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Abstract—Neural networks have been widely used in image 
recognition tasks, and this study explores a novel method—
Quaternion Neural Networks (QNNs)—for enhancing 
performance. Using quaternion algebra, QNNs minimize the 
number of trainable parameters, leading to more compact 
models and quicker training times than Convolutional 
Neural Network CNNs. Therefore, color layers might 
potentially improve network performance by learning 
common parameters through input as linked values. 
Experiments assess learning processes by taking into account 
the roles of color and structure as well as stability in the 
presence of noisy visuals. According to the experimental 
results, QNNs retain an accuracy of 85% in the absence of 
noise, but at a noise level of σ = 0.30, accuracy dropped to 
70%. Notwithstanding this, the network proved to be 
effective in learning structural information, exhibiting 
robustness against noise and disturbances in texture and 
color, hence confirming its suitability for wider image 
recognition uses. The paper establishes a proof of concept for 
the effectiveness of quaternion networks that will open up 
new avenues for research and possible uses that could 
outperform or supplement traditional networks.   
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I. INTRODUCTION

Neural networks have become indispensable in many 
fields—such as image processing, voice assistants, 
medical data analysis, consumer behavior prediction 
modelling, and recognition systems. Neural network 
researchers throughout the world are quite active and often 
coming up with new ideas and structures. The 
advancement of these networks to enhance data 
assessment and automate intelligent operations is also 
highly profitable. In addition to examining a novel method 
of network development with possible applications beyond 
image processing—the paper focuses on the use of neural 
networks in image recognition. However, the red, green, 
and blue color channels are typically treated differently by 
CNNs for image recognition, giving each channel a 
different set of parameters. In order to enable the network 
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to learn common parameters across all channels, this paper 
investigates a method that inputs the color channels as 
coupled values using quaternions. Quaternions provide a 
new way to process color information for image 
identification. The performance of Image recognition is 
improved when the network is able to capture more 
intricate channel interactions when treating color channels 
as quaternion values. 

Hence, QNNs have proven to be more flexible while 
processing noisy images compared to traditional CNNs. 
This is mostly due to the ability of QNNs to regard color 
channels as related quaternion values, allowing them to 
learn common parameters across channels and thus 
increasing the network’s resilience to noise.  
Understanding the complex interdependencies across 
channels in noisy trends is limited by traditional CNNs 
because they process color channels independently. 
Specifically, in tasks where color information is essential 
for image discrimination, QNNs outperform CNNs (e.g., 
distinguishing between similar objects or categories; cat vs. 
dog).  Additionally, when images contain noise in the form 
of motion blur, color distortions, or optical aberrations, 
QNNs perform better.  However, this advantage is not 
constant but changes depending on the amount and type of 
noise; QNNs outperform CNNs at lower noise levels but 
lag behind when the noise becomes more disturbing. 

Quaternion networks are a promising method for 
learning. In this paper, several tests are conducted to 
evaluate its performance and determine whether the 
quaternion approach can provide a significant advantage 
over traditional methods. The focus was on how it handles 
color and structural information and analyzed its 
performance in noisy image situations, as real-world 
images often contain noise due to a number of issues, such 
as compression effects, motion blur, and poor lighting.  
However, handling quaternion-valued inputs is more 
complex than with typical CNNs, implementing QNNs 
requires more computer resources. In comparison to the 
typical real-valued operations used in CNNs, the usage of 
quaternions introduces extra mathematical operations, 
such as quaternion multiplications, which are 
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computationally more expensive. Instead of processing 
CNNs’ one real-valued component, quaternions have four 
components: three imaginary and one real. This 
complexity results from processing these four components. 
The four-dimensional data representation, in which each 
pixel in an image is represented as a quaternion, effectively 
increasing the dimensionality of the data; quaternion 
multiplications, requiring more complex algebra and 
additional processing power; and the requirement to 
manage shared parameters across color channels, 
increasing the overall size of the network and 
computational load, are important factors contributing to 
increased computational complexity. The trade-off 
between performance and complexity is substantial; 
although QNNs have higher memory and computational 
costs, they can result in better performance, especially in 
jobs involving color images where inter-channel 
interactions are crucial. Because QNNs are better at 
capturing the intricate interdependencies between color 
channels, they can perform more accurately and robustly 
against noise than CNNs. Using QNNs ultimately comes 
down to whether the extra computational expenses are 
worth the possible performance gains. 

The paper is as follows; the background will be seen in 
the following section. The related works are listed in 
Section III. The materials and methods are covered in 
Section IV. The experimental analysis is carried out in 
Section V, and in Section VI, we provide a conclusion and 
future directions for the research. 

II. BACKGROUND

Quaternion networks rely on the fundamental principle 
of combining an image’s three-color layers into a single 
entity by storing the RGB values as imaginary parts of a 
quaternion. The goal of this all-encompassing method is to 
produce visual learning that closely mimics recognition in 
the real world. The notion arose from the efficacy of 
complex-valued neural networks in concurrently 
processing signal amplitude and frequency—hence—
igniting curiosity in quaternion networks for analogous 
uses in three-dimensional data. In quaternion networks—
the input image is processed as if it were made entirely of 
quaternions—creating a quaternion-valued input matrix. 
Real matrices and quaternion filters are convolved using a 
quaternion filter and a quaternion input. In order to 
calculate each value in the convolution matrix, the filter 
shifts over the input and overlays filter values to alter the 
input matrix values. Quaternion convolution involves 
rotating and scaling a quaternion-valued pixel inside the 
color space as opposed to just performing basic 
multiplication. Quaternion convolution is less susceptible 
to overfitting because it does not require learning separate 
parameters for each of the three-color channels due to this 
combined processing of the channels. Pooling layers are 
used before fully connected layers or in between 
convolutional layers to minimize size, eliminate noise, and 
avoid overfitting. Quaternion networks employ magnitude 
max-pooling in place of conventional max-pooling or 
average-pooling in order to maintain color context. Similar 
to max-pooling for grayscale images—this technique 

maximizes the magnitude of pixels in a submatrix and 
yields good results. A quaternion neuron functions 
similarly to an actual neuron. Every input is subjected to a 
rotation and scaling process after being multiplied by a 
weight and added up.  

Quaternion neurons, in contrast to original neurons—do 
not require a bias because the quaternions would get 
detached from their color context due to differing 
summands for the channels and scaling factors. Quaternion 
neurons have twice as many parameters as real neurons 
since they have an angle theta and a scale for each input—
compared to one weight and a bias for real neurons. But 
because each input has three color channels—more 
information may be processed at once. ReLu was selected 
as the activation function between completely connected 
layers because of its substantial research data and 
performance. To ensure correct interpretation in color 
space it steers clear of negative values for the imaginary 
sections. Three imaginary components are each given its 
own application of the activation function. One way to 
connect a real layer to a quaternion layer is to project three 
color layers of a given neuron onto the grey axis—which 
will then be used as input to the next real layer. This is 
parameter-efficient—but information is lost when three 
values are reduced to one. To preserve sufficient color 
information before switching to actual layers, the three-
color layers are divided into separate input values. At the 
network’s end—the traditional softmax function is utilized 
to detect classes and returns a probability distribution for a 
given output. The right label for training images is given 
in supervised learning. The difference between the 
network output and the accurate output is calculated as the 
squared error.  

Backpropagation requires derivatives of this mistake 
based on the network parameters. It is possible to compute 
the gradients explicitly by using the quaternion rotation 
and scaling properties. The quaternion CNN’s architecture 
consists of fully connected quaternion layers with ReLu 
activation, several convolutional layers, magnitude max-
pooling, input images that are interpreted as pure 
quaternions, and a transition to real layers for SoftMax-
based class predictions. The notion of approximation by 
the network was originally demonstrated by testing its 
learning and approximation capabilities on a limited 
subset—which was also utilized for testing. We conducted 
additional testing using the CIFAR-10 dataset. The 
quaternion CNNs was put together and trained using these 
tools and techniques, and it was evident that it could 
roughly represent the current situation. 

III. RELATED WORKS

Artificial Intelligence (AI) challenges using 
Deep Neural Network (DNN) [1–6] have demonstrated 
state-of-the-art performance. Its influence has extended to 
clinical practices as well. Many CNNs topologies that are 
capable of extracting characteristics from objects—
particularly images or videos—are the result of deep 
learning’s evolution throughout time. The three channels 
(R, G, and B) that make up a color image are 
multidimensional entities. Before completely connected 
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layers for classification—acquired features are appended 
when applying real valued CNN separately—channel-wise 
on a color image. As a result, real valued CNNs experience 
information loss due to their inability to encode the 
relationships between the three channels—which makes it 
difficult to get greater accuracy. Applying the ideas of 
complex and hyper complex algebra has allowed real 
valued neural networks to be expanded into High 
Dimensional Neural Networks (HDNN) [7]. As a more 
effective alternative to ordinary neural networks—
complex valued neural networks [8] have gained 
popularity. The QNNs was first proposed in [9]. Since then, 
it has been used with notable improvements in speech 
recognition [10], human’s motion recognition [11],  
3-dimensional sound event detection [12], to ensure the
security of image [13], however, a number of security
issues are impeding their broader implementation [14].
Based on quaternion algebra—CNN designs were
expanded into Quaternion CNNs—which uses the
Hamiltonian product rather than the dot product and
incorporate previous knowledge about the data’s structure
to capture the internal relationships among
multidimensional entities. It has been demonstrated in [15]
that using QNN rather than CNNs significantly improves
classification accuracy and that using QNN requires fewer
parameters when compared to equal actual CNNs.

IV. IMPLEMENTATION

Python’s widespread use in AI and image processing 
applications led to its selection for QNNs implementation. 
Python’s huge libraries, efficiency, and multi-
paradigmatic nature make it easy to work with neural 
networks. The network is implemented from scratch—
starting with simple quaternion neurons and working its 
way up to layers and convolution—while it does 
occasionally use the functionalities of these libraries. We 
create a method that permits full access to all data—
including those from intermediate stages, allowing for a 
thorough visualization of the learning process. Modularity 
is prioritized in the implementation for testability, 

readability, and quick adaption. For tasks like processing 
data—dealing with massive tensors, parameter 
optimization, and backpropagation—the Python module 
PyTorch was used. Layers are created by combining basic 
quaternion dummy neurons at the beginning of the 
program. It is necessary to establish settings controlling 
how the input data from the first layer is weighted into the 
corresponding neurons of the second layer when linking 
two layers. These parameters for quaternion layers consist 
of a scales and an angle theta for every connection. The 
scale is initialized using the Xavier 1  approach—which 
normalizes initialization taking into account the sizes of 
input and output—theta is initialized using a uniform 
distribution. The functions to define and initialize the first 
layer with parameters based on the input size are called in 
order to establish a simple architecture consisting of three 
layers that are reasonably narrow in width and to initialize 
associated parameters. Rotation and scaling are used to 
weigh each connection between layers, and performance is 
minimized by avoiding loops across neurons—the only 
loop that must be avoided is one that crosses batch 
elements. The function that manages the parameters of the 
connection between layers and the output of the preceding 
layer is intended to return the output of the neurons in the 
layer that follows. Using SoftMax to compute class 
predictions—the final step is flattening the three-color 
components and connecting them to a real layer [16–20]. 
For this reason—real neurons and layers are defined—as 
well as the corresponding parameter initialization. To 
discern between various layer types that need to be 
connected—the function that connects layers has been 
modified. Setting up an entire layer of multiple 
convolutions with the same size and matching parameters 
is necessary in order to prepare for quaternion convolution. 
Originally trained on a small testing subset—the model 
was shown to be capable of learning and approximating 
through backpropagation. This method only produces an 
overfitted relation for the training set—which is 
incongruous with learning a true relation—yet—it 
validates the approximation notion of the network as 
shown in Fig. 1. 

Fig. 1. Assessing the capacity to roughly represent a context using a static batch that lacks a train-test-split.

1 https://365datascience.com/tutorials/machine-learning-tutorials/what-
is-xavier-initialization/ 
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V.  EXPERIMENTAL ANALYSIS 

A. The Influence of Noise on the Learning Process 

Training was carried out on the CIFAR-102 dataset in 
order to assess the learning process’ resilience to noise and 
improve knowledge of it. This dataset—which includes 
60,000 color, 32×32-pixel images covering 10 distinct 
classes with 6,000 images each—is extensively used to 
train new machine learning techniques. Aircraft, 
automobiles, trucks, ships, frogs, dogs, cats, deer, and 
horses are among the ten classes. The light, angle, distance, 
and color variations in this dataset make training on it 
difficult. It is anticipated that training on such a difficult 
dataset will result in a robust model that comprehends the 
problems better than a model that performs badly with 
even minor changes. A more basic model with 
approximately a million parameters was utilized for this 
experiment—and it was restricted to the cat, dog, horse, 
and deer classes. Errors are predicted in these categories—
especially between horse and deer and between cat and dog. 
These classes are difficult to differentiate. A standard 
Gaussian noise was introduced in order to examine the 
impact of noise. When the three-color channels of a color 
image is processed separately with the same standard 
deviation—noisy images are produced. The CIFAR-10 

subset was used to train the same architecture with and 
without noise at noise levels of  = 0.05, 0.1, 0.2, and 0.3.  

Table I displays the final accuracy and loss results based 
on the noise level.   

TABLE I. RESULTS IN TRAINING A NETWORK WITH DIFFERENT LEVELS 

OF NOISE 

Noise Level (σ) Accuracy (%) Loss 
0.00 85.0 0.5 
0.05 82.5 0.6 
0.10 80.0 0.7 
0.20 75.0 0.8 
0.30 70.0 1.0 

 
Fig. 2 shows that small noise levels could be tolerated 

without significantly impairing contextual comprehension. 
Higher noise levels clearly result in a loss increase and a 
drop-in precision, as expected. The confusion matrices 
also showed an intriguing development as shown in Fig. 3. 
Higher noise levels enhanced the misunderstanding 
between related classes (e.g., horse-deer, cat-dog).  
Stronger noise appears to increase this effect—maybe 
because it changes the relative importance of color 
learning over structure learning. According to this theory, 
the accuracy may be impacted if there is more noise and 
the network relies more on structural information than 
color information.  

 

   
Fig. 2. Examples of correctly and incorrectly classified images with sigma = 0.1 Gaussian noise after training. 

 

Fig. 3. Higher noise levels lead to an increase in confusion between similar classes. 

 
2 https://www.cs.toronto.edu/~kriz/cifar.html 

Journal of Image and Graphics, Vol. 13, No. 2, 2025

193



 

B. The Role of Color in Learning Quaternion Networks 

It is natural to wonder if a quaternion network is capable 
of learning contexts without using color information. 
Grayscale images may not lend themselves to the 
meaningful interpretation of rotation in quaternions. On 
the other hand, scale-based weighting is similar to that of 
real networks. It should be possible to train the context 
using the quaternion network without color information 
when grayscale images are input evenly throughout the 
RGB channels. An experimental verification of this was 
achieved by training a quaternion CNN on the MNIST3 
dataset—which consists of black and white digits. These 
studies were conducted using an architecture that included 
two quaternion layers with 256 and 128 neurons, a real 10-
class output layer, and a convolutional layer with eight 
filters of size 3×3.  

This simple architecture works well for analyzing the 
impacts of various datasets. Fig. 4 illustrates how the 
training process takes accuracy and current inaccuracy into 
account. The independent validation dataset—which was 
never utilized for training, and the training batch are 
differentiated in terms of accuracy. In addition, well-
learned categorization is measured by presenting the 
percentage of right predictions among the top three most 
likely tips for each image. The forecasts that emerge show 
a solid comprehension of the digits. For instance, because 
of their similar shapes, 2 was often anticipated as the 
second hint for the Number 7. Similar circumstances 
surround the Numbers 9 and 4. This explains why it’s 
critical to take accuracy into account when ranking the top 
three forecasts. 

One can demonstrate the critical function that color 
information plays in learning with a little experiment as 
shown in Fig. 5. The numbers were not black and white—
instead—each one had a distinct color. This resulted in 
100% identification in a matter of batches. With nearly 
little loss fluctuation—the network was able to rapidly 

recognize the colors and understand the context. A similar 
model was trained on the MNIST data using random colors 
unrelated to the digits in order to finish the series of trials. 
In contrast to images that were black and white—color 
information existed but was unrelated to the image classes. 
These data were compared to the black and white MNIST 
images in terms of the learning process. The primary 
distinction was that learning with randomly colored 
images began more slowly and finished with a little worse 
prediction accuracy as shown in Fig. 6. Because more 
adjustments were required for each batch—the loss also 
varied more with random colors as shown in Fig. 7. The 
network was able to recognize the insignificance of color 
to some extent—as seen by the digit context being learned 
successfully even with randomized colors. Training was 
carried out using a substantial quantity of disruptive 
information in order to further take advantage of this 
resistance to misleading information.  

 

 
Fig. 4. Changes in accuracy and loss over time while learning MNIST 

information. 

 

Fig. 5. Predictions of validation data on a random sample of the trained network using MNIST data. 

 
3 http://yann.lecun.com/exdb/mnist/ 
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Fig. 6. Effects on learning are shown when colors corresponding to different MNIST numbers are given. 

 

Fig. 7. A comparison between learning on images without color information and learning on images with random colors. 

 

Fig. 8. Learning process of the MNIST digits with disruptive information in color and texture. 
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A random crop of an alternative image was colored and 
utilized as the MNIST digits’ backdrop—emulating a 
concept from earlier research. This generated images with 
diverting details in texture and color. Lower prediction 
accuracy was reached towards the end of the learning 
process—which started much slower as shown in Fig. 8. 
Because more adjustments were required for each batch—
the loss varied more with this disruptive information. 
These experiments show that the quaternion network 
learns both structural and color information. A disruption 
in color or structural information does not prevent learning 
from occurring. To a certain extent, the network can figure 
out that such information is irrelevant. On the other hand, 
learning proceeds more slowly and accuracy decreases 
with increasing image disturbance. The observed results 
validate the usage of quaternion networks on more 
sophisticated network topologies and datasets—as they are 
compatible with expectations for these networks. 
Quaternion networks’ resilience and promise for wider 
uses in image identification and other fields are 
highlighted by their capacity to manage both color and 
structure information, even in the face of disruptions. 

C. The Noise Impact on the Process of Interference 

The CIFAR-10 dataset was used in the experimental 
study to determine the effect of noise on the learning 
process of the quaternion network and the effect of 
increasing the amount of Gaussian noise on the model 
performance and the interference that led to the data 
representation. These results provide important insights 
into the potential for network expansion and its limitations 
when facing challenges. The results shown in Table II 
indicate that there is a fundamental relationship between 
the image classification accuracy of the model and the 
noise level. It has been observed that the network 
performance is greatly affected as the amount increases 
noise This significantly reduces network performance. 

TABLE II.  PERFORMANCE METRICS UNDER GAUSSIAN NOISE 

Noise 
Level (σ) 

Accuracy 
(%) 

Misclassification 
(%)  

Class Pairs Most 
Affected 

0.00 85.0 5.0 Cat-Dog, Horse-Deer 
0.05 82.5 7.5 Cat-Dog, Horse-Deer 
0.10 80.0 10.0 Cat-Dog, Horse-Deer 
0.20 75.0 15.0 Cat-Dog, Horse-Deer 
0.30 70.0 20.0 Cat-Dog, Horse-Deer 

 
The accuracy of the model is 85.0% at no noise while 

when noise level rises, accuracy gradually declines, 
peaking at 70.0% at σ = 0.30. This decrease in performance 
reflects the model’s inability to effectively maintain 
contextual awareness and distinguish features in noise. It 
is concerning to note that the misclassification rate rises 
from 5.0% to 20.0% when noise levels rise. This implies 
that in addition to a decrease in overall accuracy, the model 
becomes more likely to incorrectly categorize related 
classes. More specifically, the pairings of classes that are 
most confused at higher noise levels are cats and dogs, 
horses, and deer. The model’s inability to distinguish 
between these seemingly identical groups is proof that it 

depends on specific characteristics, like color, to identify 
classes. 

D. Comparative Analysis between QNNs and CNNs  

This section compares quaternion networks with 
traditional CNNs in order to highlight the possible 
advantages and drawbacks of employing quaternion 
representations in image processing. As indicated in 
Table III, the comparison was structured around many key 
performance metrics that illuminated the relative 
advantages of the two approaches. These metrics included 
variables like as accuracy, training duration, noise 
resilience, model complexity, and generalization ability.  

TABLE III. QNNS VS CNNS 

Metric Quaternion Networks Standard CNNs 
Accuracy (%) 85.0 (CIFAR-10) 90.0 (CIFAR-10) 
Training Time 

(Epochs) 50 epochs 40 epochs 

Robustness to Noise Moderate (σ = 0.1) Low (σ = 0.1) 

Model Complexity Higher (1 million 
params) 

Lower (0.5 million 
params) 

Generalization Limited to CIFAR-10 Broader applicability 
 

The table shows that when it comes to classifying 
images from the CIFAR-10 dataset, regular CNNs 
outperform quaternion networks. The accuracy will 
increase from 85% to 90%. This discrepancy for this 
specific data indicates that  Standard CNNs are more 
effective at collecting and analyzing the data needed for 
accurate classification. However, quaternion networks 
have a remarkable ability to withstand noise.  

On the other hand, the performance of standard CNN 
networks begins to deteriorate when the amount of noise 
increases, and therefore these networks are less tolerant to 
noise. Other important factors that are taken into 
consideration when comparing the two networks are the 
training period and the complexity of the model. 
Quaternion networks have higher processing power with 
over a million parameters, resulting in training times of 
around 50 epochs.  While standard CNNs have 
approximately 0.5 million parameters. In addition, they 
train for shorter periods of time (about 40 epochs). 

The efficiency is a significant benefit for practitioners 
who want to use models in real-time applications or with 
limited computational resources.  

Generalization is another important factor in evaluating 
the performance of these networks.  Standard CNNs have 
been extensively tested on a variety of datasets, proving 
their versatility and resilience, whereas quaternion 
network trials were limited to the CIFAR-10 dataset. 

VI.  CONCLUSION  

The quaternion network efficiently approximates 
context through backpropagation by utilizing quaternion 
convolution, quaternion pooling, and quaternion fully 
connected layers it learns to classify images using both 
structural and color information. The network learned even 
in the presence of faulty color or textural data—however—
as interference increased, learning slowed down and 
accuracy dropped. A rough context was nonetheless 
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learned in spite of substantial interference. Tests for 
stability against Gaussian noise produced similar 
findings—the network approximated context with a 
marginally worse learning process and a greater degree of 
misunderstanding between classes that were comparable. 
These are proof of concepts—not performance-
optimized—but restricted to a small number of datasets. 
Significant speed gains are required for more complex 
configurations. Future research should explore integrating 
quaternionic networks with real-valued networks in hybrid 
models, potentially through residual connections, as in 
ResNet, to improve both accuracy and training efficiency 
for larger, more complex datasets. Using residual 
connections, as in ResNet designs, for example, could 
greatly increase the model’s ability to control complexity 
and boost training effectiveness. Gradients can flow more 
freely during backpropagation when such connections are 
introduced, potentially reducing the problems associated 
with low learning rates and decreased accuracy under 
interference. It might be able to create networks that more 
efficiently use structural and color information by fusing 
the advantages of quaternion representations with the 
stability of real-valued structures. This would increase 
classification performance in difficult situations. 
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