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Abstract—Image-based individual localization in densely 

populated scenes offers practical advantages beyond mere 

head counting, enabling a broader range of high-level tasks 

in crowd analysis. Crowd image data contain drastic changes 

in head sizes caused by the perspective effect. This specific 

challenge has not been addressed in the literature, as existing 

localization methods do not consider multi-scale features. To 

alleviate this issue, we propose a novel Multi-Scale Point-to-

Point Network (MSP2P) in which a set of experts are in 

charge of predicting head locations a at different perspective 

levels. However, the training procedure requires ground-

truth scale information for precise one-to-one matching. For 

this reason, we develop a simple yet effective method that uses 

neighbor density information to estimate the scale associated 

with each head location. Extensive experiments demonstrate 

that our method outperforms most state-of-the-art methods 

on relevant counting benchmarks without compromising 

performance.  
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I. INTRODUCTION

Crowd monitoring is a sub-field of security and crowd 

surveillance that contains different tasks such as video 

monitoring, emergency management and crowd 

analysis [1]. The common denominator of these tasks is 

the use of crowd counting and crowd localization methods. 

The goal of crowd counting is to estimate the number of 

individuals in a crowded scene, while crowd localization 

aims to not only estimate the number of people but also to 

determine the position of each person’s head within the 

scene. Crowd monitoring has several real-world 

applications across different domains. Safety in public 

events is one of the major areas where it is being used. It 

can help to avoid overcrowding, which can lead to 

dangerous situations like stampedes. In transportation 

services, these models are being used to monitor passenger 

numbers in real time at stations and airports. This data can 
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be combined with tracking algorithms to provide crowd’s 

flow to optimize routes and enhance security. For instance, 

analyzing human behavior in road health inspections 

systems [2].  

Image-based crowd localization remains challenging 

due to factors such as low head resolution, which makes it 

difficult to distinguish individuals, especially in densely 

populated scenes; occlusions, where one person obstructs 

another; and high crowd density, where a large number of 

people stand close together or move in different directions 

within a confined space. While existing methods have been 

focused on mitigating these issues, the view perspective 

effect has not yet been addressed as shown in Fig. 1. This 

effect significantly influences crowd localization methods 

because they do not intrinsically account for the varying 

head sizes.  

Fig. 1. Representation of the view perspective effect in high-density 

scenarios. The head size drastically changes from the bottom to the upper 

part of the image. Each color (red, green, and blue) represents the multiple 

scales required for optimal crowd localization. 

In object detection tasks, the object scale is determined 

by the size of its bounding box, which is then used by 

object detection algorithms [3] to predict objects from 

different sizes at different levels. Extracting the scale or 

size of an object in this particular context is 

straightforward since this information is part of the ground 
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truth data. Besides, in such task, the association process for 

each level in the network is quickly done by the 

Intersection over Union (IoU). In contrast, popular crowd 

localization datasets [4–6] only provide a point 

representing each person’s head in the crowd, which lacks 

scale information.This lack of scale information is a 

crucial issue since there is no prior knowledge regarding 

the evaluated scene, pushing existing methods to be as 

accurate as possible in all kinds of scenarios.  

Crowd localization has been addressed from different 

perspectives, such as detection methods [7, 8] in which 

they try to predict the bounding box of each person’s head. 

Compared to current approaches, these methods do not 

show satisfactory results since predicting bounding boxes 

in highly dense scenarios can lead to inaccurate results due 

to the heuristic post-processing step that removes negative 

predictions. Density-map methods quickly gained 

popularity in crowd counting since they have reported 

better results than the previous approaches. 

Typically, these methods do not provide individual 

locations since they focus on predicting a more accurate 

density map [9–11]. However, some methods attempt to 

estimate the point localization from the density map with 

different approaches, such as creating a topological 

constraint during the training process [12] or using a 

connected components algorithm [13] to extract blobs 

from the scene.  

For this reason, a new trend has been shown recently for 

methods that predict the coordinates of each individual in 

the crowd since it is more suitable for higher-level tasks. 

Within this new trend, Dingkang Liang et al. [14] tried to 

solve the problem with transformers, similar to Detection 

Transformer (DETR) [15], as it was a breakthrough in 

object detection tasks. Nevertheless, it still suffers from 

two problems: the wide range of scales that can appear in 

the scene and the higher inference time compared to the 

Convolutional Neural Networks (CNNs) counterpart. 

Another solution for predicting the location of each 

individual is the Point-to-Point Network (P2PNet) [16], 

which is based on a set of point proposals and a one-to-one 

association between the ground truth and the prediction. 

Similarly to the previous method, the whole network fails 

to predict head coordinates at a wide range of scales, 

caused by strong perspective as the network only uses one 

level for point regression.  

To address this issue, we propose a Multi-Scale Point-

to-Point Network (MSP2P). Specifically, each level of the 

network contains an expert that learns and predicts points 

at different scales. Moreover, we develop a scale 

estimation method that leverages ground truth points and 

their neighbors’ distances to estimate the scale associated 

with each individual, which will be included in the target 

association process for one-to-one matching.  

In summary, the main contributions of this paper are:  

• We present MSP2P, a multi-scale architecture for 

a point-to-point framework, leveraging the Feature 

Pyramid Network (FPN) usage by combining the 

low-level spatial features and the high-level 

semantic features, including different prediction 

heads for the different scales.  

• We develop a method for estimating the optimal 

scale parameter of each head in the scene based on 

its neighbors’ distances, which is utilized in one-

to-one matching.  

• Numerous experiments are carried out to validate 

that the method achieves state-of-the-art results, 

making the model robust to dense scenes and high 

variations in scale, including cross-domain 

validation in order to manifest the method’s ability 

to generalize between datasets.  

II. RELATED WORKS 

A. Counting by Density Map Methods 

Currently, most state-of-the-art methods are density-

map-based in which the final count is directly estimated 

from the predicted map [17]. These methods suffer from 

extreme overlap in dense regions, so current methods put 

effort into alleviating this effect with different approaches. 

Designing better density maps is crucial for better 

estimation, for example, Xu et al. [9] proposes to 

automatically scale dense regions to reduce the number of 

overlapped blobs. Some methods propose the creation of a 

new target map for learning in which [10] designs a new 

map based on the Focal Inverse Distance Transform, 

whereas Liu et al. [18] introduces the Local Counting Map.  

Others leverage multi-scale architecture [19] to merge 

the estimation from different levels, while Hu et al. [11] 

uses Neural Architecture Search (NAS) to discover the 

multi-scale design of the counting model automatically. 

On the other hand, Tran et al. [20] employs Vision 

Transformer (ViT) [21] in non-overlapping patches of the 

image to estimate the number of people in each cell. 

Following the idea of replacing traditional convolutional 

layers, Cheng et al. [22] proposes to substitute the 

convolutional operation with Gaussian convolution to 

mimic the style throughout the whole learning process 

instead of merely generating it in the final step. However, 

even though these methods achieve competitive results or, 

in some cases, better results, they do not provide 

localization of individuals, which is essential for many 

other tasks.  

B. Counting by Localization Methods 

This group is formed by methods that perform counting 

by first providing the localization of individuals. High 

accuracy object detectors such as Faster-RCNN [23], 

inspired the development of detection models [7, 8] for 

solving the counting problem. Nevertheless, since only 

point-level annotations are available for most datasets, 

these methods rely on estimating bounding boxes for 

people’s heads, which lead to inaccurate results in high- 

density scenarios with large variations of scales. Other 

methods rely on a post-processing step after generating a 

density-map [24] with no remarkable increase in accuracy. 

Recently, inspired by the use of transformers in object 

detection, Liang et al. [14] proposes to adapt DETR [15] 

to crowd localization. However, it does not detect heads 

with large scales. On the other hand, P2PNet [15] directly 

predicts a set of points proposals with a purely point-based 
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framework. Since it only uses one network level for 

prediction, it still suffers from undetected large-scale head 

issues.  

III. METHOD 

Fig. 2 details the pipeline proposed for the Multi-Scale 

Point-to-Point Network (MS2P2). We start presenting the 

architecture for multi-scale prediction and the associated 

framework in Section III.A. Then, in Section III.B, we 

present in-depth the developed method for estimating the 

scale parameter. In Section III.C, it is explained how the 

one-to-one association strategy between the different 

levels in the network works with the novel scale parameter. 

Lastly, the loss function is presented in Section III.D. 

 

 

Fig. 2. Overview of the MSP2P architecture for training and inference. The network is built upon a Feature Pyramid Network with independent 

prediction heads at each level in order to predict heads at different scales. Each head, representing an expert for a specific scale, outputs two sets of 

predictions: (1) a set of proposal points and (2) their confidence score. Note that the scale parameter calculation is an offline pre-training step whose 

information is only used during training in the one-to-one association. 

A. The MSP2Pet Model 

Following the strategy suggested in object  

detectors [3, 25], in which objects with different scales are 

predicted, MSP2P architecture is composed of a CNN 

backbone, which serves as the foundational feature 

extractor. The backbone is followed by a Feature Pyramid 

Network (FPN) [3], a structure that is specifically designed 

to preserve and enhance the spatial hierarchies inherent in 

the image data. The FPN enables the model to analyze the 

image at multiple scales simultaneously, which is critical 

for accurately detecting heads that vary greatly in size due 

to perspective distortions and crowd density. Then, a 

regression head is assigned to each pyramid level in order 

to predict people’s heads at different scales. Thus, these 

regression heads act as specialized experts, each trained to 

predict head locations at a particular scale. 

Formally, we use l ∈  {1, … , L} to represent the 

prediction head at level l of the pyramid with L levels. 

These levels are variable depending on the scale range of 

the different individuals in the dataset. Following the 

notation introduced by Song et al. [16], for any given 

image with N individuals, 𝑃 = { 𝑝𝑖 | 𝑖 ∈
{1, … , 𝑁 }} represents the collection of ground truth points 

that indicates the center point 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖)  of the i-th 

individual’s head. For each prediction head l in the 

network, the trained model outputs two subsets of 

predictions: 𝑃𝑙̂   =  {  𝑝𝑗𝑙̂| j  ∈  {1, … , M𝑙},  l ∈  {1, … , L}} 

and {𝐶𝑙̂   =  {  𝑐𝑗𝑙̂| 𝑗  ∈  {1, … , 𝑀𝑙},  𝑙 ∈  {1, … , 𝐿}} , where 

𝑐𝑗𝑙̂ represents the confidence score of the predicted point 

𝑝𝑗𝑙̂ at level l in which the number of predicted individuals 

is 𝑀𝑙 . Then, previous subsets can be grouped into 𝑃̂  =
 {𝑃𝑙 ̂ | 𝑙 ∈  L }, 𝐶̂  =  {𝐶𝑙 ̂ | 𝑙 ∈  L} and 𝑀̂  =  {𝑀𝑙 ̂ | 𝑙 ∈  L}. 

Unlike regression-based methods, where all points are 

predicted at one level, our network predicts points at 

different levels. So our goal is to match a predicted point 

𝑝𝑗𝑙̂  to its ground truth 𝑝𝑖  not only using the distance 

between them and its confidence score 𝑐𝑗𝑙̂  but also 

including scale information. For this reason, we introduce 

the set S = {s𝑖𝑙 | i ∈  {1, . . . , N}, l ∈  {1, . . . , L}} that 

represents the scale parameter associated to each pi in 

Section III.B. This strategy allows the network to exploit 

the hierarchical structure of CNNs in multi-level networks 

to learn multi-scale feature representations.  

B. Scale Parameter Calculation 

Three steps are required for calculating the scale 

parameter used in training. Note that this is an offline 

method performed before training since it only uses the 

ground truth as input. This parameter will be used during 

the one-to-one matching strategy in Section III.C.  

1) Neigbours dispersion step 

First, we introduce a dispersion estimation di for each 

ground truth point pi. An Area of Interest (AoI) of radius 

R is placed at each point to find its neighbors as shown in 
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Fig. 3, in which the set G = 𝑔𝑘 represents the neighbors 

inside the AoI. Then, the dispersion 𝑑𝑖 for 𝑝𝑖 is calculated 

as:  

 𝑑𝑖 =  {

1

|𝐺|
∑ 𝑚𝑖𝑛(𝑔𝑘)/𝑅,   𝑖𝑓 𝐺 ≠ ∅,𝑔𝑘∈𝐺

1,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 (1) 

where min(gk) is calculated as:  

min (𝑔𝑘) = min {𝑑(𝑔𝑘 , 𝑔𝑡) | 𝑔𝑡 ∈ 𝐺, 𝑡 ≠ 𝑘}  (2) 

in which d(g𝑘 , g𝑡) = ||g𝑘 − g𝑡||2  denotes the Euclidean 

distance. 

 

Fig. 3. Density scenarios representing different dispersion values (considering L = 3). (a) A high-density area will have a low di value since the distance 

between neighbors is close. (b) An intermediate density area defines the scales that can not be considered small or large. (c) Typically, sparse points are 

located in areas with high-scale heads, producing a high di value. 

2) Correction step 

Commonly, the training sets contain highly crowded 

scenes in which the density of an area is directly related to 

the size of the people in it, meaning that areas with people 

far from the camera will appear closer together, therefore 

smaller than those close to the camera. However, there are 

scenarios where this hypothesis is not met since some 

images are not fully covered by people. For this reason, we 

consider a correction step for those cases in which an 

empty space does not reflect the real distribution.  

When the neighbor dispersion di is above the threshold 

θ, it could mean one of these two options: (i) a person is 

far from the point of view with no neighbor around, (ii) or 

a person is close to the point of view. To solve this 

ambiguity and using the ground truth as a starting point, 

we utilize Segment Anything [26] to obtain the area 

considered as head inside the AoI to provide extra 

information about the size.  

Assuming that the segmented head inside the AoI is S, 

the refined dispersion 𝑑𝑖
′  for each point is calculated as 

follows:  

 𝑑𝑖
′ = {

𝑑𝑖 ∗
𝑆

𝐴𝑜𝐼
,    𝑖𝑓 𝑑𝑖 > 𝜃

𝑑𝑖             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (3) 

3) Scale parameter step 

Each level should respond differently to the same input 

since each level is assigned to a single scale [25]. Next, 

once it is obtained the refined dispersion from the previous 

step, it is possible to calculate the scale parameter 𝑠𝑖𝑙 used 

during the matching step in Section III.C as:  

 𝑠𝑖𝑙 = 𝑒
(−

(𝑑𝑖
′−

𝑙
𝐿−1)

2

𝑝
)

 (4) 

where variable p is calculated as:  

 𝑝 = −
1

(𝐿−1)2⋅𝑙𝑛(0.2)
  (5) 

 

 

Fig. 4 is a graphical example of how these steps work. 

In this example, we assume that L = 3, and we assign a 

color to each level l. As explained in Section III.C, during 

the matching process, this parameter is used along with the 

distance and the confidence; however, for the purpose of 

this example, we assign the level l to 𝑝𝑖  with the highest 

response in Eq. (4). 

C. Proposal Matching 

In order to train the model, we need to match the ground 

truth P to the predictions 𝑃̂ using a one-to-one matching 

strategy. Assuming that N is the number of people in an 

image and M is the total number of predicted individuals, 

the cost matrix D will be of shape NxM. Since each level 

has its own predictions 𝑃𝑙̂ , the cost matrix for level l is 

calculated as: 

 

 

Fig. 4. Graphical example of how the scale estimation method works 

(considering L = 3). Additionally, for visualization purposes, each ground 

truth 𝑝𝑖 is assigned to the level with the highest response from Eq. (4). 

Top row shows the response without the correction step. In contrast, 

bottom row shows the response with the correction step.  
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𝒟ℓ(𝒫, 𝒫𝑙̂) = (τ ||𝑝𝑖 − 𝑝𝑗𝑙̂| |2 − 𝑐𝑗𝑙̂ − γ𝑠𝑖𝑙)𝑖∈𝑁,𝑗∈𝑀𝑙,𝑙∈𝐿
 (6) 

where ∥·∥2 represents the l2 distance, 𝑝𝑗𝑙̂ is the predicted 

point along with its confidence 𝑐𝑗𝑙̂ and 𝑠𝑖𝑙 denotes the scale 

parameter for 𝑝𝑖 at level l calculated in Eq. (4). τ and γ are 

weight terms to balance the influence of the pixel distance 

and the scale estimation, respectively. 

Since only one 𝑝𝑖  can be assigned to one 𝑝𝑗𝑙̂ , these 

matrices are concatenated to create the cost matrix 𝐷(𝑃, 𝑃̂), 

which is used by the Hungarian algorithm [27] as a 

matching strategy. This matching strategy allows the 

network to learn the optimal scale level for each head in 

the image. Note that this matcher is only used during 

training. 

D. Loss Function 

Once the matching step has linked each ground truth to 

a target, we calculate the loss for point regression and point 

classification. Regarding point regression Lloc, we employ 

the common MSE loss:  

 𝐿𝑙𝑜𝑐 = ||𝑝𝑖 − 𝑝𝑗𝑙̂||
2
 (7) 

where 𝑝𝑖  is the i-th ground truth matched with the 

prediction 𝑝𝑗𝑙̂ from level l. We utilize the focal loss [24] as 

the classification loss Lcls, which defines the total loss as: 

 𝐿 = 𝐿𝑙𝑜𝑐 + λ𝐿𝑐𝑙𝑠 (8) 

where the weight term λ balances the effect of regression 

loss. 

IV. EXPERIMENTAL RESULTS 

A. Datasets 

Extensive experiments have been conducted on our 

method against four well-known, publicly available 

datasets, which are described below:  

ShanghaiTech [4]. It is composed of two independent 

subsets: PartA and PartB. PartA contains crowded images 

from different perspectives collected from the Internet, 

while PartB contains images with different densities of 

people in a busy street, similar to a surveillance camera. 

PartA consists of 300 images for training and 182 for 

testing, whereas PartB contains 400 images for training 

and 316 for testing.  

UCF_CC_50 [6]. It is a small but challenging dataset, 

with only 50 images collected from the Internet, as it 

contains large variations of people. Following [6], a five-

fold cross-validation has been implemented for evaluation.  

UCF_QNRF [5]. It is a dense dataset containing over 

1.2 million annotated instances in 1535 images, from 

which 1201 images are for training and 334 for testing. 

Apart from the high density, it is also challenging since it 

contains diverse viewpoints and lighting variations.  

JHU++ [28]. It is a highly crowded dataset in which the 

total count of people in each image varies from 0 to 25791. 

It comprises three subsets: the training set with 2272 

images, the validation set with 500 images, and lastly, the 

testing set with 1600 images. 

B. Implementation Details 

We augment the datasets for training using different 

strategies such as random scaling, random cropping, and 

horizontal flipping as implemented in [14, 16]. Random 

cropping is performed after random scaling with a crop 

size of 256×256 for ShanghaiTech and UFC_CC_50 

datasets, while the crop size for UCF_QNRF and JHU++ 

is 512×512. The horizontal flipping augmentation is 

performed with a probability of 0.5. Since the UCF QNRF 

and JHU++ datasets contain extremely large images, we 

set the maximum size to 1920, keeping the original aspect 

ratio.  

The batch size used for training is 8. The radius R for 

the Area of Interest (AoI) is set to 45 for ShanghaiTech 

and 65 for UCF QNRF, UFC CC 50 and JHU++. The 

confidence threshold is set to 0.5 to filter the “non-head” 

class. The weight terms τ and γ in the cost matrix are set to 

5e-2 and 2, respectively. The parameter θ is set to 0.5. We 

used Adam [29] with 1e-4 as the learning rate to optimize 

the model parameters. 

C. Evaluation Metrics 

Counting Metrics. For this task, the Mean Absolute 

Error (MAE) and the Mean Square Error (MSE) are used, 

and they are defined as:  

 𝑀𝐴𝐸 =
1

𝑁
∑ |𝑃𝑖 − 𝐺𝑖|

𝑁
𝑖=1  (9) 

 𝑀𝑆𝐸 = √(1/𝑁 ∑ |𝑃𝑖 − 𝐺𝑖|
2𝑁

𝑖=1 ) (10) 

where N is the total number of images, 𝑃𝑖  and 𝐺𝑖 

correspond to the predicted count and the ground truth of 

the i-th image, respectively. 

Localization Metrics. Precision, Recall, and F1-

Measure are the localization metrics used in this work, 

following [4, 5]. To obtain the True Positives (TP), the 

distance between ground truth point P and a predicted 

point 𝑃̂ must be less than a predefined threshold σ. 

The ShanghaiTech dataset is evaluated using two 

thresholds, σ = 4 and σ = 8. Regarding the UCF QNRF 

dataset, we use a range of thresholds from [1, 100] as 

established in [5].  

D. Comparison with State-of-the-Art 

1) Crowd Counting 

In this section, we analyze and compare the 

performance of our method in the counting task with 

several methods, including those that do not output 

localization information as shown in Table I. Density-map 

methods have been known for outperforming localization-

based methods. However, it has been demonstrated that 

MSP2P yields comparable results to state-of-the-art 

approaches while providing individuals’ locations.  
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TABLE I. COUNTING ACCURACY OF OUR METHOD ON FIVE CHALLENGING DATASETS COMPARED WITH STATE-OF-THE-ART METHODS 

Method Localization 
Shanghai A Shanghai B UCF-QNRF UCF-CC_50 JHU++ 

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE 

AMSNet [11] No 56.7 93.4 6.7 10.2 101.8 163.2 208.6 296.3 - - 

AMRNet [18] No 61.6 98.4 7.0 11.0 86.6 152.2 184.0 265.8 - - 

NoisyCC [30] No 61.9 99.6 7.4 11.8 85.8 150.6 - - - - 

LoViTCrowd [20] No 54.8 80.9 8.6 13.8 87.0 141.9 - - - - 

S-DCNet [31] No 59.8 100.0 6.8 11.5 84.8 142.3 - - 62.1 268.9 

Gaunet [22] No 54.8 89.1 6.2 9.9 81.6 153.7 186.3 256.5 58.2 245.1 

HMoDE [19] No 54.4 87.4 6.2 9.8 - - 159.6 241.6 55.7 214.6 

LSC-CNN [7] Yes 66.4 117.0 8.1 12.7 120.5 218.2 225.6 302.7 - - 

GL [32] Yes 61.3 95.4 7.3 11.7 84.3 147.5 - - 59.9 259.5 

TopoCount [12] Yes 61.2 104.6 7.8 13.7 89.0 159.0 184.1 233.1 60.9 267.4 

AutoScale_loc [9] Yes 65.8 112.1 8.6 13.9 104.4 174.2 - - 85.6 356.1 

CLTR [14] Yes 56.9 95.2 6.5 10.6 85.8 141.3 - - 59.5 240.6 

P2P* [16] Yes 53.6 94.1 6.3 10.4 93.3 164.3 182.8 263.9 60.8 250.2 

MSP2P (ours) Yes 53.2 87.9 6.1 9.9 84.1 140.5 158.8 239.2 57.2 245.0 

Note: * represents that the network was trained by ourselves with a fixed number of epochs. Bold represents the best results for each family of methods. 

 

Compared to P2P [16], it is also shown in the same table 

that our method MSP2P is able to reduce by a significant 

margin both counting metrics on UCF-QNRF [5], 

UCF_CC_50 [6] and JHU++ [28] datasets, which are the 

ones with more complicated scenes containing a 

significant variation of crowd numbers with large a scale 

of people. Compared to the other methods, MSP2P 

competes with the transformer-based methods [14, 20]. 

Regarding the ShanghaiTech dataset [4], our method 

achieves similar results to P2P, improving the MSE metric 

in Part A. Moreover, even though that Part B contains 

more sparse scenes with fewer scale variations, our method 

still achieves competitive results. Regarding the 

transformer-based models, in Part A MSP2P obtains a 5% 

reduction compared to CLTR [14], which is the next best 

method that provides position information.  

2) Crowd localization 

 First, crowd localization evaluation is shown in Tables 

II and III in which it is compared with other state-of-the-

art methods [7, 9, 12, 14]. When using a low threshold (σ 

= 4) in ShanghaiTech Part A, our MSP2P improves by 3% 

the F1-measure of P2P [16] and AutoScale [9] and 

outperforms the transformer-based CLTR [14] at least 

15%.  

When the threshold is less strict (σ = 8), the results are 

more balanced, and it improves 2% the F1-Measure on the 

test set. For the high-dense dataset (Table III), UCF QNRF 

(σ = [1, 100]), our method achieves the best Avg. Precision 

and F1-Measure. These results show evidence that 

providing scale information during training helps the 

network to improve the localization of individuals in the 

images. Fig. 5 illustrates some failure cases in localization 

from the baseline (top row) in which large-scale heads are 

not detected and, in some cases, estimates multiple points 

for the same individual. 

TABLE II. LOCALIZATION RESULTS FOR SHANGHAITECH PART A [3]. IT 

IS EVALUATED WITH TWO THRESHOLDS: Σ = 4 AND Σ = 8 

Method 
 = 4  = 8 

Prec. Rec F1 Prec. Rec. F1 

LSC-CNN [7] 33.4 31.9 32.6 63.9 61.0 62.4 

TopoCount [12] 41.7 40.6 41.1 74.6 72.7 73.6 

AutoScale [9] 56.2 54.2 55.2 74.4 71.7 73.0 

CLTR [14] 43.6 42.7 43.2 74.9 73.5 74.2 

P2P* [16] 56.2 54.9 55.6 77.1 76.2 76.6 

MSP2P 58.7 58.3 58.5 79.6 77.7 78.6 

Note: * represents that the network was trained by ourselves with a fixed 

number of epochs. 

TABLE III. LOCALIZATION RESULTS FOR UCF-QNRF [4]. IT IS 

EVALUATED USING A RANGE OF THRESHOLDS FROM [1, 100] 

Method Precision Recall F1-Measure 

LSC-CNN [7] 75.84 74.69 75.26 

TopoCount [12] 81.77 78.96 80.34 

AutoScale [9] 81.31 75.75 78.43 

CLTR [14] 82.22 79.75 80.97 

P2P* [16] 80.91 78.01 79.43 

MSP2P (ours) 82.51 79.56 81.01 

Note: * represents that the network was trained by ourselves with a 

fixed number of epochs. 

Journal of Image and Graphics, Vol. 13, No. 1, 2025

120



 

Fig. 5. Comparison between P2P [15] (top row) and our MSP2P (bottom row) when localizing large-scale heads. As seen in the top row inside the 

yellow regions, P2P fails at localizing people and, in some cases, predicts multiple points for the same individual, as seen in the third column. 

E. Ablation Study 

In this section, we study the effect of different 

parameters on the ShanghaiTech Part A and UCF-QNRF 

datasets.  

Effect of the number of prediction heads. The number 

of levels L in a network specifies the different scales in 

which the network is able to predict. As explained in Sec. 

III.B, the number of levels can affect the scale parameter 

used during training. This effect can be seen in Table IV, 

where the best results are obtained when L = 3.  

TABLE IV. EFFECT OVER THE COUNTING RESULTS DEPENDING ON THE 

NUMBER OF PREDICTION LAYERS 

Levels (L) 
SHTech Part A UCF-QNRF 

MAE MSE MAE MSE 

2 53.4 90.5 88.8 151.8 

3 53.2 87.9 84.1 143.5 

4 60.6 90.4 100.4 173.7 

 

Effect of AoI size. The radius R determines the Area of 

Interest, regulating the number of neighbors inside the AoI. 

In Table V, we study the effect of its size on the counting 

results. We test three different sizes in each dataset, and 

the best results are obtained when the AoI is similar in size 

to large-scale heads in that particular dataset. 

Effect of correction step. In Table VI, we show how 

the correction step has a significant effect on the count 

estimation. Correcting ambiguous points creates a 

smoother transition between scales, allowing the network 

to learn better representations for different scales.  

TABLE V. EFFECT OVER THE COUNTING RESULTS DEPENDING ON THE 

SIZE OF THE AREA OF INTEREST 

Radius (R) 
SHTech Part A UCF-QNRF 

MAE MSE MAE MSE 

2 53.4 90.5 88.8 151.8 

3 53.2 87.9 84.1 143.5 

4 60.6 90.4 100.4 173.7 

TABLE VI. EFFECT OF INCORPORATING THE CORRECTION STEP 

Correction step 
SHTech Part A UCF-QNRF 

MAE MSE MAE MSE 

False 56.3 91.2 96.9 168.7 

True 53.2 87.9 84.1 143.5 

V. CONCLUSION 

In this work, we have proposed a multi-scale 

architecture point-to-point network (MSP2P) specifically 

designed to address the challenge of predicting accurate 

head counts in densely populated scenarios with high 

perspective variations. This network includes a set of 

experts where each one has been specifically trained to 

estimate head locations in a range of head sizes. 

Additionally, we have presented a novel method for 

determining the optimal scale parameter for each 

annotated head, which aids the neural network in selecting 

the most suitable level for each ground truth point, 

specifically during the one-to-one association step in the 

training phase. This simple yet highly effective approach 

outperforms state-of-the-art results, improving not only 

counting and localization accuracy but also exhibiting 

superior generalization capabilities across diverse datasets. 

Visual results demonstrate that the proposed method 

mitigates the view perspective effect.  
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