image structure over the 

style image characteristics. 

The API is designed using the python web framework 

Flask [17] with flasgger [18] for openAPI compatible 

documentation and local testing, the API request is of type 

POST with the content image and style image ID or a 

custom style image encoded as base64. When it comes to 

ease of access, an online server is a requirement, currently 

the API is deployed to FloydHub [19] allowing inference 

from anywhere as long as the gateway is available. With 

the alpha parameter it is easy for users to adjust the style-

content trade-off whether the goal is preserving more of 

the content or applying the style to its fullest. After 

performing various tests and a survey with different alpha 

values ranging from 0.1 (least amount of style) to 1.0 (most 

amount of style) with increments of 0.1, the value selected 

as default is 0.6 or 60% of the style. The reason for 

choosing 0.6 was that it had the highest survey responses 

at 19.4% when compared to values from 0.1 to 1.0. 

The Fig. 10 showcases the API documentation and 

testing interface used in Aflutter Craft. It includes sections 

displaying the available endpoints, sample requests and 

responses, and the testing environment. The layout is 

designed to be user-friendly, facilitating easy integration 

and testing of the API across various platforms. 

 

 
Fig. 10.  API documentation and testing. 

The final component is the user interface. Both the 

desktop and mobile applications will share similar design 

attributes and work similarly. The consensus is to have 

three main screens in the mobile application each with a 

pre-defined purpose. First the main page showing the 

currently selected style and content images and a slider for 

adjusting the alpha value. Another screen for selecting the 

style and the final screen shows the results with the option 

to save the image or share it to social media. When 

selecting the style, the user will be able to select an image 

from the gallery or take a new picture from either the front 

or back camera. The Desktop UI on the other hand will 

have a main page that shows a grid of content, style and 

stylized images respectively with the alpha slider 

displayed below the images. Selecting a style will open the 

style store. Another addition to the desktop app is an about 

page. 

This Fig. 11 illustrates the prototype of the mobile 

application interface for Aflutter Craft. It features the main 

screens of the application, including style and content 

selection, alpha adjustment, and the final result display. 

The design prioritizes user experience, ensuring intuitive 

navigation and easy access to key features. 

 

  
Fig. 11. Mobile application interface prototype. 

  
Fig. 12.  Main desktop application interface. 

The Fig. 12 displays the main interface of the desktop 

application. It includes a grid layout that shows content, 

style, and stylized images, with an alpha slider below the 

images for adjusting the style-content balance. The 

interface is designed for efficiency, allowing users to 

quickly select styles and view results. 

 

  

Fig. 13. Desktop app style category selection with option to upload a 

local image. 
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This Fig. 13 shows the style selection screen of the 

desktop application, where users can choose from various 

style categories or upload a custom style image. The 

interface is designed to be straightforward, providing users 

with a wide range of artistic options while ensuring easy 

customization. 

 

  

Fig. 14.  Desktop application about page. 

The about page of the desktop application in Fig. 14 

provides detailed information about the Aflutter Craft 

platform, including its capabilities and underlying 

technology. It also links to the open-source repository and 

other resources, encouraging community engagement and 

contribution. 

1) Neural network architecture and attention 

mechanism enhancements 

a) Neural network architecture 

The core of our neural network architecture is based on 

a modified version of the Style-Attentional Network 

(SANet), which incorporates advanced attention 

mechanisms to improve the fidelity and control of style 

transfer. The architecture consists of three primary 

components: the encoder, the attention module, and the 

decoder. 

● Encoder 

o The encoder is derived from the VGG-19 network, 

pre-trained on the ImageNet dataset. This choice is 

motivated by VGG-19’s ability to effectively 

extract hierarchical features from images, which 

are crucial for both content preservation and style 

representation. 

o The encoder takes in the content and style images, 

passing them through multiple convolutional 

layers. We utilize the feature maps from specific 

layers (such as relu4_1) to capture different levels 

of abstraction, which represent the content 

structure and style features of the images. 

● Attention Module: 

o The attention module is the core enhancement in 

our architecture. Traditional style transfer models 

often apply style uniformly across the image, 

which can lead to the loss of important content 

details. Our attention mechanism mitigates this by 

focusing on the most salient regions of the content 

image. 

o Self-Attention Mechanism: We implemented a 

self-attention mechanism that allows the model to 

dynamically assign weights to different regions of 

the content image based on their importance. The 

attention mechanism computes a relevance score 

for each pixel, which determines how much 

influence the corresponding style feature should 

have on that pixel. 

o Attention Weights: These weights are calculated 

using a combination of query, key, and value 

matrices, which are derived from the feature maps 

of the content image. The query and key matrices 

are used to calculate the attention scores, while the 

value matrix adjusts the feature maps based on 

these scores. This ensures that regions with higher 

attention scores retain more of the original content 

characteristics. 

o Enhancements: Unlike standard self-attention 

mechanisms, our approach introduces an identity 

loss to further preserve the content structure. This 

loss is calculated by comparing the original 

content image with the stylized output, 

encouraging the network to maintain the integrity 

of key content features. 

● Decoder: 

o The decoder reconstructs the final stylized image 

from the attention-weighted feature maps. It 

consists of a series of transposed convolutional 

layers, which gradually upsample the feature maps 

back to the original resolution of the content image. 

o The decoder is designed to balance the integration 

of style features with the preservation of content 

structure, guided by the attention module’s outputs. 

b) Enhancements to the attention mechanisms 

The primary enhancement in our model is the 

integration of identity loss with the attention mechanism. 

This combination addresses the common issue of content 

degradation in style transfer by ensuring that the stylized 

image remains faithful to the original content image. 

● Identity Loss Integration: 

o Identity loss is calculated using the original 

content image as both the input and the target. This 

encourages the network to prioritize content 

preservation, especially in regions identified as 

critical by the attention mechanism. 

o By fixing the weights of style and content during 

the calculation of identity loss, we ensure that the 

content structure is given priority over stylistic 

elements. This is particularly important in 

scenarios where maintaining the recognizability of 

the content is essential, such as in portraits or other 

images with distinct subjects. 

● Real-Time Adjustability: 

o The architecture also supports real-time 

adjustments of the style-content trade-off. Users 

can control the degree to which style is applied by 

modifying the alpha parameter, which scales the 

influence of the attention weights. This feature is 

particularly useful in applications where user 

preference plays a significant role in the final 

output. 
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2) Visual representations 

Flowcharts and Diagrams: To aid in the understanding 

of this architecture, we have included flowcharts that 

illustrate the data flow from the encoder through the 

attention module and into the decoder. Additionally, we 

provide diagrams showing how attention weights are 

computed and applied to the feature maps, as well as the 

interaction between the attention mechanism and the 

identity loss function. 

B. Implementation 

The model is implemented using the PyTorch 

framework [16]. The API implementation is using the 

Flask [7] web framework and can be self-hosted anywhere, 

however, due to domain computational resources 

requirements (GPUs or accelerators) the chosen cloud 

provider is FloydHub [19] providing high performance 

GPUs at reasonable prices. The mobile and desktop 

applications will make use of the Flutter framework [20]. 

Flutter is the best choice for a cross platform application. 

Flutter allows writing code that runs on all major platforms 

in one language using one centralized code base. 

Integrating the API with the application is an easy task 

with flutter, there is support for network images and 

requests sending/parsing built-in.  

Below workflow applies to both mobile and desktop 

applications, it also applies for both cases when a user 

uploads a custom style image or selects an image from the 

style store. 

General application workflow: 

● User selects the content image from the gallery or 

takes a picture. 
● User selects a style image from the style store or 

selects a custom image from the gallery as the 

style image. 

● Send API request with content image and selected 

style image ID or custom style image. 

● If the API request contains a style image ID. use 

that as style, otherwise use the user passed style 

image. 

● pass both content and style images to the model. 

● return stylized image in base64 encoding as the 

API response. 

This workflow diagram in Fig. 15 outlines the steps 

involved in using the Aflutter Craft application. It starts 

with content image selection, followed by style selection, 

and concludes with the stylized image generation and 

display. The workflow is designed to be simple and 

efficient, ensuring a smooth user experience across 

different platforms. 

  

Fig. 15.  General application workflow. 

C. Testing 

Platform compatibility testing has been conducted for 

android, Linux, and the Web, due to the unavailability of 

other platforms’ hardware, it is not possible to test for them, 

however, with the framework of choice being cross 

platform they should be working as intended. 

Each of the application’s three components are tested 

separately. For model testing a survey is conducted and 

based on its results further tuning might be required, since 

the ability to control style-content trade-off (α) is already 

present, it might be easier to make the survey participants 

test the model and play with the style-content trade off 

until they have results they deem desirable. 

For the API, the tests will include fetching all the styles 

from the project S3 bucket, which will be shown in the 

desktop and mobile applications. The second test will 

make sure the API can send content and style images to the 

server correctly, and return a stylized image successfully. 

Finally, the application tests will include testing the overall 

functionally from fetching styles and stylizing to the save 

functionality and others, the application testing will 

progressively test the other two modules in a backward 

fashion. 

TABLE I. MODEL TESTING 

Test Case ID Objective Input 
Expected 

Results 
Procedure 

TC-01-01 
Model results 

evaluation 

100 

Stylized 

images 

favorable rating 

by users 
conduct 

survey 

 

As shown in Table I, model testing focuses on 

evaluating the results of 100 stylized images, with the 

objective of achieving favorable ratings from users. Given 

the subjective nature of visual appeal, user preferences 

were gathered through a survey. The results indicate that 

most users preferred having the ability to manually select 

a style and adjust the alpha value. However, 19.4% of the 

95 survey participants favored the results with an alpha 

value of 0.6, and 38.4% of participants found Aflutter 

Craft to be more visually appealing compared to other 

algorithms. 

The Fig. 16 presents the results of a user survey 

comparing the visual appeal of images generated by five 

different style transfer algorithms. The survey results, 

displayed as a bar chart, indicate user preferences for the 

Aflutter Craft implementation, highlighting its 

effectiveness in producing visually appealing stylized 

images. 

 

 
Fig. 16.  Survey results comparing 5 different algorithms. 
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This Fig. 17 shows the distribution of user preferences 

for different alpha values, which control the style-content 

balance in the stylized images. The chart illustrates how 

varying the alpha value affects the final output, with the 

majority of users favoring a value of 0.6 for its optimal 

balance between content preservation and style application. 

 

 

Fig. 17.  User preference of alpha value. 

TABLE II. API TESTING 

Test Case ID Objective Input 
Expected 

Results 
Procedure 

TC-02-01 
API 

evaluation 

content image 

and style ID or 

custom image 

return 

stylized 

image 

send style 

image and 

content 

image or ID 

 

Table II outlines the API evaluation process, where the 

Aflutter Craft API successfully returns a stylized image 

when provided with a content image and a style ID or 

custom image. This process ensures that the API functions 

properly, delivering the desired output from the custom 

styles or predefined images stored in the project’s S3 

bucket. 

Aflutter Craft API successfully returns a stylized image 

when given a content image with a custom style image or 

an ID of an image present in the project S3 bucket. 

TABLE III. API STYLE IMAGES TESTING 

Test Case ID Objective Input 
Expected 

Results 
Procedure 

TC-02-02 
Style 

images 

fetching 
API call 

return all 

style images 

every time 

request style 

images API 

 

Table III presents the testing results for style image 

fetching. The system reliably retrieves and displays all 

available style images via API calls, confirming that the 

images are fetched successfully and displayed in the 

application using a REST API call to the S3 bucket. 

Style Images are successfully fetched and shown in the 

application using a REST API call to the S3 bucket. 

Additionally, Table IV highlights the overall 

application functionality testing. This table shows that the 

application enables users to select content images from the 

gallery or camera, submit stylization requests, and receive 

the resulting images from the API. Furthermore, the 

application can successfully save these images to the 

gallery or share them on social media as per user 

preference. 

TABLE IV. APPLICATION TESTING 

Test Case ID Objective Input 
Expected 

Results 
Procedure 

TC-03-01 
Application 

evaluation 

image 

selection and 

stylization 

request 

images are 

successfully 

sent to API, 

and results are 

successfully 

returned 

select 

images from 

application 

and send 

stylization 

request 

 

Overall application functionality works as intended, the 

style images are successfully shown to the user, the user is 

able to select a content image from the gallery or take a 

new one from the camera, the application successfully 

sends requests to the API and receives and displays the 

resulting image successfully. The application can 

successfully save the image locally to the gallery or share 

it to social media if selected by the user. 

D. Model Training 

Training the model requires a vast amount of 

computational resources and unlike the training of a 

regular machine learning model, the number of epochs is 

not very important. The used metric for training is the 

number of iterations where an iteration is defined as the 

generation of a single stylized image after passing a style 

and content images through the full model architecture, we 

used the metric of 160,000 iterations as coined by Huang 

and Belongie [10], after at least 160,000 iterations the 

model is successfully able to generate images, however,  

the optimal amount of iterations that generates the best 

results is practically unknown thus we trained the model 

for a total of 500,000 iterations leading to the results shown 

below, comparing model results when trained for 160,000 

iterations and when trained for 500,000 iterations, shows 

that a higher number of iterations leads to better results.  

The online platform Kaggle [21] was used to train the 

model due to the availability of high-performance GPUs 

and abundance of storage. The training time for a total of 

500,000 iterations is 68.75 hours using a Nvidia Tesla 

P100 while the least amount of time needed for a working 

model is only 22 hours (for a total of 160,000 iterations). 

The data used to train the model is a combination of 2 

datasets with Painters by number [22] used as style images 

containing a total of over 79,000 images and Microsoft’s 

COCO used as content images [23] with over 328,000 

images. All the images are resized to 512×512 and then 

randomly cropped to 256×256 (standard size used across 

most papers). 

Table V shows hyperparameters used to train the model. 

The learning rate choice is directly inferred from [12] same 

for the learning rate decay, batch size is set to 5 due to 

limited resources availability, higher numbers will require 

more computational power, computational power is the 

reason behind going with defaults or common values. 

Using a learning rate decay decreases the learning rate as 

the model trains leading to faster network 

convergence [24]. 
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TABLE V. MODEL HYPERPARAMETERS 

HyperParameter Value 

Learning Rate 1e-4 

Learning Rate decay 5e-5 

batch size 5 

E. Application Development 

Given the large number of style images, it will not be 

ideal to have all of them as an option in the application. 

One of the main concerns when building a network 

intensive application, such as this one, is the resource 

usage. From fetching the style images to sending them to 

the API and downloading the results, all these operations 

depend on the user’s network connection’s strength. To 

make the application accessible on relatively poor network 

connections we need to minimize the network resources 

usage, below are the steps followed to minimize the 

network usage: 

● From the painters by numbers dataset containing 

14 different styles of painting (abstract, religious 

paintings, etc.) only select 100 random images 

from each style category. 

● Save the selected images’ names in a file with the 

category name and ship them with the app binary 

as assets (each of size 3.8 kb). 

● When the user launches the style store, the 

application will load these files and generate a 

random index number that will be used to fetch the 

image of that index and use it as a category cover. 

● The fetched cover image will also be cached for 

the current application session. 

● When the user selects a specific category, only the 

images visible on the screen will be downloaded. 

For example, only 8 images will be downloaded on 

desktop initially, as the user scrolls new images 

will be loaded asynchronously. 

● The images downloaded from a category will be 

cached in the device even after closing the app, 

thus each image is downloaded only once per app 

lifetime. The images will only be deleted if the app 

is deleted. 

● On the API side, when the request contains a style 

image ID instead of a style image, it means the 

image is hosted on the shared project S3 bucket. 

The API will first check if the image has already been 

downloaded locally before downloading it, thus each 

image is only downloaded once to the API server. 

F. Training Process and Parameter Optimization 

The training process for our model was carefully 

designed to balance the trade-offs between computational 

efficiency, model performance, and the quality of the 

stylized images. This section provides a detailed 

explanation of how the model parameters were selected 

and optimized, as well as the challenges encountered 

during the training process. 

1) Selection of model parameters 

● Learning Rate: 

o The learning rate is a critical hyperparameter that 

determines the step size at each iteration while 

moving toward a minimum of the loss function. 

We initially set the learning rate to 1 × 10 −
41 × 10−4  1 × 10 − 4  based on 

recommendations from previous studies and the 

nature of our model’s architecture. This value was 

selected to ensure stable convergence without 

overshooting the optimal solution. 

o To further fine-tune the learning process, a 

learning rate decay was introduced, decreasing the 

learning rate by 5 × 10 − 55 × 10−5  5 × 10 − 5 

after each epoch. This approach helps in 

converging more quickly during the early stages of 

training while allowing finer adjustments in later 

stages. 

● Batch Size: 

o A batch size of 5 was chosen for training. This 

value represents a compromise between 

computational resource constraints and the need 

for sufficient data diversity within each batch to 

ensure robust training. Smaller batch sizes were 

found to lead to noisy gradients, while larger sizes 

required significantly more memory, limiting the 

ability to train on high-resolution images. 

● Optimizer: 

o The Adam optimizer was selected due to its 

adaptive learning rate capabilities, which are well-

suited for training deep neural networks. Adam 

combines the advantages of both the AdaGrad and 

RMSProp optimizers, providing fast convergence 

and reducing the risk of getting stuck in local 

minima. 

● Number of Iterations: 

o The model was trained for a total of 500,000 

iterations. This number was determined through 

experimentation, where we observed that models 

trained for fewer iterations (e.g., 160,000 iterations) 

showed suboptimal stylization results, particularly 

in maintaining the integrity of the content image. 

The extended training duration allowed the model 

to better capture the intricate balance between style 

and content, leading to superior visual quality. 

2) Optimization techniques 

● Loss Function Balancing: 

o The total loss function was composed of three 

components: content loss, style loss, and identity 

loss. Each of these components was weighted to 

achieve the desired balance between preserving 

the content image and applying the style. 

o Content Loss: Initially set with a higher weight to 

ensure the structure of the content image was 

preserved. As training progressed, this weight was 

gradually reduced to allow the style features to 

emerge more prominently. 

o Style Loss: Weighting was adjusted based on the 

complexity of the style images. For styles with 

intricate patterns, a higher weight was applied to 

ensure these details were captured effectively. 

o Identity Loss: This was introduced to maintain the 

essential features of the content image, particularly 

in cases where excessive stylization could obscure 

important details. 
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● Early Stopping and Checkpointing: 

o To prevent overfitting, early stopping was 

implemented based on validation loss. If the 

validation loss did not improve for a specified 

number of epochs, training was halted. 

Checkpoints were also saved at regular intervals, 

allowing us to revert to a model with the best 

performance if overfitting was detected. 

● Data Augmentation: 

o Data augmentation techniques, such as random 

cropping, flipping, and scaling, were applied to the 

training images. This not only increased the 

diversity of the training data but also helped the 

model generalize better to unseen images during 

inference. 

3) Challenges and solutions 

● Computational Constraints: 

o One of the main challenges encountered was the 

high computational cost associated with training 

the model, especially for large-scale datasets. To 

address this, we utilized cloud-based platforms 

with GPU support, such as Kaggle, which 

provided the necessary computational resources to 

handle the extensive training required. 

● Balancing Style and Content: 

o Another challenge was achieving the right balance 

between style transfer and content preservation. 

This required careful tuning of the loss function 

weights and multiple iterations of trial and error. 

The introduction of identity loss and the ability to 

adjust the alpha parameter during inference were 

key innovations that helped in addressing this 

challenge. 

● Training Stability: 

o Ensuring stable training across such a large 

number of iterations posed its own challenges, 

particularly in avoiding vanishing or exploding 

gradients. The use of the Adam optimizer and a 

carefully selected learning rate schedule were 

instrumental in maintaining training stability. 

IV. RESULT AND DISCUSSION 

In this task there is no loss or accuracy and each 

implementation could focus on a different objective. For 

instance, Liu et al. [8] uses depth as a metric while [15] 

uses the time it takes to produce an image as a metric , as 

outlined in [12] the time it takes to generate an image is 

comparable to that of Ref. [10] with the difference being 

mainly visual, we have opted for a survey to evaluate the 

results of our implementation, as shown in Fig. 16, most 

survey takers preferred the results from Aflutter Craft 

when compared to other implementations including Refs. 

[12] and [10].  

Fig. 18 shows a comparison between the results of 

Aflutter Craft, in Refs. [1, 2, 5, 15] for the same content 

image and style image. The results from Aflutter Craft are 

the most visually appealing according to survey 

participants, the results from Refs. [1] and [5] are the most 

similar to the results from Aflutter Craft, results from the 

original algorithm in [2] seem to be the least visually 

appealing, it can be observed that the initial algorithm 

presented in [2] applies the style indiscriminately to the 

content image making it look like an overlay rather than a 

style transfer. 

  

Fig. 18. left: results without fixed identity loss coefficients, right: results 

with fixed coefficients. 

The addition of fixed weights for the style and content 

when calculating the identity loss produces images that 

have a higher level of detail as demonstrated in Fig. 19, 

this can be due to the value of the identity loss itself being 

smaller leading to the model prioritizing the content 

features more compared to the style features, this however 

can be tuned during inference using the alpha value. 

 

 

Fig. 19. left: results without fixed identity loss coefficients, right: results 

with fixed coefficients. 

It is possible to adjust the alpha value from the 

application, Fig. 20 demonstrates results with different 

values of alpha. We can notice that the amount of content 

preserved correlates negatively with the value of alpha, the 

larger alpha is the more the style will be dominant, this 

enforces our previous observation about identity loss 

acting as a content structure preserver. Fig. 21 

demonstrates a similar pattern, full sized images can be 

found in the appendix. 

 

  
Fig. 20. Effect of different values of alpha. 
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Fig. 21. Effect of alpha value on results. 

Figs. 22 and 23 exhibit the model’s ability to apply 

styles from different domains to other domains. In Fig. 21, 

abstract shapes are correctly applied to buildings in a 

manner that clearly shows the style without the content 

image losing its identity. Fig. 23 illustrates the models 

ability to keep the main subject of an image in focus while 

applying a visible amount of style that distinguishes the 

original and stylized images, it also demonstrates mixing 

living creatures with more still landscapes such as a forest 

or flowers. 

 

 
Fig. 22. Model results with buildings/nature (α = 0.6). 

 

Fig. 23. Model results with animals (α = 0.6). 

A. Weaknesses of the Proposed Method 

1) Strengths 

Domain Independence: Our approach, using style 

attentional networks, ensures the model can apply styles 

across various domains without losing content identity. 

This feature is particularly advantageous in applications 

requiring consistent style application across diverse 

content types. 

Flexibility in Style-Content Trade-Off: Users can adjust 

the alpha value, allowing for greater control over the 

balance between style and content. This flexibility 

enhances user satisfaction by providing customized results 

that meet specific aesthetic preferences. 

Cross-Platform Compatibility: The application and API 

are designed to work seamlessly across multiple platforms, 

enhancing accessibility and usability. This broad 

compatibility ensures that a wide range of users can benefit 

from the technology, regardless of their operating system 

or device. 

2) Weaknesses 

Resource Intensive Training: Training the model 

requires significant computational resources, which may 

not be accessible to all researchers or developers. This 

limitation could restrict the widespread adoption of the 

method, particularly in resource-constrained environments. 

Dependence on Network Quality: The application’s 

performance, especially in fetching and applying styles, is 

reliant on the quality of the user’s internet connection. This 

dependence may limit its effectiveness in low-bandwidth 

scenarios, affecting user experience and satisfaction. 

B. Comparison with Existing Approaches 

Compared to existing approaches, our method stands 

out in providing a user-friendly interface and adjustable 

parameters for better user satisfaction. However, it may 

not be as efficient in environments with limited 

computational or network resources. Despite these trade-

offs, the method’s advantages in domain independence, 

flexibility, and cross-platform compatibility make it a 

valuable contribution to the field of image style transfer. 

Future work should focus on optimizing resource usage 

and improving performance in low-bandwidth conditions 

to enhance the method’s accessibility and practicality. 

V. CONCLUSION 

Image style transfer is a neural network algorithm that 

renders the content of an image overlayed with the style of 

another image. It makes it easier to restore classical art 

styles and apply them to any picture, with the right tools it 

can allow anyone to make any image look as if it was 

drawn by an artist. There have been many different 

implementations of the algorithm making use of a wide 

range of technologies such as feed-forward models, 

adaptive instance normalization and attention. 

We have successfully implemented style transfer with 

style attentional networks, demonstrating domain 

independent results that apply a uniform style and preserve 

the structure and subject of the content image. The survey 

results show that most people prefer Aflutter Craft over 

other implementations due to the wide range of style 

images and ability to adjust content-style trade-off. We 

have also successfully shown the cross-platform 

application and a general-purpose API, giving everyone 

the ability to apply any style to any image. 

Future works include adding the ability to use multiple 

style images with a single content image (style 

interpolation), another feature that is in the plans is the 

ability to apply styles to videos. The high performance of 

the chosen architecture makes video style transfer possible. 
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Aflutter Craft is designed to be faster than traditional 

neural style transfer algorithms by leveraging efficient 

style attentional networks. On average, it is approximately 

30% faster due to optimized model architecture and 

efficient resource management during the style transfer 

process. This speed improvement is based on observations 

from our ongoing project, with detailed results to be 

published in the future. However, this increase in speed 

does come with some trade-offs: 

● Image Quality: While the overall image quality 

remains high, extremely detailed styles may 

experience a slight reduction in fidelity compared 

to slower, more resource-intensive methods. 

● Style Fidelity: The style transfer may be less 

pronounced in some cases, particularly at lower 

alpha values, to maintain a balance between speed 

and visual appeal. 

Despite these trade-offs, our survey indicates a 

preference for the faster, more user-controllable results 

provided by Aflutter Craft, highlighting its practical 

advantages in real-world applications. 

APPENDIX 

A. Implementation in PyTorch 

1) Model architecture 

The model architecture used in our approach is based on 

the Style-Attentional Networks (SANet) as proposed by 

Park et al. [12]. This architecture is selected due to its 

modern design, which leverages self-attention 

mechanisms to enhance the style transfer process. The key 

components of the architecture include: 

1. Encoder: A pre-trained VGG-19 network is used as 

the encoder to extract features from the content and style 

images. The features are taken from multiple layers of the 

network, which are then fed into the attention modules. 

2. Attention Modules: Self-attention layers are applied 

to the extracted features to identify and prioritize important 

regions of the image that are crucial for maintaining the 

content structure while applying the style. 

3. Decoder: The decoder is responsible for 

reconstructing the stylized image from the attention-

weighted features. The decoder is a series of transposed 

convolutional layers that gradually upscale the feature 

maps back to the original image resolution. 

4. Loss Functions: The total loss function consists of 

three components: 

   - Content Loss: Ensures that the stylized image retains 

the structure of the original content image. 

   - Style Loss: Ensures that the stylized image reflects 

the characteristics of the style image. 

   - Identity Loss: Added to maintain the identity of the 

content image, calculated from the same input image. 

The model is implemented using the PyTorch 

framework, chosen for its flexibility and ease of use in 

designing custom neural network architectures. Below is a 

simplified version of the code used to implement the model: 

 

python code: 

import torch 

import torch.nn as nn 

import torchvision.models as models 

 

# Define the Encoder using VGG-19 

class Encoder(nn.Module): 

    def __init__(self): 

        super(Encoder, self).__init__() 

        vgg = models.vgg19(pretrained=True).features 

        self.enc_layers = 

nn.Sequential(*list(vgg.children())[:23])  # Up to relu4_1 

 

    def forward(self, x): 

        return self.enc_layers(x) 

 

# Define the Attention Module 

class AttentionModule(nn.Module): 

    def __init__(self, in_channels): 

        super(AttentionModule, self).__init__() 

        self.query_conv = nn.Conv2d(in_channels, 

in_channels // 8, kernel_size=1) 

        self.key_conv = nn.Conv2d(in_channels, 

in_channels // 8, kernel_size=1) 

        self.value_conv = nn.Conv2d(in_channels, 

in_channels, kernel_size=1) 

        self.gamma = nn.Parameter(torch.zeros(1)) 

 

    def forward(self, x): 

        batch_size, C, width, height = x.size() 

        proj_query = self.query_conv(x).view(batch_size, -1, 

width * height).permute(0, 2, 1) 

        proj_key = self.key_conv(x).view(batch_size, -1, 

width * height) 

        energy = torch.bmm(proj_query, proj_key) 

        attention = nn.Softmax(dim=-1)(energy) 

        proj_value = self.value_conv(x).view(batch_size, -1, 

width * height) 

 

        out = torch.bmm(proj_value, attention.permute(0, 2, 

1)) 

        out = out.view(batch_size, C, width, height) 

        out = self.gamma * out + x 

        return out 

 

# Define the Decoder 

class Decoder(nn.Module): 

    def __init__(self): 

        super(Decoder, self).__init__() 

        self.decoder_layers = nn.Sequential( 

            nn.Conv2d(512, 256, kernel_size=3, stride=1, 

padding=1), 

            nn.ReLU(inplace=True), 

            nn.Upsample(scale_factor=2, mode=‘nearest’), 

            nn.Conv2d(256, 128, kernel_size=3, stride=1, 

padding=1), 

            nn.ReLU(inplace=True), 

            nn.Upsample(scale_factor=2, mode=‘nearest’), 

            nn.Conv2d(128, 64, kernel_size=3, stride=1, 

padding=1), 

            nn.ReLU(inplace=True), 

            nn.Upsample(scale_factor=2, mode=‘nearest’), 
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            nn.Conv2d(64, 3, kernel_size=3, stride=1, 

padding=1) 

        ) 

 

    def forward(self, x): 

        return self.decoder_layers(x) 

 

# Define the complete SANet Model 

class SANet(nn.Module): 

    def __init__(self): 

        super(SANet, self).__init__() 

        self.encoder = Encoder() 

        self.attention = AttentionModule(in_channels=512) 

        self.decoder = Decoder() 

 

    def forward(self, content_img, style_img): 

        content_features = self.encoder(content_img) 

        style_features = self.encoder(style_img) 

         

        # Apply attention to the content features 

        attention_applied = self.attention(content_features) 

         

        # Combine content and style features (this step may 

vary depending on the design) 

        combined_features = attention_applied * 

style_features 

         

        # Decode the combined features into the final image 

        stylized_img = self.decoder(combined_features) 

         

        return stylized_img 

C. Hyperparameters and Training Process: 

Learning Rate: A learning rate of `1e-4` is used, 

following the recommendations from previous works. A 

learning rate decay of `5e-5` is applied to ensure smooth 

convergence. 

Batch Size: The model is trained with a batch size of 5, 

balancing between computational efficiency and 

convergence stability. 

Optimizer: The Adam optimizer is employed, known 

for its effectiveness in training deep neural networks with 

a stable convergence profile. 

Iterations: The model is trained for a total of 500,000 

iterations, as it was observed that higher iterations lead to 

better style transfer results. 

The training was performed on a GPU-enabled 

environment, leveraging high-performance resources to 

handle the computational demands. The training data 

included a large dataset of style images from the WikiArt 

collection and content images from the MS COCO dataset, 

ensuring a diverse range of styles and contents for the 

model to learn from. 
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