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Abstract—Underwater vision is crucial for Autonomous 

Underwater Vehicles (AUVs), and enhancing degraded 

underwater images in real-time on a resource-constrained 

AUV is a key challenge due to factors like light absorption 

and scattering, or the sufficient model computational 

complexity to resolve such factors. Traditional image 

enhancement techniques lack adaptability to varying 

underwater conditions, while learning-based methods, 

particularly those using Convolutional Neural Networks 

(CNNs) and Generative Adversarial Networks (GANs), offer 

more robust solutions but face limitations such as inadequate 

enhancement, unstable training, or mode collapse. Denoising 

Diffusion Probabilistic Models (DDPMs) have emerged as a 

state-of-the-art approach in image-to-image tasks but 

require intensive computational complexity to achieve the 

desired Underwater Image Enhancement (UIE) using the 

recent Underwater DDPM (UW-DDPM) solution. To address 

these challenges, this paper introduces UW-DiffPhys, a novel 

physical-based and diffusion-based UIE approach. UW-

DiffPhys combines light-computation physical-based UIE 

network components with a denoising U-Net to replace the 

computationally intensive distribution transformation U-Net 

in the existing UW-DDPM framework, reducing complexity 

while maintaining performance. Additionally, the Denoising 

Diffusion Implicit Model (DDIM) is employed to accelerate 

the inference process through non-Markovian sampling. 

Experimental results demonstrate that UW-DiffPhys 

achieved a substantial reduction in computational complexity 

and inference time compared to UW-DDPM, with 

competitive performance in key metrics such as Peak Signal-

to-Noise Ratio (PSNR), Structural Similarity Index Measure 

(SSIM), Underwater Color Image Quality Evaluation 

(UCIQE), and an improvement in the overall Underwater 

Image Quality Measure (UIQM) metric. The implementation 

code can be found at the following repository: 

https://github.com/bachzz/UW-DiffPhys  

Keywords—Underwater Image Enhancement (UIE), 

Conditional Denoising Diffusion Probabilistic Model 

(DDPM), underwater physical image formation model  

I. INTRODUCTION

Underwater vision has become critical for Autonomous 

Underwater Vehicles (AUVs) to execute tasks in the 
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marine environment, with increasing transition from using 

sonar, laser, and infrared sensors to using visual sensor [1]. 

These underwater tasks can range from low-level vision-

based localization and navigation of AUV [2], to high-

level tasks such as marine biology and archaeology 

exploration [3], underwater target detection [4], 

underwater surveying and mapping [5], and so on. Due to 

underwater attenuation effects caused by light absorption 

and scattering, these applications require AUV to perform 

enhancement of the degraded underwater images in real-

time, as the first step before executing any downstream 

tasks [6]. Therefore, how to effectively recover and 

enhance underwater images to improve their color, 

contrast, and sharpness in real-time has become an 

important and challenging problem in underwater imaging 

technologies. 

Underwater Images Enhancement (UIE) can utilize 

traditional methods [7–12] and learning-based 

methods [13–19]. Traditional UIE techniques typically 

depend on prior knowledge, assumptions, and design 

principles for processing underwater images, such as white 

balance [20] and histogram equalization [8]. While these 

methods are straightforward to apply, their effectiveness is 

restricted in the adaptability to varying water conditions 

and lighting situations, producing over-enhanced or under-

enhanced results [21]. 

Learning-based UIE can be generally classified into 

Convolutional Neural Networks (CNN) -based, and 

generative learning -based approaches. CNN-based UIE 

leverages large amount of data to learn the mapping from 

the degraded underwater image to its corresponding clear 

image without degradation, and thus it can be adaptive 

under different water conditions and achieve more robust 

performance than traditional methods. In the generative 

learning approach, Generative Adversarial Networks 

(GAN)-based UIE can learn the conversion between 

degraded image distribution and the degradation-free 

image distribution and it has shown great success [22]. 

However, GAN-based UIE methods suffer from unstable 

training and mode collapse, generating samples with a lack 
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of diversity [19], and thus they fail represent the full range 

of possible enhancements. 

Another direction in generative learning is the 

Denoising Diffusion Probabilistic Models (DDPM) [23]. 

Diffusion models have been established as a new state-of-

the-art baseline in Image-to-Image (I2I) prediction tasks, 

from image super-resolution [24] to image coloring and 

image restoration [25]. In general, DDPM consists of two 

processes: 1) the forward diffusion, and 2) the reverse 

diffusion. The forward diffusion gradually adds Gaussian 

noise to the input image until its distribution becomes pure 

Gaussian noise. The reverse diffusion gradually removes 

the added noise from the noisy image to recover the 

original image. The unconditional DDPM is generally 

used in image generation, generating new images with 

high quality and high diversity by performing 

unconditional generation in the reverse diffusion process. 

However, applying unconditional DDPM to the 

enhancement task may lead to unwanted enhanced images 

that do not match the input data distribution (i.e.: different 

semantic information). The conditional DDPM is 

generally used for I2I tasks, feeding the input image as a 

prior condition, and guiding the reverse diffusion to 

generate the enhanced image with the same level of 

semantic information as the input image. However, for 

image enhancement in underwater, using solely 

conditional DDPM as guidance is insufficient and leads to 

inadequate enhancement results, possibly due to the 

limited quality of reference enhanced images used for 

training [19], since they were obtained from the best-of-all 

enhanced results by other UIE methods. A previous study 

UW-DDPM [19] proposed a dual U-Net network applying 

a modified conditional diffusion process for both degraded 

underwater image and ground truth enhanced image, to 

better fit the degraded image distribution to the enhanced 

image distribution and accomplish sufficient enhancement. 

Specifically, the authors utilized two identical U-Net 

models, one originally used for denoising, and the other 

one used for data distribution transformation. Every step 

of forward diffusion trains the Data Distribution 

Transformation U-Net to fit the conversion between the 

two distributions, while every step of inverse diffusion 

trains the Denoising U-Net, and the inference process 

superposes outputs of both U-Nets to obtain a diffused 

state of the enhanced image.  Despite outstanding 

performance over both traditional and previous learning-

based UIE methods, the high computational complexity of 

these two U-Net models inside UW-DDPM and the long 

inference time of its Markovian process hinder the real-

time ability to enhance underwater images on 

computational resource constrained devices. 

In this paper, the Distribution Transformation U-Net 

inside UW-DDPM, and its Markovian inference process 

are further investigated. As a result, a new physical-based 

and diffusion-based UIE approach, called UW-DiffPhys, 

is proposed to reduce the computational complexity of 

UW-DDPM while maintaining comparable performance 

with the original model, and additionally accelerate the 

inference process of UW-DDPM. Based on these 

improvements, the overall goal of the proposal aims at 

improving real-time performance of the diffusion-based 

UIE on a low-cost AUV. The effectiveness of the proposal 

can be evaluated based on UIE metrics, inference time, and 

computational complexity, for a specific task and 

hardware constraint of AUV.  

The contributions of this paper are as follows: 

• To reduce computational complexity while

maintaining comparable performance with

existing Diffusion-based UIE (UW-DDPM) [19],

this paper proposes a novel Diffusion Underwater

Physical Model, leveraging light-computation

physical-based UIE network components and the

support from existing Denoising U-Net, to replace

the high-computation Distribution Transformation

U-Net.

• To accelerate the inference process while

maintaining the same distribution after

superposition in every time step, the sampling

strategy and the distribution shifting during

inference are modified with a deterministic

implicit sampling technique.

• Regarding the UIE metrics, the proposed UW-

DiffPhys model is evaluated qualitatively and

quantitatively with the traditional, CNN-based,

GAN-based, and Diffusion-based UIE methods.

Experiment results show a slight decrease of the

proposal in PSNR, SSIM, UCIQUE metrics, but a

considerable increase in UIQM performance

compared to UW-DDPM, while reducing the

computational complexity to approximately half of

UW-DDPM, as well as the total inference time.

• Regarding specific AUV task and hardware

constraint, due to the outperformance in UIQM

(the overall quality UIE metric) when comparing

UW-DiffPhys to UW-DDPM, their performance in

feature points matching task is evaluated, which is

an essential step for AUV localization application.

The potential of operating the diffused-based UIE

methods on a low-cost NVIDA Jetson Nano is also

discussed.

The rest of the article is organized as follows. Section II 

reviews the background and related work. In Section III, 

the proposed UW-DiffPhys is described in detail. In 

Section IV, extensive experiments are provided to evaluate 

the effectiveness of the proposal, compared to other 

baselines. The discussion on the experiment results is 

given in Section V. Finally, Section VI concludes this 

article. 

II. BACKGROUND AND RELATED WORK

This section introduces the background of underwater 

physical imaging model, related studies on underwater 

image enhancement tasks, and fundamentals of Denoising 

Diffusion Probabilistic Model.   

A. Underwater Physical Image Formation Model

Underwater imaging is influenced by the attenuation

effect, which involves factors such as light absorption and 

scattering [26]. When light travels through water, it gets 

absorbed differently based on its wavelength, as depicted 
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in Fig. 1. For instance, red light, which has a longer 

wavelength, is absorbed more quickly, and loses intensity 

at shallower depths. In contrast, blue and green lights, with 

shorter wavelengths, penetrate deeper, giving underwater 

images a bluish or greenish hue. Underwater photographs 

capture light from two main sources: directly transmitted 

light and background scattered light. The directly 

transmitted light comes from the object and retains its 

original radiance but is weakened by forward-scattering 

and absorption, leading to color distortion. Forward-

scattering slightly affects pixel intensity and is usually 

negligible [27]. However, the background scattered light 

caused by ambient light scattering off numerous tiny 

particles in the water, creates hazy or blurry images with 

low contrast. 

Fig. 1. Illustration of underwater optical imaging. 

The mathematical formulation for underwater physical 

imaging model has been widely obtained from the hazing 

image model [26]: 

𝐼(𝑥) = 𝐷(𝑥)𝑡(𝑥) + 𝐴(1 − 𝑡(𝑥))          (1) 

Here, 𝑥 represents the pixel coordinates, 𝐼(𝑥) is the raw 

underwater image affected by various degradations, 𝐷(𝑥) 

is the true radiance of the object (or the restored image 

after correcting underwater degradations), 𝑡(𝑥)  is the 

medium transmission map, and A stands for ambient light. 

The term 𝐴(1 − 𝑡(𝑥)) represents the backscattered light, 

while 𝐷(𝑥)𝑡(𝑥) represents the directly transmitted light. 

The true radiance 𝐷(𝑥)  is attenuated according to the 

attenuation coefficient 𝛽 and the transmission distance 𝑑 

as represented in the transmission map as follows: 

𝑡(𝑥) = 𝑒−𝛽𝑑         (2) 

Given the wavelength-dependent color absorption in 

water and the unaccounted dependencies in backscattered 

light from the hazing model, the underwater image model 

is revised by adjusting the attenuation coefficients [28] as 

follows: 

𝐼𝑐(𝑥) = 𝐷𝑐(𝑥)𝑒−𝛽𝑐
𝐷𝑑 + 𝐴𝑐(1 − 𝑒−𝛽𝑐

𝐵𝑑)     (3) 

where 𝑐  denotes the color channel, 𝛽𝑐
𝐷  and 𝛽𝑐

𝐵  are the

direct transmission and backscattered attenuation 

coefficients, respectively. Eq. (3) can be reorganized to 

retrieve the object’s true radiance: 

𝐷𝑐(𝑥) = (𝐼𝑐(𝑥) − 𝐴𝑐)𝑒𝛽𝑐
𝐷𝑑 + 𝐴𝑐𝑒(𝛽𝑐

𝐷−𝛽𝑐
𝐵)𝑑     (4)

Since 𝛽𝑐
𝐷 − 𝛽𝑐

𝐵 is very small and can be disregarded for

𝑑 >  3𝑚 [26], Eq. (4) is simplified as follows: 

𝐷𝑐(𝑥) = (𝐼𝑐(𝑥) − 𝐴𝑐)𝑒𝛽𝑐
𝐷𝑑 + 𝐴𝑐    (5) 

B. Underwater Image Enhancement

1) Traditional UIE method

The traditional UIE methods often rely on prior 

knowledge or assumptions about the environment, or 

specific design rules to process the underwater images. 

These image degradation priors are based on physical 

models to perform the inverse image degradation process. 

Li et al. [29] proposed an UIE algorithm based on dark 

channel prior to recover the blue-green channel, while 

correcting the red channel using the gray-world 

assumption and carrying out brightness and contrast 

balancing with adaptive exposure map. Berman et al. [11] 

proposed underwater image color restoration method using 

underwater physical imaging model with parameters 

estimated from haze-lines prior. The pixel values on these 

haze-lines are used to compute attenuation ratios of blue-

green and blue-red color channels, which simplifies UIE 

into single-channel haze removal problem and achieves 

contrast enhancement and color calibration. Jin et al. [8] 

proposed an adaptive histogram transformation method to 

adjust the curve of transformation function using local 

mean and variance of gray-level prior to enhance image 

details and contrast. However, these methods did not take 

into account the inherent noises and artifacts in underwater 

images, leading to over-enhancement with color 

distortions or loss of details. To tackle this problem, 

Li et al. [30] applied minimum information loss principle 

along with histogram distribution prior. The method 

estimates the transmission map by minimizing the 

information loss, while applying color correction based on 

natural image histogram distribution prior to restore the 

clear image. However, this method could only obtain 

limited contrast enhancement, edge preservation, and 

noise suppression. To further improve the underwater 

image quality, Li et al. [9] proposed a multi-algorithm 

fusion technique in multiple RGB and Hue-Saturation-

Value (HSV) color spaces. Drews et al. [10] proposed an 

UIE method based on Underwater Dark Channel Prior 

(UDCP) to utilize statistical priors from outdoor natural 

images, while considering the blue-green color channels as 

the main sources of underwater visual information. 

Nevertheless, these methods also remain other limitations, 

such as not taking into account the scattering effect in the 

underwater attenuation problem, or noise protection and 

detail preservation during enhancement, leading to color 

distortions and reduced contrast. To summarize, these 

traditional UIE methods were designed to tackle different 

limited aspects in underwater degradation problem, based 

on specific prior knowledge, and thus they tend to not 
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generalize well for diverse underwater conditions. This 

generally leads to side effects such as over-enhancement 

(color or contrast distortion) and loss of details. 

2) Deep learning-based UIE method 

The continuous development of deep learning in recent 

years has established learning-based methods as baseline 

models for UIE tasks. The pure CNN-based UIE methods, 

which focus on image processing, leverage convolutional 

and pooling layers to extract and learn multilevel high-

level image features from underwater images.  

Li et al. [13] proposed lightweight UWCNN with an 

enhancement branch, which is designed specifically for 

each water type to adapt to diverse underwater scenes. The 

same authors in [15] also proposed CNN-based UIE model 

named Ucolor, to learn from multiple color spaces to 

highlight and integrate their most discriminative features. 

Sun et al. [31] utilized convolutional layers to filter noise, 

along with deconvolutional layers to recover details and 

optimize image. To improve real-time performance of 

learning-based UIE, Naik et al. [6] proposed Shallow-

UWNet architecture with fewer parameters than existing 

models while maintaining strong enhancement 

performance. Chen et al. [26] integrates lightweight CNN 

modules into underwater physical image formation model, 

by training two network components, one to estimate the 

backscattered light, the other to estimate the direct 

transmission. The method enhanced richer details by 

removing the estimated backscattered light, obtained 

limited color improvement, and achieved higher PSNR, 

SSIM scores. 

With the rapid advancement of generative learning, 

Generative Adversarial Networks (GANs) has recently 

become the starting model for image-to-image tasks, 

including underwater image enhancement. Zhu et al. [32] 

proposed WaterGAN learning underwater imaging models 

from unlabeled underwater video sequences and generate 

synthetic underwater images with high realism.  

Liu et al. [16] proposed a conditional MLFc-GAN utilizing 

multilevel feature fusion to improve the contrast and color 

of underwater images. The multilevel feature fusion 

technique integrates local features into global features, 

hence enhancing the learning ability of the network.  

Islam et al. [17] also proposed a conditional GAN model 

named FUniEGAN, incorporating an objective function 

that comprehensively considers local to global texture, 

color, and style information to guide the adversarial 

training process, making it applicable for both paired or 

unpaired underwater images data. However, these GAN-

based approaches suffer from unstable training process and 

difficult to converge. Additionally, their generated 

enhanced images often have uncertainty or diversity in 

texture, causing inconsistency in content, color, and 

structure with the ideal clear underwater image without 

degradation. 

C. Denoising Diffusion Probabilistic Model 

Another direction in generative learning is the 

Denoising Diffusion Probabilistic Models (DDPM) [23], 

which can tackle the limitations of GAN-based methods 

and achieve state-of-the-art performance in image-to-

image tasks, including UIE. This section first introduces 

the background on DDPM, then reviews the previous study 

in the diffusion-based UIE task. 

1) Mathematical background 

Developed from theoretical basis of generative method 

inspired by nonequilibrium thermodynamics [33], DDPM 

is a simplified diffusion model, learning input data 

distribution through forward and inverse diffusion 

processes. The forward diffusion gradually adds Gaussian 

noise to the input image until it becomes an isotropic 

Gaussian distribution. The learning of whole data 

distribution can be gradually achieved in the inverse 

process, predicting the small amount of noise added in 

every step of the forward process, or modeling the small 

transformation from simple (Gaussian) to complex 

(original input) distribution. 

a) Forward diffusion process 

The forward diffusion can be defined as a Markov chain 

satisfying probability density 𝑞. This process continuously 

adds a predefined amount of Gaussian noise, to the input 

image distribution through 𝑇  iterations, which can be 

derived as follows: 

 

𝑞(𝑥1:𝑇|𝑥0) =  ∏ 𝑞(𝑥𝑡|𝑥𝑡−1)𝑇
𝑡=1                (6) 

 

𝑞(𝑥𝑡|𝑥𝑡−1) ~ 𝑁(𝑥𝑡|√𝛼𝑡𝑥𝑡−1, (1 − 𝛼𝑡)𝐼)     (7) 

 

where 𝛼𝑡 𝜖 (0, 1) is a hyperparameter determining noise 

variance added at each iteration, 𝑥0 is the input distribution, 

and 𝑥𝑡 is the noisy distribution of 𝑥0 at iteration t. 

Given input 𝑥0, the noisy distribution iteration t can be 

calculated from Eq. (6) and (7) as follows: 

 

𝑞(𝑥𝑡|𝑥0) ~ 𝑁(𝑥𝑡|√𝛼̅𝑡𝑥0, (1 − 𝛼̅𝑡)𝐼)       (8) 

 

𝑥𝑡 = √𝛼̅𝑡𝑥0 + √1 − 𝛼̅𝑡𝑧𝑡 , 𝑧𝑡 ~ 𝑁(0,1)       (9) 

 

where 𝛼̅𝑡 = ∏ 𝛼𝑖
𝑡
𝑖=1 . 

b) Inverse diffusion process (denoising) 

The denoising process starts from an isotropic Gaussian 

distribution and gradually recovers to the original input 

distribution through reversed iterations. In a formal 

definition, this process aims to obtain the posterior 

distribution 𝑝𝜃(𝑥0|𝑥1)  by iteratively solving previous 

posterior distribution  𝑝𝜃(𝑥𝑡−1|𝑥𝑡), where 𝑝𝜃 denotes the 

distribution predicted by a neural network 𝑓𝜃. 

After sampling from a standard Gaussian distribution 

𝑥𝑇  ~ 𝑁(0, 𝐼) , the posterior distribution of 𝑥0:𝑇  can be 

defined as follows: 

 

𝑝𝜃(𝑥0:𝑇) =  𝑝(𝑥𝑇) ∏ 𝑝𝜃(𝑥𝑡−1|𝑥𝑡)𝑇
𝑡=1           (10) 

 

𝑝𝜃(𝑥𝑡−1|𝑥𝑡) ~ 𝑁(𝑥𝑡−1;  𝜇𝑡 , 𝜎𝑡
2𝐼)            (11) 

 

where 𝑝(𝑥𝑡−1|𝑥𝑡 , 𝑥0) denotes the posterior distribution of 

𝑥𝑡−1 given 𝑥𝑡  and 𝑥0, whereas 𝜇𝜃, 𝜎𝜃
2 represent the mean 

and variance respectively. 
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𝜇𝑡 =
√𝛼̅𝑡−1(1−𝛼𝑡)

1− 𝛼̅𝑡−1
𝑥0 +

√𝛼𝑡(1−𝛼̅𝑡−1)

1− 𝛼̅𝑡
𝑥𝑡        (12) 

𝜎𝑡
2 =  

(1− 𝛼̅𝑡−1)(1−𝛼𝑡)

1− 𝛼̅𝑡
                      (13) 

Eqs. (12) and (13) shows that the variance is known 

based on selected hyperparameter, and the mean is 

unknown quantity depending on 𝑥0  and 𝑥𝑡 . However, 

combining Eq. (9) into Eq. (12), the mean can depend only 

on 𝑥𝑡 as follows: 

𝜇𝑡 =
1

√𝛼𝑡
(𝑥𝑡 −

1−𝛼𝑡

√1− 𝛼̅𝑡
𝑧𝑡)                  (14) 

Therefore, the random noise 𝑧𝑡, which was previously 

sampled at forward diffusion step 𝑡, can be predicted by a 

neural network 𝑓𝜃(𝑥𝑡 , 𝑡), from which the mean of posterior 

distribution 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) can be calculated. The network 

repeats the process for T iterations, and eventually obtains 

a pseudo image satisfying input image distribution. 

c) Deterministic implicit sampling (DDIM) 

Since the original DDPM [23] requires the total number 

of time steps T to be sufficiently large (i.e., T = 1000) to 

generate high quality sample, the execution time for 

inverse diffusion also increases correspondingly. 

Denoising Diffusion Implicit Model (DDIM) [34] was 

proposed to accelerate sampling process for pre-trained 

DDPM models by a deterministic approach.  DDIM 

exploits a generalized formulation of non-Markovian 

process: 

 

𝑞𝜆(𝑥1:𝑇|𝑥0) =  𝑞𝜆(𝑥𝑇|𝑥0) ∏ 𝑞𝜆(𝑥𝑡−1|𝑥𝑡 , 𝑥0)𝑇
𝑡=2    (15) 

 

𝑞𝜆(𝑥𝑡−1|𝑥𝑡 , 𝑥0) ~ 𝑁(𝑥𝑡−1;  𝜇̃𝑡 , 𝜆𝑡
2𝐼)         (16) 

 

𝜇̃𝑡 =  √𝛼̅𝑡−1 𝑥0 + √1 − 𝛼̅𝑡−1 − 𝜆𝑡
2 𝑧𝑡      (17) 

 

When setting  𝜆𝑡
2 = 𝜎𝑡

2  from Eq. (13), the process 

becomes Markovian and similar to the original DDPM. 

Importantly, DDIM utilizes this setting to achieve the same 

training objective, but only applies non-Markovian 

formulation with different 𝜆𝑡
2  setting for sampling or 

inverse diffusion process. 

A deterministic implicit sampling approach applies 

𝜆𝑡
2 = 0, and the mean can be derived as follows: 

𝜇̃𝑡 = √𝛼̅𝑡−1  (
𝑥𝑡−√1− 𝛼̅𝑡𝑧𝑡

√𝛼̅𝑡
) + √1 − 𝛼̅𝑡−1𝑧𝑡    (18) 

with 𝑧𝑡 = 𝑓𝜃(𝑥𝑡 , 𝑡) also predicted by a denoising network. 

To accelerate sampling, one can select a sub-sequence 

{𝜏1, 𝜏2, … , 𝜏𝑆} from the complete {1, …, T} time steps. 

This would utilize the non-Markovian process 

𝑞𝜆(𝑥𝑡−1|𝑥𝑘, 𝑥0), where 𝑘 ≥ 𝑡. The sub-sequence can be 

chosen by uniformly interleaving from {1, …, T}: 

𝜏𝑖 =
(𝑖−1)𝑇

𝑆
+ 1                         (19) 

setting 𝜏1 = 1 as the final sampling step. 

d) Conditional diffusion models 

The conditional diffusion models aim to learn 

conditional posterior distribution 𝑝𝜃(𝑥0:𝑇 | 𝑥̃)  in the 

inverse diffusion process, instead of 𝑝𝜃(𝑥0:𝑇) as in DDPM, 

so that the sampled data has high fidelity to the distribution 

of 𝑥̃. 

During training, a paired data distribution (i.e., raw 

underwater image 𝑥0 and its reference image 𝑦0  without 

degradation) is sampled ( 𝑥0, 𝑦0 ) ~ 𝑞(𝑥0, 𝑦0),  and the 

conditional diffusion model is learnt with 𝑦0 as guidance 

in the inverse process: 

 

𝑝𝜃(𝑥0:𝑇 | 𝑦0) =  𝑝(𝑥𝑇) ∏ 𝑝𝜃(𝑥𝑡−1|𝑥𝑡 , 𝑦0)𝑇
𝑡=1     (20) 

 

Thus, the denoising network 𝑓𝜃(𝑥𝑡 , 𝑦0, 𝑡) receives the 

additional 𝑦0 as input. For Image-to-Image (I2I) tasks, 𝑥𝑡 

and 𝑦0 are usually concatenated channel-wise. 

2) Denoising diffusion probabilistic model-based 

underwater image enhancement 

The rapid development of diffusion models has resulted 

in an increasing number of studies in the field of image 

generation [35–37], and image  

enhancement [38–40] using diffusion and conditional 

diffusion approaches. Regarding image enhancement in 

the underwater domain, since solely applying a conditional 

diffusion approach does not sufficiently enhance the image, 

Lu et al. [19] proposed a modified conditional diffusion 

UW-DDPM model, and employed a dual U-Net networks 

for image denoising task and image distribution 

transformation task to effectively recover the distribution 

of images without degradation from raw underwater 

images. The conditional diffusion process is modified to 

emphasize more on the contribution of its adaptive 

guidance as follows. UW-DDPM applies the conditional 

diffusion on the reference image 𝑦0  instead of the raw 

underwater image 𝑥0, while the guidance adapted for each 

diffusion step utilizes the predicted transformation 𝑦′𝑡 =
𝑓𝜙(𝑥𝑡 , 𝑡) from the diffused raw underwater image 𝑥𝑡 to the 

diffused reference image 𝑦𝑡 . Compared to Eq. (20), the 

modified conditional diffusion model is learnt with 𝑦′𝑡 as 

guidance in the inverse process as follows: 

𝑝𝜃(𝑦0:𝑇  | 𝑦′𝑡) =  𝑝(𝑦𝑇) ∏ 𝑝𝜃(𝑦𝑡−1|𝑦𝑡 , 𝑦′𝑡)𝑇
𝑡=1     (21) 

Beside using a heavy-computation U-Net for the 

denoising network 𝑓𝜃, the transformation 𝑓𝜙 from the raw 

to the reference image at every diffused state is also 

obtained by another U-Net in their work [19]. Additionally, 

a high number of sampling steps (i.e., T = 1000) is still 

required for the inference process due to the use of 

Markovian DDPM as in Eq. (10), leading to a significant 

computation time processing each image or video frame, 

and hindering the real time performance of downstream 

AUV applications. 

This section has introduced the background of 

underwater physical image formation model supporting 

the general UIE problem formulation, and how the UIE 

methods had evolved from the traditional to deep learning 

-based approaches. Within the deep-learning methods, the 

transition from CNN-based to generative learning -based 

methods has also increased in recent years. Within the 

generative learning -based techniques, this section also 

highlighted DDPM as an emerging solution for image-to-
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image tasks, including UIE, tackling limitations of existing 

GAN-based methods. Nevertheless, the existing diffusion-

based UIE [19] did not tackle the slow sampling speed of 

the diffusion model in the inference process, or further 

investigate the motivation behind using another U-Net for 

the distribution transformation 𝑓𝜙 task, leading to the use 

of high computational resources when applying this 

solution. In the next section, the distribution 

transformation network and the inference process are 

further investigated and enhanced, aiming at improving 

real-time performance of the diffusion-based UIE method 

on a low-cost AUV. 

III. METHODOLOGY 

This section first provides an overview of the proposed 

UW-DiffPhys model. To address the issue of high 

computational distribution network, a novel Diffusion 

Underwater  Physical Model is then proposed in details in 

the training process, leveraging light -computation 

physical-based UIE network components and the support 

from existing Denoising U-Net. For the inference process, 

to reduce the required time steps and accelerate the total 

inference time, the sampling strategy and the distribution 

shifting during inference are modified with a deterministic 

implicit sampling technique. 

A. Overview  

Unlike the inverse diffusion process of DDPM, both the 

proposed UW-DiffPhys and UW-DDPM [19] are 

conditional diffusion models since the UIE task aims at 

transforming the distribution of degraded images into the 

distribution of reference images without degradation. This 

can be interpreted as solving the conditional probability 

𝑝(𝑦|𝑥), in which x denotes the raw underwater image and 

𝑦 denotes its reference image. Therefore, the raw image 𝑥 

is taken as a priori condition to guide the inverse diffusion 

process, generating the enhanced image 𝑦’ with the same 

semantic level as 𝑥 .  Nevertheless, previous study [19] 

demonstrated that a single conditional Denoising Network 

is not sufficient to complete the transformation of data 

distribution. Thus, a modified conditional diffusion 

process is required to obtain adaptive guidance, as shown 

in Eq. (21). This requires a combination of Denoising 

Network and Distribution Transformation Network for the 

diffusion-based UIE task. However, in contrast to UW-

DDPM [19] using dual high-computation U-Net models 

for both networks, the proposed UW-DiffPhys combines 

light-computation physical-based UIE network 

components with existing Denoising U-Net to replace the 

high-computation Distribution Transformation U-Net. 

UW-DiffPhys can be divided into training and inference 

procedures, as shown in Fig. 2. 𝑥0 , 𝑦0  are the original 

degraded underwater image and its corresponding non-

degraded reference image, whereas 𝑥𝑡,𝑦𝑡 are their diffused 

states at time step 𝑡 respectively. Both procedures utilize 

the Denoising Network 𝑓𝜃(𝑥𝑡 , 𝑥0, 𝑡) and Distribution 

Transformation Network 𝑓𝜙(𝑥𝑡 , 𝑥0, 𝑡) . The conditional 

Denoising Network (from here referred to as the 𝜃 

network) aims to predict the random noise 𝑧𝑡  that was 

sampled at the forward diffusion step 𝑡, as in Eq. (14), but 

conditioned on 𝑥0 , the raw underwater image. The 

Distribution Transformation Network (from here referred 

to as the 𝜙  network) aims to convert 𝑞(𝑥𝑡|𝑥0)  into 

𝑞(𝑦𝑡|𝑦0)  at each time step. The main novelty of UW-

DiffPhys compared to UW-DDPM [19] lies in the 𝜙 

network components, which utilize support from existing 

𝜃 network, and underlying underwater physical imaging 

properties from given diffused states 𝑥𝑡  and 𝑦𝑡 . The 

additional improvement is in the accelerated inference 

process using a non-Markovian approach. These novelties 

will be detailed in the description of training and inference 

processes separately. 

 

 
 

 
 

Fig. 2. Overview training and inference processes of the proposed UW-

DiffPhys and UW-DDPM [19]. The blue, green, and red arrows indicate 

forward diffusion, inverse diffusion (denoising with network 𝑓𝜃 ), and 

distribution transformation (with network 𝑓𝜙 ), respectively. The key 

novelties of UW-DiffPhys are inside the Distribution Transformation 

Network 𝑓𝜙, and the accelerated inference process. (a) Training process; 

(b) Inference process. 

B. Training Process 

The training process of UW-DiffPhys involves joint 

training 𝜙 and 𝜃 networks following forward and inverse 

diffusion processes, respectively. The input training data 

can be formalized as {𝑥0, 𝑦0} = {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑛 , in which 𝑥0 

denotes the degraded underwater image, with its non-

degraded reference image 𝑦0, and 𝑛 is the dataset size. The 

diffused states 𝑥𝑡, 𝑦𝑡 at time step t are obtained from Eq. (9) 

as follows: 

𝑥𝑡 = √𝛼̅𝑡𝑥0 + √1 − 𝛼̅𝑡𝑧𝑡 , 𝑧𝑡 ~ 𝑁(0,1)      (22) 

𝑦𝑡 = √𝛼̅𝑡𝑦0 + √1 − 𝛼̅𝑡𝑧𝑡, 𝑧𝑡 ~ 𝑁(0,1)    (23) 

It should be noted that the same noise 𝑧𝑡 is added to both 

𝑥𝑡 and 𝑦𝑡. 

1) Denoising network 𝜃 

In an inverse diffusion step, from an input diffused state 

𝑥𝑡 , the conditional Denoising Network attempts to 

approximate 𝑝𝜃(𝑥𝑡−1|𝑥𝑡 , 𝑥0)  by optimizing parameters 

when estimating the random noise 𝑧𝑡 embedded in 𝑥𝑡, and 

conditioned on 𝑥0. The loss function of 𝜃 network can be 

given as follows: 

𝐿𝑜𝑠𝑠𝜃 =  𝔼𝑥0,𝑧𝑡,𝑡[‖𝑧𝑡 − 𝑓𝜃(𝑥𝑡 , 𝑥0, 𝑡)‖2
2]     (24) 

(a) 

(b) 
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For every time step in the inverse diffusion process, the 

network concatenates 6-channel (𝑥𝑡 , 𝑥0)  as input then 

outputs the predicted noise 𝑧′𝑡 , and has a U-Net 

architecture utilized from [30]. This implementation uses 

sinusoidal positional encoding for time step embedding, 

self-attention blocks at 16×16 feature map. Further 

configuration details on denoising model architecture can 

be found in Table I.  

 

 

Fig. 3. Overview of proposed diffusion underwater physical model (distribution transformation network 𝑓𝜙). 

TABLE I. U-NET ARCHITECTURE DETAILS OF DENOISING NETWORK 

Path Layer / Block Details 

 
Input 6 channels, concatenating 128x128 𝑥𝑡 and 𝑥0 

Timestep Embedding Linear layers: [128 → 512, 512 -> 512] 

Downsampling 

Initial Conv Conv2d(in_channels=3, out_channels=128, kernel_size=3, stride=1, padding=1) 

Downsample - Level 1 
ResnetBlock(in_channels=128, out_channels=128, temb_channels=512, dropout=0.0) 

ResnetBlock(in_channels=128, out_channels=128, temb_channels=512, dropout=0.0) 

Downsample - Level 2 
ResnetBlock(in_channels=128, out_channels=256, temb_channels=512, dropout=0.0) 

ResnetBlock(in_channels=256, out_channels=256, temb_channels=512, dropout=0.0) 

Downsample - Level 3 
ResnetBlock(in_channels=256, out_channels=384, temb_channels=512, dropout=0.0) 

ResnetBlock(in_channels=384, out_channels=384, temb_channels=512, dropout=0.0) 

Downsample - Level 4 
ResnetBlock(in_channels=384, out_channels=512, temb_channels=512, dropout=0.0) 

ResnetBlock(in_channels=512, out_channels=512, temb_channels=512, dropout=0.0) 

Downsample - Level 5 
ResnetBlock(in_channels=512, out_channels=512, temb_channels=512, dropout=0.0) 

ResnetBlock(in_channels=512, out_channels=512, temb_channels=512, dropout=0.0) 

Bottleneck 

Resnet Block 1 ResnetBlock(in_channels=512, out_channels=512, temb_channels=512, dropout=0.0) 

Attention Block 1 AttentionBlock(in_channels=512) 

Resnet Block 2 ResnetBlock(in_channels=512, out_channels=512, temb_channels=512, dropout=0.0) 

Upsampling 

Upsampling - Level 5 
ResnetBlock(in_channels=1024, out_channels=512, temb_channels=512, dropout=0.0) 

ResnetBlock(in_channels=512, out_channels=512, temb_channels=512, dropout=0.0) 

Upsampling - Level 4 
ResnetBlock(in_channels=1024, out_channels=384, temb_channels=512, dropout=0.0) 

ResnetBlock(in_channels=384, out_channels=384, temb_channels=512, dropout=0.0) 

Upsampling - Level 3 
ResnetBlock(in_channels=768, out_channels=256, temb_channels=512, dropout=0.0) 

ResnetBlock(in_channels=256, out_channels=256, temb_channels=512, dropout=0.0) 

Upsampling - Level 2 
ResnetBlock(in_channels=512, out_channels=128, temb_channels=512, dropout=0.0) 

ResnetBlock(in_channels=128, out_channels=128, temb_channels=512, dropout=0.0) 

Upsampling - Level 1 
ResnetBlock(in_channels=256, out_channels=128, temb_channels=512, dropout=0.0) 

ResnetBlock(in_channels=128, out_channels=128, temb_channels=512, dropout=0.0) 

 
Output Normalize(128) 

Final Conv Conv2d(in_channels=128, out_channels=3, kernel_size=3, stride=1, padding=1) 

 

2) Distribution transform network 𝜙 

In a forward diffusion step, the Distribution 

Transformation Network attempts to predict the non-

degraded diffused state 𝑦𝑡 from the degraded diffused state 

𝑥𝑡. Since the Transformation task also handles the same 

noisy image input 𝑥𝑡  as Denoising task, UW-DDPM 

utilizes the same heavy-computation U-Net architecture 

for the Transformation task. However, as shown in 

Eqs. (22) and (23), 𝑥𝑡  and 𝑦𝑡  share the same underlying 

added Gaussian noise 𝑧𝑡 , which is different from the 

Denoising task where 𝑥𝑡−1 and 𝑥𝑡 are added with different 

noise amounts. Therefore, the Distribution Transformation 

task can be essentially reduced to predicting original non-

degraded image 𝑦0 from the original degraded image 𝑥0, 

then added with previously predicted noise 𝑧𝑡  by the 

Denoising network. Nevertheless, the network predicting 

𝑦0  from 𝑥0  is essentially a general learning-based UIE 

model. With the goal of reducing the computational cost, 
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light-computation learning-based UIE models combined 

with underwater physical imaging properties, such as [26, 

41], are considered for integration with diffusion model.  

a) Diffusion underwater physical model 

From Eqs. (5) and (23), the integration of underwater 

physical imaging formation into the diffusion context can 

be formalized as a Diffusion Underwater Physical Model 

as illustrated in Fig. 3 and expressed as follows: 

 

𝑦′
𝑡

= √𝛼̅𝑡[(𝑥0 − 𝐴)𝑇 + 𝐴] + √1 − 𝛼̅𝑡𝑧′
𝑡    (25) 

 

where 𝑦′𝑡 and 𝑧′𝑡 are the predicted non-degraded diffused 

𝑦𝑡 by 𝜙 network, and the predicted noise 𝑧𝑡 by 𝜃 network 

respectively. A and T are the ambient light and inverse 

direct transmission maps, estimated by light-computation 

A-Net and T-Net models. Importantly, instead of using the 

original Gaussian noise 𝑧𝑡 added to both 𝑥𝑡  and 𝑦𝑡 , the 

noise 𝑧′𝑡 estimated by the 𝜃 network is used in Eq. (25). 

This altered version of 𝑧′𝑡 is no longer expected to be pure 

Gaussian noise and may contain additional information 

relating to the converting 𝑥0 to 𝑦0 task. This means the 𝜃 

network is simultaneously trained for both the Denoising 

task, as in Eq. (24), and Distribution Transformation task, 

as in Eq. (25). In other words, fine-tuning the high-

computation Denoising U-Net can compensate for the 

limited ability of light-computation A-Net, T-Net. Fig. 4 

illustrates this concept. 

 

 

Fig. 4. Illustration of denoising network predicting an “altered” 

Gaussian noise to compensate for the limited UIE network. 

b) A-Net and T-Net 

The A-Net (𝑓𝐴) module estimates the ambient light 𝐴𝑐 

in Eq. (5), while the T-Net (𝑓𝑇 ) module estimates the 

inverse transmission map 𝑒𝛽𝑐
𝐷𝑑 in Eq. (5). Their network 

architectures are adopted from [26], as shown in Tables II 

and III. The loss function of these modules is defined as 

follows: 

 

𝐿𝑜𝑠𝑠𝐴,𝑇  =  𝔼𝑥0,𝑦0
[‖𝑦0 − [

(𝑥0 − 𝑓𝐴(𝑥0)𝑓𝑇(𝑥0, 𝑓𝐴(𝑥0))

+𝑓𝐴(𝑥0)
]‖

2

2

]  (26) 

c) Training strategy 

From Eq. (25), the distribution transformation loss can 

be expressed as follows: 

 

𝐿𝑜𝑠𝑠𝜙 = 𝔼𝑥0,𝑥𝑡,𝑦𝑡,𝑡 [‖𝑦𝑡 − 𝑦′
𝑡
‖

2

2
] = 

𝔼𝑥0,𝑥𝑡,𝑦𝑡,𝑡 [‖
𝑦𝑡 − √𝛼̅𝑡[(𝑥0 − 𝑓𝐴(𝑥0)𝑓𝑇(𝑥0, 𝑓𝐴(𝑥0)) + 𝑓𝐴(𝑥0)]

− √1 − 𝛼̅𝑡𝑓𝜃(𝑥𝑡, 𝑥0, 𝑡)
‖

2

2

](27) 

 

The total loss of distribution loss is as follows: 

 

𝐿𝑜𝑠𝑠𝜙_𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑠𝑠𝐴,𝑇 + 𝐿𝑜𝑠𝑠𝜙  

 

Algorithm 1 illustrates the pseudocode of UW-DiffPhys 

training process: 

 

Algorithm 1: Training denoising model 𝑓𝜃, and Distribution 

Transformation model 𝑓𝜙 in UW-DiffPhys 

Requir

e: 
𝜒 = {𝑥𝑖 , 𝑦𝑖}𝑖=1

𝑛 , 𝛼, 𝑇 

 repeat 

 {𝑥0, 𝑦0} 𝜖 𝜒 

 𝑧𝑡 𝜖 𝑁(0, 𝐼), 𝑡 𝜖 𝑝(𝑇) 

 Take a gradient descend step on 

 ∇𝜃‖𝑧𝑡 − 𝑓𝜃(√𝛼̅𝑡𝑥0 + √1 − 𝛼̅𝑡𝑧𝑡 , 𝑥0, 𝑡)‖
2

2
 

 

∇𝜙_𝑡𝑜𝑡𝑎𝑙 ‖‖𝑦0

− [(𝑥0 − 𝑓𝐴(𝑥0)𝑓𝑇(𝑥0, 𝑓𝐴(𝑥0)) + 𝑓𝐴(𝑥0)]‖
2

2

+ ‖
𝑦𝑡 − √𝛼̅𝑡[(𝑥0 − 𝑓𝐴(𝑥0)𝑓𝑇(𝑥0, 𝑓𝐴(𝑥0)) + 𝑓𝐴(𝑥0)]

− √1 − 𝛼̅𝑡𝑓𝜃(𝑥𝑡 , 𝑥0, 𝑡)
‖‖

2

2

 

 until converged 

 

TABLE II. A-NET ARCHITECTURE DETAILS 

Layer # Filters Filter Size Stride Padding Dilation 

Convolution + PReLU 3 3×3 1 1 1 

Convolution + PReLU 3 3×3 1 1 1 

AdaptiveAvgPool2D - - - - - 

Convolution + PReLU 3 1×1 1 0 1 

Convolution + PReLU 1 1×1 1 0 1 

TABLE III. T-NET ARCHITECTURE DETAILS 

Layer # Filters Filter Size Stride Padding Dilation 

Convolution + PReLU 8 3×3 1 1 1 

Convolution + PReLU 8 3×3 1 2 2 

Convolution + PReLU 8 3×3 1 5 5 

Convolution + PReLU 1 3×3 1 1 1 
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C. Accelerated Inference Process 

The inference process of general DDPM starts from an 

isotropic Gaussian noise and gradually iterates back to 𝑥0 

after T steps. In previous conditional UW-DDPM [19], to 

obtain sufficiently enhanced output image, the reverse 

iterations in its inference process are guided by original 

degraded 𝑥0 and the Distribution Transformation network, 

then eventually obtains 𝑦0 , as shown in Fig. 2(b). 

Nevertheless, iterating through all T steps would result in 

high inference time, since T is usually large (i.e., T = 1000) 

to generate high quality output. Therefore, the  proposed 

UW-DiffPhys implements deterministic implicit sampling 

technique from DDIM [34] models to iterate through only 

a subset of T steps, and accelerate the inference process.  

In each step of the inference process, the output of the 

Distribution Transformation Network 𝑓𝜙(𝑥𝑡 , 𝑥0, 𝑡)  is 

summed with the estimated non-degraded state from 

𝑓𝜃(𝑦𝑡 , 𝑥0, 𝑡) to ensure sufficient enhancement and avoid 

randomness during neural network training [19]. Eqs. (22) 

and (23) show that both outputs of 𝑓𝜙(𝑥𝑡 , 𝑥0, 𝑡)  and 

𝑓𝜃(𝑦𝑡 , 𝑥0, 𝑡)  satisfy the Gaussian distribution 𝑁(𝜇𝑡 , 𝜎𝑡
2) , 

hence 𝑦′𝑡 also satisfy the distribution: 

 

𝑦′
𝑡

=  𝑓𝜃(𝑦𝑡 , 𝑥0, 𝑡) + 𝑓𝜙(𝑥𝑡 , 𝑥0, 𝑡) =  𝑁(2𝜇𝑡 , 2𝜎𝑡
2) (28) 

 

Nevertheless, this distribution obtained after 

superposition is different from the previous distribution 

𝑁(𝜇𝑡 , 𝜎𝑡
2) in training process of 𝑦𝑡 (without superposition), 

leading to terrible errors in the final enhanced 𝑦0. Thus, a 

distribution shifting operation is required for each stacking 

to solve this problem [19], expressed as follows: 

𝑦′
𝑡

=
𝑦′

𝑡−2𝜇𝑡

√2
+ 𝜇𝑡                           (29) 

Applying the deterministic implicit sampling technique 

as in Eq. (18), the mean 𝜇𝑡 can be obtained as follows: 

 

𝜇̃𝑡 = √𝛼̅𝑡−1  (
𝑥𝑡−√1− 𝛼̅𝑡𝑓𝜃(𝑥𝑡,𝑥0,𝑡)

√𝛼̅𝑡
)            (30) 

+√1 − 𝛼̅𝑡−1𝑓𝜃(𝑥𝑡 , 𝑥0, 𝑡) 

 

In summary, the pseudocode of inference process is 

illustrated in Algorithm 2.  

Algorithm 2: Inference process in UW-DiffPhys 

Require: 𝜒 = {𝑥𝑖}𝑖=1
𝑛 , 𝑇 

 {𝑥0} 𝜖 𝜒 

 𝑠𝑢𝑏 − 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 {𝜏1, 𝜏2, … , 𝜏𝑆} 𝑓𝑟𝑜𝑚 𝑓𝑢𝑙𝑙 𝑠𝑒𝑡 {1, … , 𝑇} 

𝑥′𝜏𝑆
 ~ 𝑁(0, 𝐼) 

 for t = 𝜏𝑆,…, 1 do 

      if t = 𝜏𝑆 then 

         𝑥′𝑡−1 = √𝛼̅𝑡−1  (
𝑥′𝑡−√1− 𝛼̅𝑡𝑓𝜃(𝑥′𝑡,𝑥0,𝑡)

√𝛼̅𝑡
) + √1 − 𝛼̅𝑡−1𝑓𝜃(𝑥′𝑡 , 𝑥0, 𝑡)  

         𝑦′𝑡−1 = 𝑓𝜙(𝑥′𝑡−1, 𝑥0, 𝑡) 

      else if 𝑡 >  1 and 𝑡 ≠  𝜏𝑆 then 

         𝑥′𝑡−1 = √𝛼̅𝑡−1  (
𝑥′𝑡−√1− 𝛼̅𝑡𝑓𝜃(𝑥′𝑡,𝑥0,𝑡)

√𝛼̅𝑡
) + √1 − 𝛼̅𝑡−1𝑓𝜃(𝑥′𝑡 , 𝑥0, 𝑡) 

         𝑦′
𝑡−1

= √𝛼̅𝑡−1  (
𝑦′

𝑡−√1− 𝛼̅𝑡𝑓𝜃(𝑥′
𝑡,𝑥0,𝑡)

√𝛼̅𝑡
) + √1 −  𝛼̅𝑡−1𝑓𝜃(𝑥′

𝑡 , 𝑥0, 𝑡) + 𝑓𝜙(𝑥′
𝑡−1, 𝑥0, 𝑡) 

         𝑦′
𝑡−1

=  
1

√2
𝑦′

𝑡−1
+ (1 − √2)[√𝛼̅𝑡−1  (

𝑦′
𝑡−√1− 𝛼̅𝑡𝑓𝜃(𝑥′

𝑡,𝑥0,𝑡)

√𝛼̅𝑡
) + √1 − 𝛼̅𝑡−1𝑓𝜃(𝑥′

𝑡 , 𝑥0, 𝑡)] 

      else if 𝑡 = 1 then 

         𝑦′
𝑡−1

= √𝛼̅𝑡−1  (
𝑦′

𝑡−√1− 𝛼̅𝑡𝑓𝜃(𝑥′
𝑡,𝑥0,𝑡)

√𝛼̅𝑡
) + √1 −  𝛼̅𝑡−1𝑓𝜃(𝑥′

𝑡 , 𝑥0, 𝑡)  

     end if 

 end for 

return 𝑦′0 

 

IV. PERFORMANCE EVALUATION 

This section evaluates UW-DiffPhys among baseline 

methods on a set of popular underwater datasets, to 

demonstrate that the proposal can effectively improve the 

quality of degraded underwater images, both qualitatively 

and quantitatively. Additional computational complexity 

and inference time are also provided to verify the main 

contribution of this paper. 

A. Experimental Methods 

1) Implementation details 

The implementation of UW-DiffPhys was carried out 

with Pytorch 2.1.1, on NVIDIA GeForce RTX 3080. The 

network was trained and early stopped after 2,565,000 

iterations, with a batch size of 4, Adam optimizer with a 

learning rate of 2 × 10−5  without weight decay. An 

exponential moving average with a weight of 0.999 was 

used during updating parameters to facilitate more stable 

learning [42]. The images are resized into 128×128 before 

training and inference.  

2) Datasets and evaluation metrics 

The proposed UW-DiffPhys was conducted on three 

public underwater image datasets as follow: 

1) The UIEB benchmark dataset [43] for UIE contains 

950 real underwater images, among which only 890 

have high-quality reference images, while the 

remaining 60 images are challenging without 

corresponding satisfactory references. The 890 
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image pairs with high-quality reference images are 

separated into 800 pairs as training data UIEB-

Train, and 90 pairs UIEB-Test90 for both full-

reference and non-reference testing, whereas the 

challenging 60 images are also used for non-

reference testing UIEB-Test60.  

2) The recent large-scale LSUI dataset [44] contains 

5004 image pairs of more diverse underwater 

scenes with different water types, illumination 

conditions, and higher quality target references. We 

combined all 5004 images with UIEB-Train of 

8000 images to create a complete training data 

LSUI-UIEB-Train. 

3) The U45 dataset [45] contains 45 underwater 

images without references in different scenes, with 

different degradation types, including low contrast, 

color contrast, and haze effects. This dataset was 

selected as testing data U45-Test. 

The two full-reference metrics PSNR [46] and 

SSIM [47], along with the two non-reference metrics 

UCIQE [48] and UIQM [49] specifically designed for 

underwater scenes, were utilized for UIEB-Test90, UIEB-

Test60, U45-Test evaluation datasets. While UCIQE 

measures the colorfulness and contrast of underwater 

images by considering chroma, saturation, and contrast, 

the UIQM metric provides a more comprehensive 

evaluation of underwater image quality, and considers 

multiple factors including colorfulness, sharpness, and 

contrast. 

B. Experimental Results 

1) Qualitative and quantitative comparison 

The proposed UW-DiffPhys is compared qualitatively 

and quantitatively on the three testing datasets, against 

widely used UIE methods in recent years, including 

traditional method (UDCP [10]), CNN-based methods 

(UWCNN [13], Shallow-UWNet [14], UW-

PhysCNN [26]), GAN-based methods (MLFcGAN [16], 

FUnIEGAN [17], UW-GAN [18]), and Diffusion-based 

method (UW-DDPM [19]). Figs. 5–7 provide qualitative 

results on diverse water types from testing datasets UIEB-

Test90, UIEB-Test60, and U45-Test respectively, whereas 

Table IV summarizes the quantitative results. 

The traditional UDCP fails to color-correct and recover 

limited details in green-toned (i.e., Fig. 5(a), Fig. 5(a), (b), 

blue-toned (i.e., Fig. 5(d), (e), Fig. 6(a), (b), (c), (d)) or 

blue-green -toned (i.e., Fig. 5(b), (c)) images. It also over-

enhanced and introduced color distortions to foggy images 

(Fig. 7(e), (f)). Shallow-UWNet and UW-PhysCNN 

achieved limited color-correction for green-toned images, 

creating yellow-toned results. Nevertheless, UW-

PhysCNN performed considerably better in foggy scenes 

by recovering more details. MLFcGAN and UWGAN 

showed severe color distortion in green -toned and foggy 

images, producing yellow-tinted and pinkish results. 

Meanwhile, the diffusion-based UW-DDPM and our 

proposed UW-DiffPhys could achieve stable enhancement 

in most water types. Although UW-DDPM could bring 

fuller color improvement to the degraded images, the 

information of the scenes was blurred due to features loss, 

or the limited ability to remove scattering effect. On the 

other hand, images enhanced by UW-DiffPhys not only 

showed similar color improvement (to some extent) as 

UW-DDPM, but also recovered more details in foggy 

regions of a scene, especially at further distances. For 

challenging low-light scenes in UIE-Test60, only UW-

PhysCNN, UW-DDPM, UW-DiffPhys can considerably 

increase the scene brightness. While UW-DDPM can 

produce visually satisfactory (no color-tainted) results, 

UW-PhysCNN and UW-DiffPhys can recover sufficient 

details. To summarize, these stable enhancement results 

indicate that UW-DiffPhys partially inherited both color 

improvement ability from diffusion-based UW-DDPM, 

and scattering removal (details recovering) from physical-

based UW-PhysCNN. Fig. 8 enlarges a few comparisons 

between the three methods (from 128×128 resolution) to 

illustrate the advantage of UW-DiffPhys, recovering more 

scene details than UW-DDPM, while having fuller color 

improvement than UW-PhysCNN. 
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Fig. 5. Qualitative Comparison between Proposed UW-DiffPhys and Baseline UIE Methods on UIEB-Test90. (a) Green toned; (b) Blue-Green 

toned / Foggy; (c) Blue-Green toned / Foggy; (d) Blue toned; (e) Blue toned / Foggy; (f) Low light. 
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Fig. 6. Qualitative comparison between proposed UW-DiffPhys and baseline UIE methods on UIEB-Test60. (a) Blue toned; (b) Blue toned; (c) 

Blue toned; (d) Blue toned / Foggy; (e) Low light; (f) Low light.  

 

 

        
(d) 

         
(e) 

      

        
(a) 

        
(b) 

       
(c) 

        
(d) 

      
(e) 

        
(f) 

Journal of Image and Graphics, Vol. 13, No. 3, 2025

223



        

        
 

        
 

        
 

        
 

        
 

        
(  

Fig. 7. Qualitative Comparison between Proposed UW-DiffPhys and Baseline UIE Methods on U45-Test. (a) Green toned; (b) Green toned; (c) 

Blue toned; (d) Blue-Green toned / Foggy; (e) Foggy; (f) Foggy. 
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Fig. 8. Enlarged examples of Proposed UW-DiffPhys, physical-based UIE (UW-PhysCNN), and diffusion-based UIE (UW-DDPM). 

 

Table IV provides quantitative comparisons between 

the UIE methods, and further highlights the effectiveness 

of UW-DiffPhys, balancing performance between 

physical-based UW-PhysCNN and diffusion-based UW-

DDPM. The diffusion-based UW-DDPM obtained the 

highest value among other UIE methods for the full-

reference PSNR and SSIM metrics, indicating its ability to 

match the distribution of the non-degraded reference 

images well. Additionally, the ability of UW-DDPM to 

bring fuller color enhancement could be shown in 

achieving the highest UCIQUE scores in both non-

reference testing sets UIEB-Test60 and U45-Test, while 

obtaining suboptimal UCIQUE score on UIEB-Test90 

with reference data, in which it was outperformed by 

UDCP due to its over-enhancement effect. Regarding the 

non-reference UIQM metric depicting a more overall 

underwater image quality, considering also sharpness and 

contrast in addition to colorfulness, the physical-based 

UW-PhysCNN achieved the highest values for all three 

testing data, due to its ability to remove scattering using 

physical imaging model. Nevertheless, its color 

enhancement ability is limited, which is shown in 

intermediate UCIQUE scores. On the other hand, even 

though the proposed UW-DiffPhys obtained both 

suboptimal UIQM and UCIQUE scores, it outperformed 

UW-DDPM by approximately 7.87%. 18.66%, 6.15% in 

UIQM metric on UIEB-Test90, UIEB-Test60, U45-Test 

respectively. Meanwhile, the proposal also outperformed 

UW-PhysCNN by 0.78%, 1.89% in UCIQUE score on 

UIEB-Test90, UIEB-Test60 respectively.  

2) Computational complexity and inference time 

comparison 

Table V shows the effectiveness of the proposed UW-

DiffPhys to considerably reduce the computational 

complexity of UW-DDPM to approximately half, by 

replacing the U-Net for the Distribution Transformation 

task with light-computation underwater physical imaging 

components A-Net and T-Net, which are supported by the 

proposed Diffusion Underwater Physical Model. 

Additionally, the table also shows a significant decrease in 

inference time of UW-DiffPhys by utilizing a deterministic 

implicit sampling approach to require much fewer time 

steps (25 time steps), compared to UW-DDPM (1000 time 

steps). 

TABLE IV. QUALITATIVE COMPARISON BETWEEN THE PROPOSED UW-DIFFPHYS AND BASELINE UIE METHODS ON UIEB-TEST90, UIEB-TEST60, 

U45-TEST 

Method 
UIEB-Test90 UIEB-Test60 U45-Test 

PSNR SSIM UCIQE UIQM UCIQE UIQM UCIQE UIQM 

Reference - 1 0.6159 1.0876 N/A N/A N/A N/A 

Input 17.7723 0.7541 0.5448 0.6086 0.5253 0.1914 0.5328 0.5252 

UDCP 13.5921 0.6413 0.618 0.6737 0.5682 0.1252 0.6005 0.4899 

Shallow-UWNet 18.2951 0.7622 0.5437 0.5706 0.5208 0.1731 0.5299 0.4862 

UW-PhysCNN 21.539 0.8644 0.5844 0.9502 0.5502 0.6533 0.5961 0.8823 

MLFcGAN 16.6413 0.7365 0.576 0.5857 0.5405 0.1361 0.5519 0.4648 

UWGAN 18.1082 0.8269 0.582 0.6638 0.5465 0.2707 0.569 0.5939 

UW-DDPM 23.0567 0.8693 0.6041 0.8621 0.574 0.431 0.6029 0.8099 

UW-DiffPhys 20.7419 0.8556 0.5922 0.9408 0.5691 0.6176 0.5863 0.8714 

TABLE V. COMPUTATIONAL COMPLEXITY AND INFERENCE TIME COMPARISON BETWEEN THE PROPOSED UW-DIFFPHYS AND UW-DDPM   

Performance 
UW-DDPM UW-DiffPhys 

2 × U-Net Denoising U-Net A-Net T-Net Total 

Computation Complexity 264.92 GFLOPs 132.52 GFLOPs 1598.06 MFLOPs 134.12 GFLOPs 

Number of Parameters 171.21 M 85.61 M 46.14 k 85.65 M 

Average Inference Time 19.55 s 0.34  

 

3) Ablation study 

As described in Section III.A, the proposed UW-

DiffPhys mainly contributes to the Distribution 

Transformation Network by integrating light-computation 

physical-based UIE networks (A-Net, T-Net) (1) into the 

existing high-computation Denoising Network 𝜃 (2). The 

integration requires finetuning 𝜃 to compensate for limited 

ability of A-Net, T-Net (3). The notations (1), (2), and (3) 

denote the key novelties in the proposed UW-DiffPhys. 

This section shows the effectiveness of each component 

(1), (2), and investigates how (3) may affect the original 

quality performance of Denoising task. 

Removing (1) from the contributions, the model is 

essentially UW-DDPM [19]. Qualitative results can be 

observed in Fig. 8 (third column), where the restoration of 
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colors is desirable, but lacking restoration in scene details. 

Removing (2) from the contributions, the model is 

essentially UW-PhysCNN [26]. Fig. 8 (second column) 

reveals limited recovering of color, yet more scene details 

can be obtained. The final column in Fig. 8 indicates the 

proposed UW-DiffPhys can retain the two advantages 

from both previous models. 

Regarding (3), fine-tuning the existing Denoising 

Network for the Distribution Transformation task, as 

shown in Eq. (25), may affect the overall quality 

performance during training. Fig. 9 compares the loss 

performance of UW-DiffPhys (fine-tuning Denoising 

Network) and UW-DDPM (no fine-tuning Denoising 

Network) in terms of both the Distribution Transformation 

task and Denoising task. The vertical axis depicts loss 

value, whereas the horizontal axis depicts training 

iterations. In Fig. 9(a), the green line is 𝐿𝑜𝑠𝑠𝐴,𝑇, as shown 

in Eq. (26), the orange line is the proposed 𝐿𝑜𝑠𝑠𝜙 of UW-

DiffPhys in Eq. (27), whereas the blue line is the original 

𝐿𝑜𝑠𝑠𝜙 in UW-DDPM. In Fig. 9(b), the purple line belongs 

to the proposed Denoising U-Net being fine-tuned for 

Distribution Transformation purpose, whereas the orange 

line is the original Denoising U-Net without being fine-

tuned. Fig. 9(a) shows that the proposed UW-DiffPhys 

maintains the same Distribution Transformation 

performance as UW-DDPM, while requiring only half of 

the computation complexity. However, the Denoising 

Network in UW-DiffPhys was fine-tuned to achieve the 

transformation task, and thus its original denoising 

performance was affected, as seen from an error gap (of 

value about 5e-4) in Fig. 9(b). This drop in Denoising 

performance leads to a slight drop in quality measures such 

as PSNR, SSIM, and UCIQUE, as seen from Fig. 10(a), 

(b), (c). Nevertheless, as seen from Fig. 10(d), despite 

lower UIQM performance over earlier training iterations, 

the later iterations of UW-DiffPhys indicate that the 

proposal can outperform the existing solely diffusion-

based UW-DDPM, by incorporating underwater physical 

imaging components to better remove the scattering effect 

and obtain enhanced images with higher sharpness and 

contrast. 

 
(a) 

 

(b) 

Fig. 9. Loss performance between proposed UW-DiffPhys and original UW-DDPM [19]. (a) Performance on Distribution Transformation Loss; (b) 

Performance on Denoising Loss. 

 

 

 

 

 

 

 

 

Fig. 10. Quality performance between proposed UW-DiffPhys and original UW-DDPM [19]. (a) PSNR; (b) SSIM; (c) UCIQUE; (d) UIQM. 

(a) (b) 

(c) (d) 
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4) Applicability on low-level AUV task 

This section provides example results when applying 

diffusion-based UIE methods for the low-level feature 

points matching task, which is an essential step for further 

high-level vision tasks like AUV localization and 

navigation. An enhanced image with high sharpness, and 

high contrast can effectively highlight edge and feature 

information, facilitating the features detection and 

matching process. Fig. 11 shows example results when 

applying SIFT feature matching method on three original 

degraded images, and those enhanced by diffusion-based 

UIE methods. The proposed UW-DiffPhys could 

consistently detect and match a higher number of feature 

points, compared to UW-DDPM and the Raw images.

 
   

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Fig. 11. Feature points matching results on Raw underwater images, enhanced by UW-DDPM, and Proposed UW-DiffPhys.  

V. DISCUSSION 

This section discusses the effectiveness of the proposed 

UW-DiffPhys towards the research goal of this paper. The 

paper aims at improving real-time capability of the 

diffusion-based UIE on a low-cost AUV. The 

effectiveness of the proposal has been evaluated based on 

UIE metrics, computational complexity, inference time, 

and for a specific features matching task. 

Regarding UIE metrics, the considerable increase of 

UW-DiffPhys in UIQM score when compared with UW-

DDPM, and the outperformance in UCIQE score when 

compared with UW-PhysCNN, indicate that the proposed 

UW-DiffPhys can surpass the other diffusion-based UW-

DDPM in the ability to bring more sharpness and contrast, 

while bringing fuller color enhancement than the physical-

based UW-PhysCNN. On the decision between diffusion-

based UW-DiffPhys and physical-based UW-PhysCNN, 

having a higher UCIQE makes UW-DiffPhys suitable for 

applications such as marine biology or environmental 

monitoring research [50]. Enhancing color accuracy and 

contrast may help in the identification and study of marine 

species or coral reefs health assessment, such as observing 

the color patterns in fishes or corals [50]. On the decision 

between the two diffusion-based UW-DiffPhys and UW-

DDPM, having a higher overall quality UIQM score of 

sharpness, contrast, colorfulness makes UW-DiffPhys 

suitable for operation tasks of AUVs. The examples of 

low-level feature points matching task evaluated in section 

IV.D indicate that UW-DiffPhys having higher sharpness 

and contrast could detect and match more features than 

UW-DDPM, despite UW-DDPM having higher 

colorfulness. 

Regarding the computational complexity of the 

diffusion-based UIE, the proposed UW-DiffPhys has 

reduced the floating-point operations per second of UW-

DDPM from 264.92 GFLOPs down to 134.12 GFLOPs, 

and the network parameters from 171.21 million to 85.65 

million. Inspired by Refs. [51, 52], further investigation on 

other hardware constraints is needed to evaluate the 

deploy-ability of the proposed UW-DiffPhys. NVIDIA 

Jetson Nano has been widely utilized from mobile robots 

to low-cost AUV platforms for research and education  

purposes [53, 54]. The computational complexity limit on 

Jetson Nano is 472 GFLOPs [55]. Although both 

diffusion-based UIE methods can meet the computational 

requirement to run on the low-cost hardware, their existing 

performance is currently limited to small image size 

Raw UW-DDPM UW-DiffPhys 

81 features 128 features 176 features 

7 features 47 features 132 features 

14 features 59 feature 132 features 

Journal of Image and Graphics, Vol. 13, No. 3, 2025

227



(128×128). For effective features matching task in visual 

simultaneous localization and mapping (SLAM) 

application of robots, a common image resolution at VGA 

level (640×480) [56] is necessary to obtain sufficient 

SLAM precision. However, the computational complexity 

(GFLOPs) is proportional to squared image resolution. 

This means that for a twice larger image size (256×256) 

but having not met the VGA level, both the diffusion-

based UIE methods will increase the computational 

complexity by four times and exceed the requirement on 

low-cost Jetson Nano device (>472 GFLOPs). Thus, 

further complexity reduction is needed to deploy the high-

quality diffusion-based UIE models to process larger 

image resolutions on low-cost AUVs for essential 

operation tasks. Alternatively, a size-agnostic image 

enhancement approach [57] for diffusion-based UIE can 

be further investigated and adapted.  

Regarding the inference time reduction, the original 

UW-DDPM operates at about 0.05 FPS (19.55 s), 

meanwhile the proposed UW-DiffPhys can operate at 

approximately 3 FPS (0.34 s). However, 3 FPS remains 

relatively slow for real-time applications, since real-time 

image analysis is generally considered to be at speed of 30 

FPS or greater [58], whereas real-time localization of AUV 

should be larger than 15 FPS [59]. Nevertheless, the 

proposed UW-DiffPhys can still be applied for low frame 

rate applications such as underwater target tracking (1–5 

FPS) [60, 61] or survey and mapping (5–10 FPS) [62] with 

further reduction of sampling steps. Since DDIM is among 

the first sampling techniques (commonly in 25 steps) to 

accelerate DDPM, more recent samplers such as UniPC 

(Unified Predictor-Corrector) [63] can be investigated and 

adapted in the future work to achieve high quality image 

enhancement in 5–10 steps. 

VI. CONCLUSION 

This paper presents UW-DiffPhys, a novel approach to 

Underwater Image Enhancement (UIE) that combines 

physical-based light-computation techniques with 

diffusion-based models to address the limitations of 

existing methods. By integrating light-computation 

physical-based UIE network components with a denoising 

U-Net, UW-DiffPhys reduces the computational 

complexity of the previous UW-DDPM framework while 

maintaining comparable performance. Additionally, the 

adoption of the Denoising Diffusion Implicit Model 

(DDIM) enables faster inference through non-Markovian 

sampling, considerably improving the real-time capability 

of the system. Experimental evaluations demonstrate that 

UW-DiffPhys achieves a notable reduction in 

computational complexity (approximately half) and 

inference time (less than 40 times the number of required 

time steps) compared to UW-DDPM. Although there is a 

slight decrease in some metrics such as PSNR, SSIM, and 

UCIQE, the proposed model shows a considerable 

increase in the overall underwater image quality UIQM 

performance, highlighting its effectiveness in enhancing 

underwater images. These contributions enable the high-

quality diffusion-based image enhancement task to be 

applicable for low frame rate applications on low-cost 

AUVs processing limited image resolution. Future work is 

needed to continue improving real time capability for high 

frame rate applications of AUVs, and reducing 

computational complexity of both Denoising and 

Distribution Transformation networks of UW-DiffPhys to 

process larger image resolutions, for more accurate higher 

level AUV tasks. 
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