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Abstract—Many machine learning applications are 

constrained by limited quantity, quality, and variance of the 

collected real-world datasets used for training and 

evaluation. In this work, authors leveraged generative 

artificial intelligence techniques to extend the amount of 

data available to train and evaluate Convolutional Neural 

Networks (CNNs) for object detection and classification. 

Stable Diffusion was used as the core augmentation 

algorithm alongside traditional machine vision techniques. 

A variety of augmentation techniques were compared in 

terms of their impact on training and evaluating CNNs. The 

augmented images were used in part to train CNNs to 

improve the performance of detection models when 

evaluated on real-world images. Additional experiments 

were conducted which quantified the prediction 

performance on real-world data by measuring the 

performance on similar synthetic data. Within these 

experiments, various ratios of synthetic and real-world 

images were used to train networks which were then 

evaluated on real-world and synthetic holdout datasets.   

Keywords—computer vision, synthetic data, generative 

models, validation and verification, neural style transfer  

I. INTRODUCTION

When developing computer vision systems, domain 

coverage in the training dataset is paramount to ensure 

the deployed system can operate in the target 

environment. Unfortunately for many applications, 

relevant training data from the target environment does 

not exist or is not plentiful enough to support the creation 

of an effective computer vision system. Traditionally, 

synthetic data, usually created in a simulation 

environment, is used to bolster the training dataset with 

both common and rare operational examples. While 

effective for capturing a wide range of target scenarios, 

the effectiveness of synthetic data is diminished by the 

simulation to reality gap that separates the two domains. 

Within the visual domain, modern high-fidelity 

simulators are often used to generate synthetic data that 

closely resembles reality. While these solutions help to 

shrink the simulation to reality gap, they do not close it 
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entirely and often require the creation of high-fidelity 

assets to achieve results that appear realistic. 

Both traditional machine vision and generative model-

based techniques are frequently implemented to augment 

synthetic image data with the properties of other domains. 

The latest generation of generative image models, Latent 

Diffusion Models (LDMs) [1], have shown great promise 

in text to image generation and image-to-image 

translation tasks. This work focuses primarily on the use 

of these generative models for image-to-image translation 

with the overall goal of performing neural style 

transfer [2]. We expand upon existing work in the field of 

neural style transfer by applying it to the problem space 

of detecting and tracking aircraft across large shifts in the 

visual domain. A pipeline for image augmentation was 

developed to perform neural style transfer on synthetic 

images of aircraft on an aircraft carrier deck. The output 

of the pipeline is an augmented dataset with the “style” of 

images from a real-world camera system applied to it. In 

particular, the contributions of this paper are as follows: 

• Comparison of the effectiveness of real, synthetic,

and augmented data for the training of an object

detection model that is robust to visual domain

shift.

• A unique augmentation pipeline for performing

localized style blending of synthetic objects

inserted into an image of the target operating

domain.

• Preliminary results on the effectiveness of using

synthetic and augmented data to predict

performance of an object detection model on

unseen domains.

This paper is organized as follows: Section I covers the 

context for the problem space and motivation for the 

work, Section II provides an overview of relevant 

research, Section III explains data generation and 

evaluation methods, Section IV presents the results of the 

data augmentation experiments in the context of the 

paper’s hypothesis, Section V concludes the paper by 

summarizing the work and identifying future work. 
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II. LITERATURE REVIEW 

A. Synthetic Data 

The need for large amounts of labeled data needed to 

train effective deep learning computer systems has led 

many to adopt synthetic data to supplement their training 

sets. As a result, a wide array of tools for generating 

automatically labeled synthetic data have been created for 

a variety of application domains [3–6]. While effective 

for simply increasing the number of training samples, 

synthetic data often falls victim to the reality gap where 

the differences between synthetic and real data prevent 

systems from learning highly generalizable object 

representations. 

B. Style Transfer 

To help bridge the reality gap between synthetic and 

real data, various methods for augmenting a synthetic 

image with features of a real image have been developed. 

This method of applying the style of one image to another 

falls under the domain of neural style transfer [7].  

Gatys et al. [8] originally used convolutional neural 

networks to encode the style information of one image 

and apply it another image to create a new image in the 

encoded style. Other methods explore more traditional 

signal processing methods for perturbing specific 

components within an image to improve domain 

generalization [9].  

C. Generative Models 

The creation of Generative Adversarial Networks 

(GANs) [10] led to a significant amount of derivative 

work that utilizes adversarial generation techniques to 

apply desired styles and properties to an image. 

Adversarial generation based style transfer techniques 

in [11–21] utilize a variety of GAN based methods for 

transferring a target style onto both real and synthetic 

images. Isola et al. [22] utilize Conditional GANs to 

perform image to image translation on common 

conditional images like canny edge and segmentation 

maps. Recently, denoising diffusion models [23, 24], 

have shown impressive results in neural style transfer 

tasks. Large text to image models build upon image 

diffusion models by adding textual input as a way to 

condition and control the denoising diffusion process to 

generate a specific image output [1, 25–27].  

Zhang et al. [28] introduce the use of conditional control 

maps as another form of guidance for controlling the 

image diffusion process. As in Ref. [22], conditional 

generation significantly improves object fine detail 

saliency during the style transfer process which is critical 

for training object detection models. 

III. MATERIALS AND METHODS 

A. Synthetic Data Generation 

The Unity game engine [29] was utilized to create a 

synthetic representative of an aircraft carrier deck 

environment. Examples from the synthetic environment 

and the real-world carrier that it was modeled after, are 

shown in Fig. 1. Three distinct visual domains in the 

target environment were identified and subsequently 

replicated in the synthetic environment. These visual 

domains represent our target domains for performing 

style transfer. Lower fidelity assets were intentionally 

used to quickly mockup equivalent viewpoints and asset 

locations from the real-world images while not focusing 

on making the simulation appear realistic. Three distinct 

camera views were used to provide coverage of the entire 

deck in the simulation to replicate the coverage generally 

provided by a potential real world camera system. Within 

each view, synthetic F/A-18Es were spawned at random 

locations at least partially in view of the camera with 

their yaws randomized. 

Exactly 500 images were generated for each view in a 

given domain resulting in 1500 images per domain split 

equally across the three different camera views. In 

addition to generating the RGB images used for training 

the object detection model, the simulator also outputs an 

aircraft segmentation image and scene depth map which 

are used during the data augmentation process. The maps, 

shown alongside other inputs to the diffusion model in 

Fig. 2, were generated using shaders in the Unity Engine 

to produce different rendering types. 

 

 

Fig. 1. A comparison of the synthetic carrier deck environment (Top) and the carrier deck that it was modeled after (Bottom). These images show 

representatives from left to right of the “Day Time”, “Gray Night” and “Yellow Night” domains which will form the basis of the style transfer 

experiments. 
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Fig. 2. Inputs into Stable Diffusion and ControlNet. Synthetic image (Top Left), Canny edges (Top Center), Unity generated depth map (Top Right), 

Unity generated aircraft segmentation map (Bottom Left), Soft Edges (Bottom Center), Reference control image (Bottom Right). 

B. Synthetic Aircraft Augmentation 

Two types of datasets were sent through the 

augmentation pipeline: 

1. Full synthetic images directly from the simulator 

2. Synthetic aircraft inserted into real world image 

of the flight deck 

The first type required no other forms of preprocessing 

and was used directly by the data augmentation pipeline. 

The second method drew inspiration from inpainting 

techniques [30–32] and attempts to perform localized 

style blending on a synthetic aircraft inserted into a real-

world image. Synthetic insert images, seen in Fig. 3, were 

generated using logical image operator functions 

provided by the OpenCV library [33] to transplant 

synthetic aircraft into the real-world image by using the 

generated aircraft segmentation map as a logical mask. 

C. Generation Methods 

This paper presents the results from two different 

stable diffusion based style transfer techniques: 

1. Full image style transfer using a synthetic image 

2. Targeted image style blending using an 

inpainting mask on images of synthetic aircraft 

inserted into real world images 

All augmentations were made using the Stable 

Diffusion [1] image to image translation functionality in 

conjunction with ControlNet [28] for adding conditional 

controls to the generation. This involved using images 

from one of the two types of datasets described in the 

previous section as input directly into the diffusion model. 

The custom stable diffusion 1.5 model, Realistic Vision 

V5.1, was used as the specific model for the generations. 

Images were translated one at a time with no batch 

processing due to limitations in the open-source API at 

the time. The open-source AUTOMATIC1111 Stable-

Diffusion-Webui API was leveraged to access the image-

to-image translation capabilities of stable diffusion and 

ControlNet in order to perform style transfer on all of the 

tested datasets. Generation parameters, besides denoising 

strength and inpainting use, were kept unchanged across 

all dataset augmentations. The key parameters used 

within the API can be found in Table I. 

TABLE I. STABLE DIFFUSION INPUT PARAMETERS FOR BOTH 

GENERATION METHODS 

Parameter 
Augmentation 

Method 1 

Augmentation 

Method 2 

Prompt 

(grainy:1.5) picture of a military (aircraft:1.4) on 

an ship deck, (F-18 super hornet:1.4), water in the 

distance, realistic, photorealistic, real word, 

military 

Negative Prompt 

canvas frame, video game, bad art, bad anatomy, 

3d render, signature, copywrite, text, shiny, 

distorted, bright colors, vibrant, red, trees, bushes, 

plants, treetops, forest, woods 

Image Size 

(Width x Height) 
(960×540) 

Sampler Euler A 

Sampling Steps 30 

Cfg Scale 7 

Denoising 

Strength 
0.30 0.10 

Inpainting False True 

ControlNets Canny, Depth, Segmentation, Softedge [34, 35] 

 

 

 

 

Fig. 3. Synthetic aircraft from each of the three domains, Day (left), Yellow Night (Center), and Grayscale Night (Right), inserted into real-world 

images for their respective domains. 
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Prompt parameters were determined experimentally 

and by using the CLIP interrogate [34] function to 

generate text prompts from both the input synthetic image 

and the target real world style image. Token weightings, 

(token: weight), in the prompts were used to highlight the 

key features within the desired output image. The 

ControlNets were chosen based on availability of the 

control inputs output by the simulator and what generally 

provided the best style transfer results based on visuals 

alone. Example inputs into the five ControlNet units can 

be seen in Fig. 2. The Canny edge and Soft edge images 

are generated by the built in ControlNet preprocessors 

while the depth and segmentation maps come from the 

Unity synthetic data generation process. 

Method 1, full image style transfer, takes in an entirely 

synthetic image alongside the relevant conditional 

controls and outputs an image in the style of the reference 

control image. For this method, a higher, yet still 

relatively low, denoising strength is used to perform style 

transfer on the synthetic input image. As with other 

parameters, this value was experimentally determined 

based on how well generation result matched the target 

style and maintained key aircraft features. Lower 

denoising strength values generally resulted in low levels 

of style transfer but high levels of object fidelity while 

high denoising generally result in high levels of style 

transfer, but poor level of object fidelity as shown in 

Fig. 4. While overall aircraft structure is maintained, finer 

details like wheels, underwing equipment, the cockpit, 

and general texture are lost or heavily altered in the 

augmentation process. 

Method 1 was tested across all views for each domain 

with mixed results. As shown in Fig. 5, style transfer into 

the daytime domain performed well across all views with 

preservation of aircraft structure in most cases. Failures 

generally occurred on aircraft that were farther away 

from the camera and only represented a very small 

portion of the image. Even with the use of conditional 

controls [28] the diffusion process struggles with 

maintaining fine details on small objects. Based on 

visuals alone, the process also struggles to transfer low 

luminosity styles onto synthetic images like those of the 

gray night and yellow night domains. 

 

 

Fig. 4. Comparison of style transfer quality and aircraft fidelity across ten levels of denoising strength. The inputs into Stable Diffusion and 

ControlNet are the images shown in Fig. 3 with the denoising strength being the only variable. 

 

Fig. 5. Select method 1 style transfer results for the three visual domains (Day, Gray Night, Yellow Night) and three camera views (Back, Mid, Front). 

The final column shows representative images from the three real world visual domains. 
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Fig. 6. Select synthetic aircraft insert style transfer results for the three visual domains (Day, Gray Night, Yellow Night) and three camera views 

(Back, Mid, Front). The final column shows representative images from the three real world visual domains. 

Method 2, targeted style blending using inpainting, 

aims to perform the diffusion process over just the 

synthetic aircraft after it has been inserted into a real-

world image using the process mentioned in the Synthetic 

Object Insertion section. An inpainting mask, a dilated 

binary version of the aircraft segmentation mask, is 

passed into Stable Diffusion along with the synthetic 

insert image and the conditional controls used in Method 

1. The result is an augmented image with the surrounding 

style of the real-world image transferred onto the inserted 

aircraft without having to run the diffusion process across 

the entire image. This route was explored for several 

reasons, the primary one being that naturally including as 

much of the target domain directly in the image as 

possible should theoretically improve performance in that 

domain. Additionally, running the diffusion process 

across only a portion of the image lowers overall 

processing time required to perform style transfer on a 

dataset.  

As in method 1, method 2 was tested across all 

combinations of camera views and visual domains as 

shown in Fig 6. Due to the lower denoising strength, finer 

details of the aircraft structure appear to be better 

maintained during the style transfer process in most cases. 

The method still struggles with smaller aircraft in the 

image and fails to maintain proper structure, texture, and 

orientation during the diffusion process. Additionally, the 

ability to match perceived illumination of the object 

seems to be heavily tied to the lighting level of the 

synthetic scene that the aircraft was taken from. This is 

particularly evident in the Fig. 6 Front Day time image, 

row one rightmost augmented image, where the synthetic 

aircraft were from a darker scene than the target domain. 

Evaluation on Object Detection Network 
The YoloV8 object detection and classification 

network was used to evaluate the effectiveness of the 
presented methods for creating usable training data for 
the task of aircraft identification. During training, the 
same hyperparameters were kept for all trials with the 
only difference being the dataset used to train the model. 
The combinations of datasets and the subsequent 
performance of the model across all domains, real, 
augmented, and synthetic will be presented in the results 

section. All networks and subsequent results are with 
respect to the task of identifying the F/A-18E aircraft in 
an image. 

IV. RESULT AND DISCUSSION 

Model performance was measured using two metrics, 
Average Precision (AP), and Average Recall (AR), for a 
given dataset. Holdout datasets were established for each 
of the nine unique dataset types which were formed from 
the combinations of an image type, real, augmented, or 
synthetic, and a visual domain, Day, Gray Night, or 
Yellow Night. Various proportions of mixtures of the 
different types of data were used to train models for 
different experiments with the current best performing 
mixtures shown in Table II. Each of the best performing 
mixtures involved using the full training datasets for the 
three real world domains as denoted by the “Full Real” 
dataset. The other best performing datasets consisted of 
adding the full sets of synthetic or augmented data to the 
Full Real dataset to supplement the training data. This 
was done in a naïve fashion by simply making them into 
one large dataset, splitting that into training and 
validation, and going through the standard training 
process using the new datasets. 

TABLE II. CURRENT BEST AIRCRAFT DETECTION MODEL RESULTS 

Dataset 
Real Day 

(AP, AR) 

Gray Night 

(AP, AR) 

Yellow Night 

(AP, AR) 

Full Real (0.443, 0.194) (0.296, 0.262) (0.423, 0.363) 

Full Real + Full 

Synth 
(0.443, 0.196) (0.304, 0.245) (0.419, 0.355) 

Full Real + Full 

Augment Method 1 
(0.422, 0.2) (0.309, 0.262) (0.391, 0.348) 

Full Real + Full 

Augment Method 2 
(0.430, 0.21) (0.312, 0.265) (0.401, 0.356) 

 
In addition to using the performance of an aircraft 

identification model to evaluate method performance, 
Fréchet Inception Distance (FID) [36] was used to 
quantify the style difference between image datasets. This 
was used as a direct measure to determine if the data 
augmentation methods were shrinking the domain gap 
between the synthetic and real data in a meaningful way 
and if that correlated with an increase in performance on 
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real world data. Table III shows the FID scores between a 
given real-world dataset and its corresponding synthetic 
and augmented datasets. The FID score is used here to 
quantify the style and domain distance between two given 
datasets where a smaller score signifies a higher 
similarity in datasets. According to this use case, 
Augment method 2, target image style blending, showed 
the smallest distance to the target real world dataset 
across all 3 target domains. This corresponded with the 
largest, albeit still marginal, increase in performance on 
the Gray Night domain but did not generalize across all 
domains.  

TABLE III. FID DOMAIN DISTANCES BETWEEN DATASETS 

Real World 

Domain 

Dataset Type 

Synthetic 
Augment 

Method 1 

Augment 

Method 2 

Day 280.428 174.472 122.242 

Gray Night 263.804 164.998 152.179 

Yellow Night 207.684 177.66 118.556 

 
Sections III and IV presented two methods for 

performing style transfer on a synthetic aircraft image as 
well as results on the performance of an aircraft 
identification network trained on the resulting images. 
The two methods both assume the existence of a target 
style image with a desirable viewpoint which is common 
in the type of fixed viewpoint environments that our 
research typically operates within. Both methods showed 
various levels of effectiveness on the task of style transfer. 
Across both methods, failure cases were primarily on 
small aircraft and when there were significant differences 
in illumination between source and target domains. One 
of the key challenges faced during style transfer 
experiments was intentionally creating “poor” quality 
noisy images. Traditionally, large generative image 
models such as Stable Diffusion, are trained with the 
intention of creating high quality visually aesthetic 
images [1]. The target style images used during this work 
had “undesirable” image features like noise and low 
contrast which are traditionally intentionally avoided in 
the image generation process. Using reference style 
conditional controls [28] helped to alleviate this 
limitation but there is room for improvement. 

Overall, augmented data showed only marginal 
improvements in certain domains over synthetic data in 
terms of supplementing a small batch of real data to train 
a YoloV8 based aircraft identification network. The 
augmented data showed lower style distance to the real-
world data both visually and according to the FID domain 
distance score. Several factors could contribute to the 
lack of improvements shown by augmented data. The 
authors believe the primary factor to be that the 
augmentation process produced poorly structured aircraft 
on a number of its generations which harm the ability of 
the network to learn a common representation for the 
aircraft. The other major factor considered by the authors 
is the presence of unlabeled real-world aircraft in the 
images from Method 2. The labels for these aircraft were 
not included in the training annotations for the networks 
which may have again harmed the ability of the network 
to learn the proper common representation for the aircraft. 

Despite not achieving the desired result of creating 
augmented data that could improve and predict the 
performance of aircraft identification networks in other 
domains, the Stable Diffusion based style transfer shows 
promise for future work. Data scarcity is a common 
problem across many military applications which results 
in the use of synthetic data as a supplement when training 
object detection and classification systems. The authors 
plan to use the existing augmented data with other 
training methods such as pretraining on large amounts of 
augmented data and then fine tuning on the small batches 
of available real-world data. This would hopefully allow 
the system to learn a high-level structural representation 
of the target of interest from augmented data and then key 
finer details from the real-world data. With further fine 
tuning of the image augmentation process, the presented 
methods could provide a powerful tool for helping to 
bridge the sim to real gap. 

V. CONCLUSION 

In this paper, we introduce a diffusion model based 
image augmentation pipeline for performing style transfer 
on synthetic images of aircraft. The effectiveness of this 
data for training an aircraft identification network was 
testing with various mixtures of real, augmented, and 
synthetic data across three different visual domains. 
While the presented methods showed promising results 
on the task of style transfer for closing the sim to real gap, 
this did not translate into augmented data having an 
improved ability over synthetic data for training aircraft 
identification models. Potential issues in data generation 
and aircraft identifier processes have been identified and 
will be explored further in future works. Despite 
shortcomings on the desired aircraft identification results, 
the research contributes a style transfer technique that 
may find applicability in other low data regime use cases. 
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