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Abstract—Achieving high-precision image localization is a 

critical objective in computer vision, particularly for 

applications requiring spatially accurate object 

identification. This study proposes a causality-infused 

ResNet50 model that integrates causal inference techniques 

with deep learning to enhance localization accuracy and 

robustness. ResNet50, a widely adopted convolutional neural 

network, is employed for feature extraction, while causal 

mechanisms mitigate confounding factors and improve 

generalization across diverse datasets. The dataset comprises 

images annotated with bounding boxes corresponding to 

ground truth labels and predicted labels for object 

localization tasks. The evaluation metric assesses the 

predicted and ground truth boxes based on label consistency 

and the extent of spatial overlap. The training set comprised 

70% of the total dataset, while the remaining 30% was 

designated as the validation set. The model leverages 

advanced algorithms, including Granger Causality and 

principal component analysis, to optimize feature relevance 

during training. Evaluated on the ImageNet dataset, the 

approach demonstrates exceptional performance, achieving 

a validation accuracy of 99.7%. An Intel Core i7 processor 

was utilised, and the LAMB optimiser was implemented. Our 

proposed implementation flawlessly delivers superior 

performance with high precision and efficiency.   

Keywords—image localization, residual networks, causality, 

principal component analysis 

I. INTRODUCTION

Machine learning represents a paradigm of 

computational algorithms focused on the design and 

implementation of autonomous decision-making artificial 

intelligence models. Unlike conventional programming, 

where explicit instructions are provided to perform 

predefined tasks, machine learning algorithms evolve by 

improving their performance as they are exposed to 

increasing amounts of data over time. This iterative 

process involves training a model using a dataset to 

uncover patterns and relationships within the data, thereby 

enabling the system to make accurate predictions or 

informed decisions. 

Fundamentally, machine learning can be categorized 

into three primary types: supervised learning, 

unsupervised learning, and reinforcement learning. 
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Supervised learning entails training models on labeled 

datasets, where input data is paired with corresponding 

output labels, allowing the model to learn a mapping 

between inputs and outputs. This approach is commonly 

applied to classification and regression tasks. 

Unsupervised learning, in contrast, involves training 

models on unlabeled data to identify latent structures or 

patterns, such as clustering for dimensionality reduction or 

anomaly detection. Reinforcement learning focuses on 

training models through interaction with an environment, 

where actions are taken, and feedback in the form of 

rewards or penalties guides the learning process. This 

iterative approach enables models to develop optimal 

decision-making strategies over time. 

Machine learning methodologies employ a diverse 

range of algorithms and techniques, including linear 

regression, neural networks, support vector machines, 

decision trees, and ensemble methods. Neural networks as 

explained in Balasamy et al. [1] are widely used in 

machine learning tasks such as image recognition, natural 

language processing, and predictive modeling. They excel 

in handling complex, non-linear relationships in data, 

making them powerful tools for tasks requiring high levels 

of abstraction. 

These approaches find applications across various 

domains, including predictive analytics, natural language 

processing, and image and speech recognition. The 

effectiveness of machine learning applications depends on 

several factors, including the quality of the dataset, the 

choice of algorithm, and the efficiency of the training 

process. Together, these factors determine the model’s 

ability to generalize and perform accurately on new, 

unseen data. 

Deep learning as explained in Balasamy et al. [2] has 

garnered substantial research attention in the development 

of advanced algorithms, particularly in the domain of 

medical image processing. These algorithms have 

demonstrated remarkable efficacy in a variety of medical 

imaging tasks, aiding in the identification and diagnosis of 

diseases. However, the limited availability of large, well-

annotated datasets remains a significant challenge, 

hindering the further advancement of deep learning 

models in medical image analysis despite their proven 

effectiveness. 
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Despite significant advancements in deep learning 

techniques, many applications require models that not only 

exhibit high accuracy but also provide interpretability, 

especially in contexts where understanding the 

relationships between features can yield actionable 

insights. By incorporating statistical causality methods, 

such as Granger causality, into deep learning frameworks 

like ResNet50, researchers are now able to identify and 

analyze meaningful interactions among features, thereby 

improving the reliability and decision-making capabilities 

across various domains. Image classification as discussed 

in Deepa et al. [3] is a fundamental application within the 

field of deep learning, where the primary objective is to 

categorize images into predefined classes based on their 

visual content. In addition to classification, advanced deep 

learning techniques enable image localization, which 

involves identifying and delineating specific regions or 

objects within an image. Kaming et al. [4] suggested a 

residual learning paradigm for deep neural networks, while 

Gavrikov et al. [5] looked into ways to improve model 

generalizationThe concept of causality as explained in 

Granger et al. [6] is intrinsically tied to the relationship 

between cause and effect, where one event (the cause) 

directly influences another (the effect). In scientific terms, 

causality refers to the principle that specific conditions or 

actions produce predictable outcomes. Establishing 

causality is essential across disciplines such as science, 

philosophy, and engineering, as it provides insight into the 

underlying mechanisms of observed phenomena. To 

demonstrate causality in scientific research, one must 

show that a change in an independent variable leads to a 

change in a dependent variable. Unlike correlation, which 

measures the association or covariation between two 

variables, causality requires establishing that the cause 

precedes the effect, that the two variables are 

interdependent, and that no confounding factors explain 

the relationship. This is typically achieved through 

controlled experiments, where researchers manipulate one 

variable while holding others constant, enabling them to 

observe the causal effect.  

Recent advancements in image localization have been 

driven by the integration of deep learning methodologies 

and statistical frameworks, enabling the modeling of 

complex feature interactions with high precision. 

Convolutional Neural Networks, particularly architecture 

such as ResNet50, have emerged as pivotal tools for 

extracting high-dimensional feature representations with 

exceptional accuracy. Nevertheless, elucidating the 

interactions among features and their predictive 

significance remains a critical challenge, prompting the 

adoption of statistical causality techniques, such as 

Granger causality. This approach provides a rigorous 

framework for determining whether variations in one 

feature can predict changes in another, facilitating a deeper 

understanding of causal relationships within image 

datasets. Furthermore, dimensionality reduction strategies, 

notably Principal Component Analysis, have proven 

indispensable for mitigating the challenges posed by high-

dimensional feature spaces, ensuring computational 

efficiency while retaining essential information. The 

synergy of these methodologies has significantly enhanced 

both the predictive performance and interpretability of 

models, laying a robust foundation for causality-driven 

frameworks that integrate statistical analysis with deep 

learning to advance the field of image localization. 

  Achieving high-precision image localization has become 

a critical focus in computer vision, particularly in 

applications requiring spatially accurate object 

identification. A causality-infused ResNet50 model 

represents a novel approach to this challenge by 

integrating causal inference techniques with deep learning 

architectures. By incorporating causality, the model can 

discern meaningful relationships between features and 

their spatial dependencies, thereby enhancing its ability to 

localize objects with greater accuracy and robustness. 

ResNet50, a widely used Convolutional Neural Network 

(CNN), serves as the backbone for feature extraction, 

while causal mechanisms help mitigate confounding 

factors and improve generalization across diverse datasets. 

This study aims to improve image localization accuracy 

by integrating deep learning techniques with causal 

inference methods. Specifically, a causality-enhanced 

ResNet50 model is proposed, utilizing the ResNet50 

architecture for feature extraction and incorporating causal 

mechanisms to mitigate confounding factors and enhance 

model generalization. The model is trained and evaluated 

using a dataset of images annotated with bounding boxes, 

representing both ground truth and predicted labels for 

object localization tasks. Advanced methodologies, 

including Granger Causality and principal component 

analysis, are employed to optimize feature relevance 

during the training process, thereby enhancing localization 

performance. 

Aligned with the objectives of this study, the paper is 

structured into several sections. Section II presents a 

comprehensive literature review, highlighting the 

strengths and limitations of related work. Section III 

outlines the proposed methodology in detail. Section IV 

concludes with an analysis of the study’s findings and an 

in-depth discussion. 

II. LITERATURE REVIEW

A. Deep Learning Methods

Early detection of COVID-19 infections through lesion

classification enables timely diagnosis and mitigates the 

risk of severe respiratory complications has been discussed 

in Balasamy et al. [1]. The use of computerized 

tomography (CT) images for identifying infectious regions 

within the lungs has emerged as a rapid and effective 

diagnostic method. This study introduces a novel Hybrid 

Classification Optimization (HCO) framework 

incorporating Recurrent Learning and Fuzzy logic (HCO-

RLF) for accurate infection detection. 

In Figs. 1–5, DIR refers to Deep Iterative Registration, 

while SR and UR stand for Supervised and Unsupervised 

Registration, respectively. U-net BS denotes U-Net Based 

Segmentation, and TS highlights the use of Transformers 

for segmentation tasks. SSCL represents Self-Supervised 

Contrastive Learning, and SSPT corresponds to Self-

Supervised Pretext Tasks. CC indicates Contrastive 
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Classification, whereas PTBC refers to Pretext Task-

Based Classification. UIS denotes Unsupervised Image 

Synthesis, and SSLBC signifies Self-Supervised Learning-

Based Classification. STMO identifies a Specific Type of 

Medical Object, ULD pertains to Universal Lesion 

Detection, RBP outlines a Restoration-Based Paradigm, 

and R'BP focuses on a Reconstruction-Based Paradigm. 

Table I provides a detailed description of the work 

explained in the literature. 

TABLE I. DETAILS OF STUDIES 

Article Core Idea Key Details Results 

[1] 

COVID-19 

Infection 

Detection 

via CT 

Images 

Proposes a Hybrid 

Classification Optimization 

(HCO) model using 

Recurrent Learning and 

Fuzzy (RLF) methods for 

detecting infected lung 

regions. Utilizes feature 

substitution via fuzzy 

derivatives to improve 

detection rates. 

Improved detection 

accuracy (11.96\%), 

classification 

accuracy (9.98\%), 

and precision 

(13.42\%) compared 

to DR-MIL, DSAE, 

and BS-FSA 

methods. 

[7] 

Brain 

Tumor 

Detection 

via MRI 

Using 

CNN–

ResNeXt 

Develops a hybrid deep 

learning method combining 

CNN–ResNeXt for 

segmentation and 

classification of brain 

tumors. Utilizes Adaptive 

Whale Optimization (AWO) 

for feature selection. Tested 

on BRATS datasets (2015, 

2017, 2019). 

Achieves 98\% 

accuracy for tumor 

core class, 

outperforming 

existing models for 

brain tumor 

segmentation and 

classification. 

[8] 

Image-to-

Image 

Translation 

Using KD-

GAN 

Introduces Knowledge 

Distillation Generative 

Adversarial Network (KD-

GAN) for domain 

translation. Uses 

CycleGAN-generated 

images for training. Applied 

to male-to-female 

transformation in CelebA 

dataset. 

Maintains skin tone 

and hairstyle better 

than other methods. 

While not the best in 

FID/KID, offers 

improved visual 

consistency. 

Fig. 1. Techniques in Balasamy et al. [1] (part-1).

Fig. 2. Techniques in Balasamy et al. [1] (part-2). 

Fig. 3. Techniques in Balasamy et al. [1] (part-3). 

Fig. 4. Techniques in Balasamy et al. [1] (part-4). 

Fig. 5. Techniques in Balasamy et al. [1] (part-5). 

The proposed approach employs a neural network to 

classify infected and non-infected regions by analyzing 

pixel distributions and their variations. Missing features 

are identified, and the recurrent network is trained using 

regional differences. Feature availability determines the 

classification process, which relies on input datasets and 
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recurrent training correlations. Fuzzy logic complements 

this process by predicting missing features through 

derivative substitutions derived from a broad range of 

variations. Specifically, maximum fuzzy derivatives are 

utilized for infected region prediction, while minimum 

derivatives are excluded from training to reduce false 

classification rates. 

TABLE II. DESCRIPTION OF THE WORK IN BALASAMY ET AL. [2] 

Attribute Details 

Objective 

To develop a Hybrid 

Classification Optimization 

(HCO) approach using 

Recurrent Learning and Fuzzy 

(RLF) for precise detection of 

COVID-19 infection in CT 

images, focusing on reducing 

false positives and missing 

features 

Method 

-Feature extraction based on

textural differences.

-RNN training using feature

substitutions derived from

fuzzy processes.

-Classification via recurrent 

learning to differentiate 

infected and non-infected 

regions. 

Dataset 

-SARS-CoV-2 dataset.

-Training data: 1,229 images 

(infected) and 1,230 non-

infected images.

-Testing data: 470 images 

(infected).

Implementation Setup 

-MATLAB used for 

experimentation.

-System specs: 8 GB RAM, 2.6

GHz processor.

-Training: 1,200 iterations, 3

epochs.

-Epoch time: Min. 60 s, Max.

480 s. 

Performance Metrics 

-Evaluated using detection

accuracy, classification

accuracy, precision, false rate,

and classification time.

-Classification rate range: 

0.5–1. 

-Features varied: 1–12. 

Key Advantages 

-Reliable fuzzy substitution for 

missing features.

-Pre-classification and pre-

training steps ensure better

feature selection.

-Achieves high correlation and

reduced classification time 

compared to existing methods.

Challenges 

-Accurate extraction of varied 

features from CT images.

-Maintaining stability and 

precision under dynamic 

datasets. 

-Handling regional differences 

across classification sequences. 

Results 

-Outperformed existing 

methods (RNN-only and fuzzy-

only) in terms of accuracy,

precision, and classification

time.

-Validated through Reg and

Reg processes for improved

correlation in training and 

classification. 

This integrated methodology enhances training 

consistency, improving detection and region classification 

accuracy. The HCO-RLF framework demonstrates 

significant improvements in detection accuracy, 

classification accuracy, and precision, achieving 

enhancements of 11.96%, 9.98%, and 13.42%, 

respectively, across varying classification rates. 

Comparative analysis with existing methods, including 

DR-MIL, DSAE, and BS-FSA, further substantiates the 

efficacy of the proposed approach, as detailed in 

subsequent sections of this article. 

Deep learning has garnered substantial research interest 

due to its potential in developing innovative algorithms for 

medical image processing, proving highly effective in 

various tasks related to illness detection as explained in 

Balasamy et al. [2] and diagnosis. The work has been 

explained in detail in Table II. However, the advancement 

of deep learning models in medical image analysis is 

significantly hindered by the scarcity of large, well-

annotated datasets, despite their demonstrated 

effectiveness. Addressing this challenge has been a 

primary focus of numerous studies over the past five years. 

This work provides a comprehensive overview of the 

application of deep learning techniques to a range of 

medical image analysis tasks by reviewing and 

synthesizing the latest research in this domain. Special 

emphasis is placed on recent advancements and 

contributions of state-of-the-art semi-supervised and 

unsupervised deep learning approaches. These methods 

are summarized across diverse application scenarios, 

including image registration, segmentation, classification, 

and detection. Additionally, this review highlights critical 

technological challenges that remain in the field and 

explores potential strategies to overcome these barriers, 

providing a roadmap for future research in medical image 

analysis using deep learning. 

Brain tumors result from the uncontrolled proliferation 

as discussed in Gayathri et al. [7] is because of abnormal 

cells within brain tissue. Early detection of brain tumors is 

critical for ensuring patient safety and effective treatment. 

This has been explained in detail in Table III. Magnetic 

Resonance Imaging (MRI) is widely employed for 

diagnosing brain tumors; however, the variability in tumor 

morphology and their diverse anatomical locations often 

pose significant challenges to accurate tumor segmentation 

in MRI scans. Precise segmentation is essential for 

identifying tumors and tailoring appropriate therapeutic 

interventions for individual patients. 

This study proposes a novel hybrid deep learning 

framework, termed Convolutional Neural Network and 

ResNeXt (CNN–ResNeXt), for the automated 

segmentation and classification of brain tumors.MRI 

images were obtained from standard datasets, including 

BRATS 2015, BRATS 2017, and BRATS 2019. 

Preprocessing involved batch normalization to smooth and 

enhance the images, followed by feature extraction using 

the AlexNet model, leveraging tumor-specific 
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characteristics such as position, shape, and surface 

attributes. 

TABLE III.  DESCRIPTION OF THE WORK IN GAYATHRI ET AL. [7] 

Attribute Details 

Objective 

To develop an effective 

classification model for brain 

tumor detection using batch 

normalization, transfer 

learning, and a CNN-ResNeXt 

model for feature extraction, 

selection, and segmentation. 

Method 

-Batch normalization used for 

pre-processing. 

-AlexNet model for feature 

extraction. 

-Adaptive Whale Optimization 

(AWO) for feature selection. 

-CNN-ResNeXt used for image 

segmentation and 

classification. 

Dataset 
-BRATS 2015, BRATS 2017, 

BRATS 2019 datasets. 

Implementation Setup 

-Implemented using Python. 

-System specs: 16 GB RAM, 

Intel i5 Processor, Windows 

10, 6 GB GPU, 1 TB HDD. 

Performance Metrics 

-Sensitivity: 98% 

-Specificity: 99.9% 

-Dice Similarity Coefficient 

(DSC): 98% 

Key Advantages 

-Outperforms conventional 

models in terms of DSC, 

sensitivity, and specificity. 

-Achieves high classification 

accuracy and segmentation 

performance. 

Challenges 

-High accuracy in feature 

extraction and segmentation. 

-Efficient handling of the 

variation in tumor types and 

locations in brain images. 

Future Work 

-Hyperparameter tuning to 

further improve the 

classification accuracy and 

model performance. 

 

Optimal feature selection was performed using the 

Adaptive Whale Optimization (AWO) algorithm to 

enhance segmentation efficacy. The segmentation process 

utilized the CNN–ResNeXt architecture, guided by the 

selected features. Subsequently, the segmented regions 

were classified using the same CNN–ResNeXt framework. 

Compared to existing models, the proposed CNN–

ResNeXt achieved superior performance, attaining an 

accuracy of 98% for the tumor core class. These results 

underscore the efficacy of the proposed methodology in 

the precise segmentation and classification of brain 

tumors. 

Chayanon et al. [8] uses an Image-to-Image (I2I) 

translation technique that transforms images from one 

domain to another by establishing a mapping between the 

two domains. This has been explained in detail in Table 

IV. This approach typically involves the use of two 

generators and two discriminators, where each generator is 

responsible for translating images between a specific pair 

of domains. 

In this study, the authors propose a novel approach 

termed Knowledge Distillation Generative Adversarial 

Network (KD-GAN). The KD-GAN framework 

incorporates images generated by Cycle-Consistent 

Generative Adversarial Networks (CycleGAN) as part of 

the training targets for a new generator, facilitating 

enhanced translation performance. The proposed method 

was evaluated on the CelebA dataset for gender 

transformation tasks, specifically translating between male 

and female domains. 

To assess the efficacy of KD-GAN, the study compared 

its performance against state-of-the-art models using 

quantitative metrics such as Fréchet Inception Distance 

(FID) and Kernel Inception Distance (KID). While KD-

GAN did not achieve the lowest FID and KID scores, 

qualitative analysis revealed that the generated images 

preserved input features such as skin tone and hairstyle 

more effectively than competing methods. These findings 

highlight the potential of KD-GAN for maintaining fine-

grained details during image translation tasks as 

emphasised in Deepa et al. [3]. This has been explained in 

detail in Tables V, VI, and VII. Image classification is a 

critical application in the field of Deep Learning (DL), 

with relevance across various sectors. Numerous neural 

network architectures have been developed to perform 

image classification, each yielding varying levels of 

accuracy. The performance of these models is significantly 

influenced by the dataset and the features utilized during 

training. The research community continues to pursue the 

development of generalized models, particularly those 

tailored to specific domains. 

This study conducts a comprehensive survey of 

contemporary Deep Learning models, utilizing knowledge 

management techniques to identify trends and 

opportunities for improvement. The goal is to advance 

toward optimal architecture and the development of 

generalized Deep Learning models for domain-specific 

image classification tasks. The survey systematically 

examines various neural network architectures, their 

variants, and the layers and parameters employed in each 

version. Additionally, the study provides an in-depth 

analysis of domain-specific applications, and the 

limitations associated with different architectures. The 

findings serve as a valuable resource for researchers, 

offering guidance in selecting the most suitable Deep 

Learning architecture for specific sectors and facilitating 

further advancements in the field of image classification. 

Strengths:  
1. Balasamy et al. [1] Utilises an innovative HCO-

RLF framework combining Recurrent Learning 
and Fuzzy logic for enhanced detection accuracy. 

2. Balasamy et al. [2] Highlights the potential of DL 
for groundbreaking medical image analysis. 

3. Gayathri et al. [7] Focuses on precise MRI-based 
segmentation to enable customised treatment plans 

4. Chayanon et al. [8] Establishes robust domain 
mappings using dedicated generators and 
discriminators. 

5. Deepa et al. [3] Emphasises the adaptability of DL 
architectures for various classification tasks 
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TABLE IV. DESCRIPTION OF THE WORK IN CHAYANON ET AL. [8] 

Attribute Details 

Objective 

To develop KD-GAN, a model that uses soft targets from 

UVCGANv2 as teacher models to minimize the 

difference between generated and real images, with the 

aim of improving the quality of translated images. 

Loss Functions 

Lsof t measures the difference between teacher and 

model results. 

-A modified GAN loss function, LGAN, ensures 

generated images resemble real images but do not 

consider UVCGANv2-generated data as real. 

-Identity loss ensures the image remains unchanged 

when source and target labels are the same. 

Hyperparamete

rs 

The model performance is adjusted using three 

hyperparameters: λGAN, λsof t, and λid, which control 

the importance of each objective during 

training. 

Network 

Architecture 

-Generator: Uses a U-Net architecture with positional 

encoding for target label translation. 

-Discriminator: Modified to handle 256×256 pixel 

images with more layers and channels, enhancing its 

ability to process larger image sizes. 

Additional 

Techniques 

The discriminator is enhanced with GPEN (state-of-the-

art face restoration) for better detail and realism in 

translated images. 

Dataset 

-CelebA dataset: Includes 30,000 facial images. 

-Training set: 17,943 female images, 10,057 male 

images. 

-Validation set: 1,000 images, with an equal distribution 

of genders. 

Experiment 

Setup 

The model is evaluated by translating male-to-female 

facial features using the CelebA dataset. 

Key 

Advantages 

-Improved translation accuracy using soft targets and 

modified GAN loss. 

-High-quality image generation with refined 

discriminator and GPEN. 

Challenges 

-Ensuring the generator produces realistic images that 

match the teacher model. 

-Balancing the different loss functions and 

hyperparameters to optimize model performance. 

TABLE V. DESCRIPTION OF THE WORK IN DEEPA ET AL. [3] 

Category Model 

ResNet 
ResNet50, ResNet50V2, ResNet101V2, ResNet152, 

ResNet152V2 

EfficientNet 
EfficientNetB0, EfficientNetB1, EfficientNetB2, 

EfficientNetB3, Effi- 

cientNetB4, EfficientNetB5, EfficientNetB6, 

EfficientNetB7, Efficient- 

NetV2B0, EfficientNetV2B1, EfficientNetV2B2, 

EfficientNetV2L 

VGG VGG16, VGG19 

Xception Xception, InceptionV3, InceptionResNetV2 

ConvNeXt 

ConvNeXtTiny, ConvNeXtSmall, ConvNeXtBase, 

ConvNeXtLarge, 

ConvNeXtXLarge 

DenseNet DenseNet121, DenseNet169, DenseNet201 

MobileNet MobileNet, MobileNetV2 

Inception InceptionV3, InceptionResNetV2 

NASNet NASNetMobile, NASNetLarge 

 

Weaknesses: 
1. Balasamy et al. [1] Relies heavily on CT imaging, 

which may not be accessible in resource-limited 
settings. 

2. Balasamy et al. [2] Faces challenges due to limited 
availability of large, well-annotated datasets. 

3. Gayathri et al. [7] Struggles with variability in 
tumour morphology and anatomical diversity. 

4. Chayanon et al. [8] Computational complexity can 
hinder real-time applications. 

5. Deepa et al. [3] Performance is highly dependent 
on dataset quality and feature selection. 

B. Resnet Models 

Kaming et al. [4] introduced the concept of residual 

learning, which significantly advanced the field of deep 

learning, particularly in image recognition. The authors 

addressed the challenge of training deep neural networks, 

specifically the degradation problem, where deeper 

networks tend to have higher training errors. To overcome 

this, they proposed a novel architecture consisting of 

residual networks, which allows layers to learn residual 

mappings instead of directly learning the desired function, 

making it easier to optimize very deep networks. One of 

the major challenges in current deep learning methods is 

ensuring robust generalization to both rare In-Distribution 

(ID) samples as explained in Gavrikov et al. [5]. These 

challenges come from the long tail of the training 

distribution, and Out-of-Distribution (OOD) samples.

TABLE VI. DETAILS OF THE WORK IN DEEPA ET AL. [3] 

Architecture Key Features Benefits Limitations 

MobileNet 
Depthwise separable onvolutions for 

parameter and FLOP reduction. 

Resource efficient for mobile 

devices. 

Limited performance on tasks requiring high 

accuracy due to reduced parameters. 

MobileNetV2 

Inverted residual blocks and linear 

bottlenecks improve accuracy and 

efficiency. 

Improved accuracy and 

efficiency over MobileNet. 

Performance still limited by mobile 

hardware constraints. 

ViT (Vision Trans- 

former) 

Temporally shifted attention 

mechanism for video recognition. 

Reduced parameters and 

FLOPs, good for video tasks. 

Requires large datasets and significant 

computation for training. 

Compound Scaling 

Method 

Scales depth, width, and resolution of 

the network concurrently. 

Optimizes model performance 

with fewer resources. 

May not achieve the same performance for 

all types of tasks. 

ResNet 
Introduces residual connections to 

solve vanishing gradient problem. 

Fast convergence and 

better accuracy on 

deep networks. 

More complex architectures may still 

require high computational power. 

EfficientNetV2 

Balanced scaling of depth, width, and 

resolution. Stochastic Depth to 

improve training speed. 

High accuracy with fewer 

parameters. 

Model still requires fine-tuning for optimal 

performance on specific tasks. 

VGGNet 
Deep CNN with small filters and max-

pooling layers. 

Simple architecture, good for 

image recognition tasks. 

Very deep networks can be computationally 

expensive. 

AlexNet 
Deep CNN with multiple convolutional 

layers and fully connected layers 

High accuracy on ImageNet 

dataset, significant 

improvement over previous 

models. 

Prone to overfitting, requires regularization 

techniques. 
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GoogLeNet (Inception v1) 
Uses inception modules for efficient 

factorization of convolutional filters. 

Efficient use of resources and 

improved performance in 

ImageNet challenge 

Complex architecture, harder to modify and 

fine-tune. 

FaceNet 

Uses triplet loss for learning high-

dimensional embeddings. CNN 

followed by fully connected layer. 

Excellent for face 

recognition and verification 

tasks 

Requires large-scale face datasets and 

significant computational resources. 

Deconvolution Networks 
Used for visualizing 

features in CNNs. 

Helps understand and interpret 

learned features in deep 

networks. 

Not commonly used for general image 

classification tasks 

TABLE VII. ARCHITECTURES OF THE WORK IN DEEPA ET AL. [3] 

Architecture Features Advantages/Limitations 

ResNet 
Deep residual networks with skip connections to avoid 

vanishing gradients. 

Advantages: Improves gradient flow, effective for deep 

networks. Limitation: Computationally expensive. 

Inception-v4 
Optimised combination of depth and width, factorized 

7×7 convolutions, and auxiliary classification. 

Advantages: High accuracy, suitable for  

large-scale image classification. Limitation: Complex 

architecture. 

MobileNet 
Designed for mobile and embedded devices using 

 depth-wise separable convolutions. 

Advantages: Efficient and fast, low computational cost. 

Limitation: May sacrifice accuracy for speed. 

MobileNetv2 
Uses inverted residual blocks for efficient computation 

network concurrently. 

Advantages: Better accuracy than MobileNet, 

maintains computational efficiency. Limitation: Less 

flexible in complex applications. 

DenseNet 
Dense connections where each layer receives inputs 

from all previous layers. 

Advantages: Reduces parameters, improves feature 

reuse. Limitation: Increased memory and 

computational costs. 

CondenseNet 
Combines dense blocks with skip connections for more 

parameter efficiency. 

Advantages: Reduced parameters while maintaining 

accuracy. Limitation: More complex than traditional 

CNNs. 

EfficientNet 
Combines model extraction, neural architecture search, 

and conditional computation. 

Advantages: Smaller, faster, and more accurate 

than traditional models. Limitation: Limited flexibility. 

MSDNet 
Multi-scale feature learning with dense blocks and 

varying growth rates. 

Advantages: Computationally efficient and suitable for 

image classification. Limitation: Requires balance 

between efficiency and accuracy. 

Reinforcement Learning 

CNN 

Uses reinforcement learning for automatic architecture 

search. 

Advantages: Learns new architectures suited for 

specific tasks. Limitation: Computationally expensive 

and complex to implement. 

Attention Mechanism 
Incorporates attention modules into segmentation net- 

works. 

Advantages: Improves segmentation accuracy with less 

computation. Limitation: May require fine-tuning for 

optimal performance. 

In image localization, this challenge is evident through 

vulnerabilities to adversarial attacks, reduced performance 

on distorted images, and poor generalization to concepts 

like sketches. Although the understanding of 

generalization in neural networks is still limited, certain 

biases that differentiate these models from human vision 

have been identified as potential contributors to these 

limitations. Gavrikov et al. [5] proposes an approach to 

mitigate these biases during training, with varying degrees 

of success. 

Strengths:  
1. Kaming et al. [4] introduced residual learning, 

improving the training of deep neural networks and 
addressing the degradation problem. 

2. Gavrikov et al. [5] focuses on improving 
generalization to rare in-distribution and out-of-
distribution samples, addressing vulnerabilities in 
image localization. 

Weaknesses: 
1. In Kaming et al. [4], the complexity of residual 

networks may still pose challenges in certain highly 
resource-constrained environments. 

3. Gavrikov et al. [5] provides a limited 
understanding of generalization and biases, leading 
to inconsistent success in mitigating these issues 
during training. 

C. Causal Applications in Image Classification 

Granger causality is a statistical method introduced to 

determine whether one time series can predict another  

in Granger et al. [6]. The key idea behind Granger 

causality is that if a time series X “Granger-causes” a time 

series Y, then the past values of X contain information that 

helps predict the future values of Y beyond the information 

contained in the past values of Y alone. It’s important to 

note that Granger causality does not imply true causality 

in the philosophical sense; rather, it indicates a predictive 

relationship where one variable provides useful 

information about another. 

In the study of Motor Imagery (MI) Brain-Computer 

Interfaces (BCIs), enhancing task localization accuracy 

has long been a significant challenge as explained in 

Ruijing et al. [9]. Nonlinear Granger Causality (NGC) 

analysis has been utilized for feature extraction from MI-

electroencephalogram (EEG) signals, as it helps construct 

brain network features that capture the causal relationships 

between different channels in various brain regions. 

However, the task recognition in MI-BCIs often suffers 

from information redundancy in NGC features, which 

increases the complexity of machine learning models and 

subsequently lowers the localization accuracy. 
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Strengths:  
1. Granger et al. [6] defines causality and effectively 

identifies predictive relationships between time 
series, providing valuable insights into temporal 
dependencies. 

2. Ruijing et al. [9] proposes NGC analysis that 
captures causal relationships between brain 
regions, enhancing feature extraction for MI-BCIs. 

Weaknesses: 
1. Granger et al. [6] does not imply true causality, 

only a predictive relationship, limiting its ability to 
establish direct cause and effect links. 

3. Ruijing et al. [9] approach has.information 
redundancy in NGC features increases model 
complexity and lowers localisation accuracy. 

Mankovich et al. [10] explores a novel approach to 

robustly analyzing principal directions in high-

dimensional data by leveraging the mathematical structure 

of flag manifolds. Traditional methods that use Principal 

Component Analysis (PCA) often face challenges when 

dealing with noisy or corrupted data, as they rely on the 

Euclidean structure of the data space. The study addresses 

this limitation by proposing a method that considers the 

data’s intrinsic geometry, using flag manifolds to capture 

multiple nested subspaces simultaneously. This approach 

enhances the robustness of principal direction estimation, 

especially in scenarios where data is affected by outliers or 

non-Gaussian noise. 

III. MATERIALS AND METHODS 

The methodology involves a three-step process 

combining machine learning and causal analysis. First, 

raw data is preprocessed and resized to fit the input 

specifications of a pre-trained neural network, which 

extracts critical features. These features are stored in a 

structured format for further use. Next, a neural network 

model is customized and trained for a localization task, 

where parameters such as batch size and learning rate are 

optimized for accurate predictions. Finally, a causal 

analysis is conducted using dimensionality reduction 

techniques like PCA, followed by Granger causality 

testing to identify relationships between features. The 

results are visualized through causal graphs, revealing 

complex dependencies and insights into feature 

interactions.  

The ImageNet dataset is one of the most widely 

recognized and utilized datasets in the field of computer 

vision and machine learning. ImageNet is a large-scale 

image dataset that contains millions of annotated images 

across thousands of object categories. ImageNet contains 

over 14 million images, with many images per category. 

The dataset has more than 20,000 categories (or Synsets). 

The images in ImageNet  vary widely in content, lighting 

conditions, and backgrounds, making it a robust dataset for 

training and testing machine learning models. For 

evaluating the performance of our implemented model, we 

had used this dataset Russakovsky et al. [11]. 

Our implementation was carried out using MATLAB 

R2024a [12], and our model utilizes several toolboxes and 

functions to handle various aspects of our implementation. 

For our work, we use techniques like image processing, 

deep learning, and statistical analysis. We also used 

integrated custom functions for visualization, including 

plotting causal relationships along with MATLAB’s 

functionality for training options settings, such as learning 

rate and mini-batch size. This supported optimizing for the 

Resnet50 network during training. Our work further 

leverages accelerated training and inference by utilizing 

GPU hardware.   

The integration of GPU support ensures faster 

processing and reduced training times, crucial for handling 

resource-intensive tasks in deep learning and large-scale 

data analysis. We have used the MATLAB [12] Image 

Processing Toolbox, the MATLAB [12] Deep Learning 

Toolbox, the MATLAB [12] Statistics and MATLAB [12] 

Machine Learning Toolbox, and MATLAB [12] Graph 

and Network Algorithms toolbox for other relevant 

applications. We have also used the MATLAB [12] 

Optimization Toolbox, and the training of the deep 

learning network is performed with GPU acceleration. 

This enhanced the efficiency of computations, particularly 

with large datasets and complex models. Overall, these 

toolboxes collectively support the workflow from data 

preparation and network training to feature extraction and 

causal analysis in our model. 

A. Data Preprocessing  

In machine learning and computer vision, effective data 

preparation is crucial for the success of predictive models. 

Our implementation process starts with organizing the 

dataset and partitioning it into training, validation, and test 

sets to ensure proper model training and evaluation. Data 

augmentation techniques, such as rotations and 

translations, are applied to increase diversity and improve 

generalization. Images are resized to meet the neural 

network’s input requirements, ensuring uniformity. 

Normalization is performed to standardize pixel values, 

accelerating training convergence. Finally, feature 

extraction is conducted by passing images through a neural 

network, capturing high-level information for further 

analysis.  

For our study, we selected a diverse set of animals from 

the ImageNet dataset to ensure a broad representation of 

species. Our choices included a domestic cat, known for 

its common presence in households; a dog, representing a 

widespread and varied species; an elephant, which 

provides a contrast with its large size; a hamster, 

showcasing a small, domesticated pet; a lion, exemplifying 

a majestic wild animal; a rabbit, often found in both wild 

and domestic settings; a squirrel, which adds a touch of 

wildlife; a fox, known for its adaptability and diverse 

habitats; and cattle, representing farm animals. 

Additionally, we included a bird to cover avian species. 

This selection was made to capture a wide range of animal 

types and characteristics, enhancing the 

comprehensiveness of our analysis. 

B. Feature Extraction 

Feature extraction is a crucial step in many data 

processing and machine learning workflows, especially 

when dealing with complex data types such as images. The 
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goal is to transform raw data into a set of features that can 

be used for subsequent analysis or model training. In our 

implementation, feature extraction was executed through a 

deep learning methodology, leveraging a pre-trained 

Convolutional Neural Network (CNN) model. The process 

began with the organization of the image dataset, which 

was systematically prepared and partitioned into training 

and validation subsets. Each image was resized to a 

uniform dimension to align with the input requirements of 

the chosen pre-trained model.  

The core of feature extraction involved utilizing a pre-

trained CNN, specifically Resnet50, known for its robust 

capability in capturing hierarchical features from images. 

The network, having been previously trained on a 

comprehensive dataset, was adapted for our specific 

localization needs by modifying its final layers to 

correspond with the number of target categories. Features 

were then extracted from a specific intermediate layer of 

the network, which provides a rich representation of the 

images, encapsulating essential information for 

localization purposes. 

Following feature extraction, dimensionality reduction 

was applied using Principal Component Analysis (PCA) to 

streamline the dataset, preserving key variance while 

reducing computational complexity (Algorithm 1). 

 

Algorithm 1: Image Processing and Feature Extraction 

through CNN and PCA 

1: Input: Original image Iorig with dimensions 

[Horig,Worig,C] 

2: Output: Sampled features FSampled  

3: Step 1 : Image Resizing 

4: Resize  Iorig to the desired dimensions [H,W]: 

                                          Iresized = Resize(Iorig,[H,W]) 

5: Step 2 : Forward Propagation Through the CNN 

6: Initialise feature map F0  = Iresized  

7: for Initialise l = 1 to L do  

8:     Compute the feature map at layer l :  

                                          Fl = σ (Conv(Fl−1,Kl) + Bl) 

9:  end for  

10: Obtain the final feature map FL from the last layer 

11: Step 3 : Intermediate Layer Activation Extraction 

12: Select an intermediate layer k and extract and the feature 

map: 

                                            Features = Fk    

13: Step 4 : Dimensionality Reduction Using PCA 

14: Compute the transformation matrix Vk containing the top k 

principal components   

15: Step 5 : Sampling 

16: Randomly sample n features from the reduced feature set :  

            FSampled = RandomSample(FeaturesReduced,n) 

17: Return FSampled  

 

Following feature extraction, dimensionality reduction 

was applied using Principal Component Analysis (PCA) to 

streamline the dataset, preserving key variance while 

reducing computational complexity. A subset of these 

reduced features was sampled for further analysis, 

ensuring efficiency without losing valuable information. 

Algorithm 1 explains the detailed mechanism for our work. 

The approach utilized a pre-trained ResNet50 model, 

originally trained on ImageNet, to extract hierarchical 

image features. To adapt the model for a specific 

localization task, the final layers were modified to align 

with the number of target classes. Feature extraction 

focused on the penultimate layer, capturing essential high-

level representations for effective classification. This 

structured process enhanced the model’s performance for 

practical applications. 

● Image Resizing: 

The first step involves resizing the original image to 

match the input dimensions required by the network. Let 

Iorig represent the original image with dimensions 

[Horig,Worig,C], where Horig is the height, Worig is the width, 

and C is the number of color channels (e.g., 3 for RGB). 

The resized image Iresized will have dimensions [H,W,C]: 

 

Iresized  = Resize(Iorig,[H,W])             (1) 

 

● Forward Propagation Through the Convolutional 

Neural Network (CNN):  

After resizing, the image Iresized is processed through the 

CNN. Assume the CNN comprises L layers. The output at 

each layer l can be expressed as: 

 

Fl = σ (Conv(Fl−1,Kl) + Bl)                (2) 

where: 

• Fl−1 denotes the feature map from the previous 

layer, 
• Kl represents the convolutional kernels at layer l, 
• Bl is the bias term for layer l, 
• σ(·) denotes the activation function, such as ReLU. 

The final feature map FL is obtained from the last 

convolutional layer. 

● Intermediate Layer Activation Extraction:  

To extract features, we select an intermediate layer k 

from the CNN. The output from this layer is: 

 

Features = Fk                                         (3)     

where Fk is the feature map from the selected layer k. 

● Dimensionality Reduction Using Principal 

Component Analysis (PCA):  

PCA is employed to reduce the dimensionality of the 

extracted features. Suppose the feature matrix Features has 

d dimensions. PCA computes a transformation matrix Vk 

containing the top k principal components: 

 

FeaturesReduced = Features · Vk                     (4) 

where Vk is a matrix of the top k eigenvectors. 

● Sampling 

From the reduced feature set, a subset of size n is 

randomly sampled for further analysis. Let FeaturesReduced 

be the reduced feature set: 

 

FeaturesSampled = RandomSample(FeaturesReduced,n) (5) 

 

Here, RandomSample(·,n) denotes a function that 

selects n random samples from the feature set. 
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C. Causal Algorithm 

In our work, the causality mechanism was integrated 

using Granger causality techniques to uncover meaningful 

relationships between features derived from images. 

Granger causality is a robust statistical approach that 

assesses whether past values of one variable can help 

predict future values of another, providing insights into 

potential causal interactions between time series data. By 

applying this method, we aimed to determine how changes 

in one feature could influence or predict changes in 

another, which is crucial for understanding complex 

relationships in relevant applications for image processing 

datasets.  

Fig. 6 explains the mechanism of feature extraction used 

in our work. This process involves the causal analysis and 

the final inference based on the extracted features. This 

acts as a crucial step in our proposed approach. 

 

   

Fig. 6. Feature extraction mechanism. 

PCA transformed the feature set into a lower-

dimensional space while retaining critical information 

needed for subsequent analysis. The subset containing 

relevant causal links was used for examining whether past 

values of one feature could forecast future values of 

another feature, effectively revealing any predictive 

relationships. We applied these tests to pairs of features to 

identify significant causal interactions, which were then 

analyzed for their relevance to the high prediction 

accuracy of the model. 

Finally, the overall model, incorporating the Granger 

causality findings, was utilized to predict and analyze 

features to carry out the prediction. This integrated 

approach not only enhanced our understanding of feature 

interactions but also provided a predictive framework for 

identifying a model with high predictive capabilities that 

can predict images with an integrated functionality of 

causal links based similarity prediction.This mechanism is 

used to deploy the Resnet50 model. 

● Feature Extraction and Dimensionality 

Reduction: 

Initially, we extracted features from images using a 

Convolutional Neural Network (CNN). Let X be the 

matrix of features extracted from the images, where each 

row represents a feature vector from an image, and each 

column corresponds to a specific feature. Suppose X has n 

samples and p features. To manage the high-dimensional 

feature space, we applied Principal Component Analysis 

(PCA) for dimensionality reduction. 

PCA involves computing the covariance matrix C of the 

features: 

C X                            (6) 

 

The eigenvalue decomposition of C yields eigenvectors 

V and eigenvalues Λ: 

   

= VΛVT                                                (7) 

 
By selecting the top k eigenvectors (principal 

components), we reduce the dimensionality of X: 

 

Xreduced = XVk                                      (8) 

 

where Vk is the matrix of the top k eigenvectors. 

● Granger Causality Analysis: 

Granger causality assesses whether past values of one 

time series help predict future values of another. For two 

time series Yt and Xt, we estimate the following 

autoregressive models: 

The Granger causality test involves the following steps: 

1. Regression without Granger Causality: 

 

Yt = α0 + α1Yt−1 + α2Yt−2 + ··· + αpYt−p + ϵt      (9) 

 

2. Regression with Granger Causality: 

 

Yt = β0 + β1Yt−1 + β2Yt−2 + ··· + βpYt−p 

+ γ1Xt−1 + γ2Xt−2 + ··· + γqXt−q + ηt                  (10) 

 

3. F-statistic Calculation: 

 

F = [(SSErestricted −SSEunrestricted)/q] 

/SSEunrestricted/(n−k−q)                         (11) 

 

4. p-value Calculation: 

 

p = 1−Fcdf(F,q,n −k −q)             (12) 

 

Here, ϵt and ηt are error terms, and p and q are the lags 

for Yt and Xt, respectively. Granger causality is tested by 

comparing the goodness-of-fit of these models. 

Specifically, if including past values of Xt significantly 

improves the prediction of Yt, then Xt Granger-causes Yt. 

This is evaluated using an F-test on the coefficients 

γ1,γ2,...,γq. Here SSE denotes the sum of squared errors, q 

is the number of lags for Xt, n is the number of 

observations, and k is the number of parameters in the 

unrestricted model. 
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Granger causality is tested by comparing the goodness-

of-fit of these models. Specifically, if the inclusion of past 

values of Xt significantly improves the prediction of Yt, Xt 

Granger-causes Yt. This is evaluated using an F-test on the 

coefficients γ1,γ2,...,γq.The results from Granger causality 

tests were visualized using directed graphs. In these 

graphs, nodes represent features, and directed edges 

indicate significant causal relationships. Each edge from 

node A to node B signifies that past values of feature A 

help predict future values of feature B. The strength of the 

causal relationship can be quantified by the test statistics 

or  

p-value obtained from the Granger causality test. 

By integrating Granger causality with PCA-reduced 

features, we were able to identify key predictors and 

understand the dynamic interactions between different 

features in the dataset. This implementation was designed 

to test the causal influence of feature series on another, 

providing insights into the predictive relationships 

between relevant data records. 

Here, ϵt and ηt are error terms, and p and q are the lags 

for Yt and Xt, respectively. Granger causality is tested by 

comparing the goodness-of-fit of these models. 

Specifically, if including past values of Xt significantly 

improves the prediction of Yt, then Xt Granger-causes Yt. 

This is evaluated using an F-test on the coefficients 

γ1,γ2,...,γq. Here SSE denotes the sum of squared errors, q 

is the number of lags for Xt, n is the number of 

observations, and k is the number of parameters in the 

unrestricted model. Granger causality is tested by 

comparing the goodness-of-fit of these models.  

Specifically, if the inclusion of past values of Xt 

significantly improves the prediction of Yt, Xt Granger-

causes Yt. This is evaluated using an F-test on the 

coefficients γ1,γ2,...,γq. The results from Granger 

causality tests were visualized using directed graphs. In 

these graphs, nodes represent features, and directed edges 

indicate significant causal relationships. Each edge from 

node A to node B signifies that past values of feature A 

help predict future values of feature B. The strength of the 

causal relationship can be quantified by the test statistics 

or p-value obtained from the Granger causality test. By 

integrating Granger causality with PCA-reduced features, 

we were able to identify key predictors and understand the 

dynamic interactions between different features in the 

dataset.This implementation was designed to test the 

causal influence of feature series on another, providing 

insights into the predictive relationships between relevant 

data records. 

● Visualization and Interpretation:  

The results from the Granger causality analysis were 

visualized using directed graphs. In these graphs, nodes 

represent features, and directed edges indicate significant 

causal relationships. Each edge from node A to node B 

signifies that past values of feature A help predict future 

values of feature B. The strength of the causal relationship 

is quantified by the test statistic or p-value obtained from 

the Granger causality test. This visualization helps in 

understanding the dynamic interactions between different 

features and their implications in machine learning 

applications. 

We commenced our analysis by carefully selecting a 

representative subset of the ImageNet dataset. 

Specifically, we chose 10,000 images per class, leading to 

an aggregate of 100,000 images across all selected classes. 

This subset was chosen to ensure a robust and balanced 

representation of the data for the tasks at hand.To facilitate 

effective training and evaluation of our model, the dataset 

was systematically divided into two distinct sets: a training 

set and a validation set. The training set constituted 70% 

of the total data, amounting to 70,000 images. This set was 

utilized to train the model, allowing it to learn and 

generalize from the data.  

The remaining 30% of the data, equivalent to 30,000 

images, was allocated to the validation set. This set served 

as an independent dataset for evaluating the model’s 

performance during the training process, enabling the 

monitoring of accuracy and preventing over-fitting.This 

carefully structured approach ensured that our model was 

trained on a substantial amount of data while also being 

rigorously validated on an independent set, thereby 

facilitating the development of a robust and reliable 

model.The final localization layer of Resnet50 is designed 

to output 1,000 classes. However, since we have only 10 

classes in our subset, we replace the last fully connected 

layer with a new one that has 10 output units, followed by 

a softmax layer and a localization layer.  

We set the training options with a small learning rate 

(1e-4), a batch size of 32, and a maximum of 6 epochs. 

This choice of parameters reflects a cautious approach to 

fine-tuning the pre-trained model. By using a small 

learning rate, we ensure that the updates to the model’s 

weights are gradual, which is particularly important in 

transfer learning to avoid disrupting the useful features 

learned during the pre-training phase.  

The decision to limit the training to a maximum of 6 

epochs is informed by the architecture of ResNet-50. The 

model with its deep layers and residual connections, is 

designed to efficiently learn complex features. However, 

due to its complexity, it can also be prone to overfitting if 

trained for too many epochs on a specific dataset. By 

capping the number of epochs at 6, we aim to strike a 

balance between sufficient training and preventing 

overfitting. Additionally, our results prove that a 

prediction mechanism based on the Resnet50 model 

infused with our causal algorithm ensures that even within 

a limited number of epochs, the model can effectively 

learn and adapt to the task at hand. 

For the next step in our workflow, we first extracted 

features from the average pooling layer of our network. 

The average pooling layer, positioned towards the end of 

the network, aggregates spatial information by computing 

the average value within each pooling window. This 

process reduces the spatial dimensions of the feature maps 

while retaining essential information. Following this, we 

applied Principal Component Analysis (PCA) to these 

extracted features. The step involving PCA further 

established the procedure to identify and retain the top 

principal components, that facilitated our model to capture 
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the most significant variance in the data. By focusing on 

these principal components, we effectively reduced the 

feature space, making subsequent analysis more efficient 

and manageable while preserving the core information 

from the original feature maps.  

In our analysis, we perform a Granger causality test on 

pairs of features derived from the PCA-reduced dataset. 

Granger causality is a statistical hypothesis test used to 

determine whether one time series can predict another. By 

applying this test to our feature pairs, we aim to uncover 

whether changes in one feature precede and thus 

potentially cause changes in another. This test is crucial for 

understanding the dynamic relationships and temporal 

dependencies between features in our dataset.  

The goal of this approach was to identify directional 

influences among features, providing insights into the 

causal relationships that may exist between them. By 

establishing these directional links, we can better 

understand the underlying mechanisms and interactions 

within the data, leading to more informed interpretations 

and potentially uncovering patterns that drive the observed 

phenomena. This information is valuable for producing 

refined analysis metrics for our implemented model for 

further analysis based on the identified causal 

relationships.  

In our prediction algorithm, we assess the significance 

of causal links between pairs of features based on their p-

values obtained from the Granger causality test. The p-

value indicates the probability that the observed causal 

relationship could have occurred by random chance. To 

determine whether a causal link is considered significant, 

we compare the p-value to a predefined threshold. If the p-

value for a pair of features is below this threshold, it 

suggests that the relationship is unlikely to be due to 

random fluctuations and thus can be deemed statistically 

significant.  

By incorporating this criterion into our algorithm, we 

ensure that only robust and meaningful causal links are 

considered in our analysis. This approach allows us to 

focus on those relationships that demonstrate strong 

evidence of directional influence, enhancing the reliability 

of the predictions and interpretations of the proposed 

approach. Furthermore, by filtering out less significant 

links, we streamline our model to emphasize the most 

impactful feature interactions, leading to more accurate 

and precise predictions. 

The LAMB (Layer-wise Adaptive Moments) optimizer, 

a variant of the Adam optimizer, is tailored for large-batch 

training by individually adjusting the learning rate for each 

layer based on the gradients and parameters, thereby 

ensuring optimised updates and mitigating instability. This 

feature is particularly beneficial for deep architectures like 

ResNet50, where varying sensitivities across layers 

necessitate distinct learning rates. 

An adaptive learning rate scheduler OneCycleLR was 

incorporated to regulate the learning rate throughout 

training. This scheduler initiates with a higher learning 

rate, gradually reducing it as training progresses, which 

facilitates rapid convergence in the early phases and fine-

tunes the model in the later stages, preventing 

overshooting of the optimal minima. 

The experiments were conducted on a computational 

system equipped with an Intel Core i7 processor. The 

LAMB optimizer was employed for large-batch training, 

with a learning rate set to 0.001. An optimizer was 

incorporated (β1 = 0.9, β1 = 0.9, β2 = 0.98, β2 = 0.98) to 

ensure stable updates and prevent instability commonly 

encountered in deep architectures.  

In addition to the LAMB optimizer, an adaptive learning 

rate scheduler, OneCycleLR, was implemented to further 

enhance the training process. The OneCycleLR scheduler 

was configured with a maximum learning rate of 0.01, a 

minimum learning rate of 0.0001, and a momentum value 

of 0.95, facilitating dynamic adjustment of the learning 

rate throughout the training procedure. Regularisation 

techniques, including a dropout rate of 0.5 and weight 

decay.  

The combined application of the LAMB optimizer, 

learning rate scheduler, and regularisation techniques 

(including dropout and weight decay) led to notable 

improvements in model performance. The LAMB 

optimizer enhanced convergence speed and stability, the 

scheduler contributed to better generalisation, and the 

regularisation methods effectively mitigated overfitting by 

promoting a more balanced reliance on the model's 

features. 

The architecture of the proposed network comprises 

several essential components designed to efficiently 

extract features from the input data and learn the 

underlying patterns. The network begins with the input 

layer, followed by the feature extraction modules. After 

feature extraction, fully connected layers are typically 

employed to perform high-level reasoning based on the 

extracted features. To mitigate overfitting and enhance 

generalisation, regularisation modules are incorporated, 

followed by optimisation and learning rate control 

mechanisms, culminating in the output layer. 

IV. RESULT AND DISCUSSION 

A. Experiment Results 

 In this section, we discuss the results of our work, 

presenting a comprehensive analysis through various 

figures and detailed interpretations. The figures illustrate 

key findings and trends, providing a visual representation 

of the data. By interpreting these results, we aim to provide 

a clear understanding of their implications and relevance 

to our research questions. 

 

  

Fig. 7. The figure depicts the first part of the model training results. 
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Fig. 7 depicts a plot of the training and validation 

progress of the model. The y-axis represents the accuracy 

percentage, while the x-axis denotes the iterations across 6 

epochs. The blue line tracks the training accuracy, while 

the black line represents the validation accuracy. The plot 

indicates that the model is learning effectively without 

significant overfitting, as the validation accuracy closely 

follows the training accuracy, especially in later stages. 

Fig. 8 illustrates the training and validation loss of the 

model. The x-axis represents the iterations, segmented into 

six epochs, while the y-axis shows the loss values. The 

orange line tracks the training loss, and the dashed black 

line represents the validation loss. This result demonstrates 

a successful training process, suggesting effective learning 

and minimal over-fitting. 

Fig. 8. The figure depicts the second part of the model training results. 

The causal links visualization in Fig. 9 illustrates the 

relationships between different features extracted through 

the implemented model. Nodes in the figure represent 

individual features or components extracted from the 

image dataset. Edges represent causal relationships 

between these features. Each edge is an notated with a p-

value derived from the Granger causality test, where a 

lower p-value (commonly less than 0.05) signifies a 

statistically significant causal relationship between the 

connected features. The presence of numerous causal links 

suggests that the model has identified a complex network 

of inter-dependencies between different image features. 

This indicates that the model leverages a rich and 

interconnected feature space, enhancing its ability to make 

accurate predictions. 

Fig. 9. Causal link graph based on the ImageNet dataset. 

The 3D surface plot of causal coefficients offers a visual 

representation of the relationships between the features 

extracted from the dataset processed by the model shown 

in Fig. 9. This plot stems from a Granger causality analysis 

that was performed on the reduced feature set, extracted 

and processed through a pre-trained Resnet50 model and 

subsequently dimensionality reduced using Principal 

Component Analysis (PCA). The plot itself is a graphical 

depiction of how each feature potentially influences the 

other, with the surface colour and height indicating the 

magnitude and direction of these causal relationships.  

Fig. 10 presents a 3D bar plot of a confusion matrix, 

visually depicting the performance of a localization model. 

Each bar represents the number of instances predicted for 

a particular class versus the actual class, with the 

“Predicted Class” and “Actual Class” axes indicating 

where predictions match or differ from true labels. The bar 

heights and color gradients (ranging from blue for lower 

counts to red for higher counts) represent the number of 

samples. Diagonal elements, such as TP11, TP22, and 

TP33, indicate true positive rates for each class, with taller, 

red-colored bars signifying accurate predictions. This 3D 

visualization highlights the model’s performance across all 

classes. 

B. Discussion

The variety and distribution of causal connections show

that the model effectively captures and utilizes multiple 

aspects of the images, which are important for making 

accurate localizations or predictions. This robustness in 

feature extraction is crucial for high model performance. 

The features obtained were reduced using PCA, which 

retains the most significant features. The causal links 

between these principal components suggest that the 

model’s core predictive capabilities are based on 

meaningful and causally related features.  

Fig. 10. Predicted results of the proposed model 

The causal links identified have clearly had positive 

implications for the image prediction task, as shown in the 

result plots for the implemented model using Resnet50. 

Here are detailed insights into the algorithm: 

• Enhanced Prediction Accuracy: By understanding the

causal relationships between features, the model can

better distinguish between different classes or

categories in the image dataset, leading to improved

prediction accuracy.

• Model Generalization: A model that understands the

underlying causal structures of the data is likely to

generalize better to new, unseen data. This means the

model can maintain high performance even when

applied to images that were not part of the training

set.

• Interpretability: The visualization of causal links also

aids in interpreting the model’s decision-making

process, which is valuable for debugging and refining

the model.
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The visualization of causal links in the implemented 

model offers a window into the intricate web of 

relationships between various image features. These links 

illustrate how the model perceives and processes the 

information contained within the image data to make 

accurate predictions. By mapping out these relationships, 

the visualization reveals the model’s capability to identify 

which features are most influential in its decision-making 

process, allowing for a deeper understanding of the 

model’s functioning. The presence of a dense network of 

significant causal links within the visualization is a 

testament to the effectiveness of our work. 

This complexity in the model’s architecture shows that 

it has been finely tuned to extract and use a wide array of 

features from the image data. Such a detailed network 

suggests that the model does not rely on a few prominent 

features but instead draws from a comprehensive and 

interconnected set of features, which enhances its ability 

to accurately classify or predict outcomes based on the 

input images. Overall, the causal links visualization not 

only highlights the sophistication of the proposed working 

mechanism but further showcases its high performance in 

image localization or prediction tasks. By effectively 

leveraging a rich feature space, the model demonstrates a 

robust capability to interpret and make sense of complex 

image data.  

The predicted visualization of causal links serves as a 

valuable tool for model evaluation, offering insights that 

can guide further refinement and improvement of the 

model’s predictive abilities. 

The plot illustrates a varied distribution of causal 

coefficients, with peaks and valleys highlighting strong 

and weak causal relationships between features. Red peaks 

represent highly influential features critical to the model’s 

decision making, while blue areas indicate features with 

minimal impact. This variability reflects a complex feature 

space where multiple features interact to enhance the 

model’s predictive accuracy. 

In the context of image prediction, the plot demonstrates 

that the model effectively leverages diverse features, rather 

than relying on a single one, showcasing its robustness and 

capability in handling advanced image localization tasks. 

The performance of the implementation indicates that the 

model generally performs well, particularly in correctly 

classifying instances of the target classes, as shown by the 

prominent bars along the diagonal. The plot suggests that 

while the model achieves high accuracy in predicting the 

majority of cases correctly, there are specific classes where 

the predictions could be more reliable. 

The evaluation was conducted across multiple datasets 

to assess the performance of the proposed models as 

mentioned in Gayathri et al. [3] [7]. On the iNaturalist 

dataset, ResNet-101 achieved an accuracy of 85.40%, 

showcasing its ability to handle complex and large-scale 

fine-grained classification tasks effectively. For the 

PASCAL-50S dataset, which focuses on semantic 

segmentation and object recognition, ResNet-101 

demonstrated a slightly higher accuracy of 86.20%, 

reflecting its adaptability to diverse image contexts. Using 

the Tiny ImageNet dataset, ResNet-50 attained an 

accuracy of 77.50%, indicating strong performance on 

smaller-scale datasets with challenging classification 

tasks. Lastly, on the EuroSAT dataset, which involves 

satellite image classification, ResNet-50 achieved an 

impressive accuracy of 98.60%, underscoring its 

robustness in high-dimensional spatial data. We have been 

able to demonstrate an accuracy of 99.7% for the Image Net 

dataset. These results collectively highlight the efficacy of 

our proposed architecture in achieving higher performance 

across varied datasets and domains.  

V. CONCLUSION

We propose a comprehensive workflow for an image 

localization task, leveraging a pre-trained Resnet50 

network as the backbone. The network is adapted to the 

specific task of enhanced prediction capabilities by 

modifying its architecture to incorporate advanced 

prediction mechanisms. The addition of causality can 

improve model performance by enabling more accurate 

predictions through understanding and leveraging cause-

effect relationships. We have used this to improve the 

efficiency of the image localization tasks carried out using 

the ImageNet dataset. The implemented principal 

component analysis (PCA) algorithm retained the most 

significant features. These features are analyzed using 

Granger causality tests to explore potential causal 

relationships among the features. These advanced tests 

have been used as a mechanism to determine whether one 

variable can predict future values of another variable based 

on relevant information. Integrating a detailed feature 

analysis into the localization task leverages a novel 

workflow that enhances prediction by allowing the model 

to account for underlying dependencies in the data. We 

have developed our algorithm and tested the system 

accuracy on the ImageNet dataset. The methodological 

execution of algorithms ultimately leads to a more refined 

working mechanism for the model. This improves the 

model’s overall predictive performance, making it more 

robust and interpretable in complex localization tasks. 
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