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Abstract—Fundus images play an essential role in ophthalmic 

diagnostics for the detection of many eye illnesses. The 

experiment begins with a thorough image pre-processing 

technique, which includes clipping the circular borders, 

scaling the image, enhancing the contrast, removing noise, 

and augmenting the data. The new combined block applies to 

extracting distinctive deep feature representations, which 

help to detect the first shape of the edges of each lesion. It is 

namely the Attention Block and the Conv-Deconv UNET 

model. Attention Block is subsequently implemented in order 

to augment the robustness and quality of feature depictions 

derived from a pair of DR images. The Dual Attention Block 

for the backbone, which is supplemented with hierarchical 

bottleneck attention, is what we propose here referred to as 

Dual Attention Block UNET (DAB-UNET). Bottleneck 

Attention Blocks and Dual Attention Blocks greatly improve 

a model’s ability to concentrate on essential features, 

boosting its performance in complex tasks such as image 

segmentation. When these attention mechanisms are built 

into architectures like DAB-UNET, they make the network 

faster and more accurate, letting it pick up on small, specific 

details. This is particularly beneficial in areas like medical 

imaging, where high precision is essential. In order to 

emphasize retinal anomalies that are significant for fovea 

macula and Diabetic Retinopathy (DR) semantic 

segmentation in the deteriorated retina, the network is made 

up of a unique bottleneck attention block. We trained Mask-

Region based Convoluting Neural Network (RCNN) model 

that comprises of a backbone for eliminating Oculus Dexter 

(OD) regions. Moreover, the proposed block combines self-

attention with channel attention in order to highlight these 

abnormalities. Our results indicate that DAB-UNET is 

potentially very effective for identifying landmarks even 

when dealing with different types of retinal degenerative 

disorders.   
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I. INTRODUCTION

The condition known as diabetic retinopathy is one of 

the consequences that may arise as a result of diabetes. 

This condition is caused by damage to the blood vessels of 

the retina, which is the light-sensitive tissue that is situated 

in the lower back of the eye. The third greatest cause of 

blindness in the United States is glaucoma, which is 

defined by progressive damage to the optic nerve and the 

subsequent loss of visual field because of this damage [1]. 

Diabetic Retinopathy is a condition that is associated with 

diabetes that specifically impacts the blood vessels in the 

retina. On the other hand, Glaucoma is largely caused by 

elevated pressure inside the eye, which in turn damages the 

optic nerve. 

Glaucoma is a chronic optic neuropathy that occurs with 

age and is the primary cause of permanent blindness on a 

global scale. According to other forecasts, it is projected 

that by 2040 [2], the global population of individuals with 

glaucoma would approach around 112 million, with a 

disproportionate impact on Asian and African nations. On 

the other hand, the growing prevalence of glaucoma, 

especially in developing countries, highlights the crucial 

need of effective glaucoma diagnosis and treatment. 
Several techniques have shown that image segmentation 

holds great promise for computer vision. In particular, U-
Net architecture which is based on fully convolutional 
networks is rather promising for image segmentation tasks. 
Using these two encoding-decoding structures, it captures 
both the local and global properties. Accordingly, a 
combination of low-level and high-level convolutional 
features is achieved by the use of skip connections in the 
U-Net architecture, which restricts its capacity to
efficiently combine valuable features and use contextual
information. Utilizing image segmentation methods offers
creative solutions to intricate segmentation problems.  The
use of Convolutional Neural Networks (CNNs) has shown
substantial advancements and confirmed efficacy in
detecting intricate image patterns [3]. Image segmentation
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technology has been widely used in Medical Imaging 
Analysis (MIA) in the medical profession, resulting in 
improved efficiency and accuracy of physicians’ 
diagnosis [4]. Fundus Fluorescein Angiography (FFA) is a 
crucial method for evaluating retinal disorders. To 
accomplish automated and uniform labeling of FFA 
images, it is advantageous to train on annotated FFA 
images using different Convolutional Neural Networks 
(CNN) [5]. There are a number of phases involved in the 
BT-Net Convolutional Neural Network (CNN) model that 
is used for the identification and quantification of a brain 
tumor. These steps include preprocessing, skull stripping, 
and tumor segmentation. [6]. Segmenting medical images, 
such as Computed Tomography (CT) and Magnetic 
Resonance Imaging (MRI) scans, enable more precise 
detection and measurement of different abnormalities. for 
instance, lung segmentation [7] and liver segmentation [8]. 
In addition, the technology of image segmentation is 
essential for the planning of surgical procedures and the 
guidance of intraoperative procedures. In spite of the 
significant progress that has been achieved in the field of 
image segmentation for medical applications, there are still 
challenges that need to be solved. Included in these 
challenges are the capacity to deal with difficult 
backgrounds, the enhancement of segmentation accuracy, 
and the further improvement of algorithm stability. These 
challenges should be taken into consideration. By using 
spatial attention processes, the network is able to 
selectively concentrate on significant regions in space. 
This enables the network to prioritize key characteristics 
in the skip connections while minimizing the impact of 
irrelevant data. Chen et al. [9] implemented spatial 
attention techniques in the decoding process due to the 
significant role of spatial information in image 
segmentation tasks. 

Multi scale technique [10], matched filter [11], and 

mathematical morphology [12] are applied for vessel 

segmentation of fundus images. The purpose of these 

strategies was to arrive at conclusive forecasts by use of 

feature extractors that were created manually. For the 

purpose of distinguishing vasculature and lesions from one 

another, the MCA algorithm together with the relevant 

transformations, is used. Following that, the Morlet 

Wavelet Transform is used in order to improve the look of 

the retinal vessels. For the final vessel map, adaptive 

thresholding is the method that is used. It presents a 

modified deep Convolutional Neural Network (CNN) 

model that can accurately predict the stage of glaucoma 

(mild, moderate, or severe) [13]. Our model utilizes 

characteristics commonly used by ophthalmologists and 

validates its predictions by comparing them to variables 

derived via visualization by the CNN layers. 

The segmentation of retinal vessels has shown 

substantial advancements because of the application of 

deep learning techniques [14, 15]. Especially, Deep Neural 

Networks (DNNs) are used in order to accomplish the 

necessary outcomes by using their remarkable capabilities 

in terms of automated feature learning and end-to-end 

learning. However Segmentation in retinal imaging is 

challenging due to the complexity of retinal lesions, which 

can manifest in a variety of ways, including different sizes, 

shapes, and colors. Various forms of these lesions exist, 

ranging from microscopic microaneurysms to bigger 

hemorrhages, exudates, and neovascular formations. Each 

possesses distinct characteristics that complicate accurate 

identification. It’s also possible for the quality of the 

images to vary, which can make it challenging to see 

lesions clearly because of things like low resolution, low 

contrast, or artifacts. 
A notable problem emerges from data annotation, 

essential for training segmentation algorithms. Annotating 
retinal pictures is labor-intensive, necessitates specialized 
expertise, and may be subjective, resulting in possible 
discrepancies among various annotators. The 
inconsistency of labeled data might adversely impact the 
training of segmentation algorithms, thereby diminishing 
their accuracy and generalizability. 

These problems can have a big effect on how well 

segmentation algorithms work at finding and separating 

complications of Diabetic Retinopathy (DR). If the 

segmentation isn’t done right, some lesions might be 

missed or put in the wrong category. This makes 

automated methods less useful for finding and diagnosing 

Diabetic Retinopathy (DR) early on. Accurate and 

consistent segmentation is crucial for enhancing 

therapeutic results and enabling timely assistance for those 

at risk of vision loss. 
Both the inability to regain the information that was lost 

during the decoding phase and the loss of uninterrupted 
resolution that occurred during the encoding phase are 
primarily responsible for this. This paper introduces a 
retinal vascular segmentation network that is named FRD-
Net. It is designed to be particularly effective in addressing 
this issue. Backbone network and Multi-scale Feature 
Fusion Module (MFFM) are the two primary components 
that apply FRD-Net at its core [16]. The primary 
contributions of this work may be stated as follows: 

1. Combining with a median filter, we present an
efficient image enhancement approach based on the
Contrast-Limited Adaptive Histogram Equalization
(CLAHE) algorithm to increase the contrast and
decrease noise in fundus images. We contend that
training deep learning models using pre-processed
DR-Fundus image data instead of raw data directly
will significantly improve their capability to learn
more meaningful feature information. Moreover,
this method may help to lower the computational
complexity required to generate an optimally
trained model.

2. novel Dual Attention Bottleneck (DAB) combines
the block used self-attention [17] and channel
attention [18], the purpose of highlighting retinal
abnormalities that are critical for landmark
identification in the retina that has deteriorated.

3. In order to accomplish the formation of UNET, we
include the DAB block into bottleneck skip
connections throughout all tiers of a U-NET
backbone network.

The problem statement revolves on the fundus images, 

which provide a complex dataset because to several 

problematic characteristics. One such aspect is the 

presence of optic disk and hard exudates, which have 

similar pixel values. The complicated network of 
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connecting blood arteries in the eye hampers the 

identification of tiny anomalies, resulting in reduced 

accuracy. Through the use of real-time monitoring 

capabilities, it becomes feasible to swiftly act, hence 

optimizing the results for patients and improving the 

treatment of illnesses. It is possible for healthcare 

organizations to lower their burden and prioritize patients 

who need immediate attention if they maximize the use of 

medical resources and improve illness detection systems. 

They are able to adopt a comprehensive approach to the 

management of diabetic retinopathy as a result of this. Our 

proposed model segment optic disc and extract vessel 

blood for increase the accurate detection.  

The aim of our proposed model is to develop a system 

that is capable of processing images and reliably 

diagnosing the amount of diabetic retinopathy. This is the 

goal of the model that has been developed. 

Overall, the advancements that have been made in 

medical imaging and diagnostic processes have the 

potential to bring about substantial changes, especially in 

the case of diseases such as diabetic retinopathy. The 

ability to get very precise and comprehensive retinal 

images is what makes the fundus imaging system stand out 

among these technologies. Using a fundus camera to 

capture images of the retina, this diagnostic 

network would let doctors evaluate the illness and identify 

diabetic retinopathy. 

Finally, the key objective of this study is to significantly 

enhance the diagnosis of diabetic retinopathy by creating 

innovative and effective methods for assessing the disease 

and providing optimal therapy to patients.  
1. The aim is to enhance the accuracy of segmenting

diabetic retinopathy stages by using pre-processing
techniques such as transformation matrix, non-local
mean denoising autoencoder, and image filtering.

2. in order to use data augmentation that is specific to
each grade to correct the imbalance in the data.

The rest of the sections of this work are organized as 

follows: Section II provides an overview of the existing 

research in the field. Section III presents the planned 

network. The experimental setup is described in 

Section IV. Section V analyzes the empirical findings. 

Section VI addresses the experimental design, whereas 

Section VII provides the paper’s conclusion. 

II. LITERATURE REVIEW

Several automated vessel segmentation approaches 

based on deep learning have been suggested [19–21]. 

introduced a deep learning network named SegNet. This 

network utilizes an encoder-decoder architecture with 

max-pooling indices to efficiently learn features and 

reconstruct images. Additionally, to use transfer learning-

based models to cope with limited annotated training 

resources, minimize training overhead, and automatically 

extract features. 

In this part, we will provide a concise overview of the 

associated work that has been done in the past concerning 

the U-NET Network, the introduction of the attention 

mechanism, and vessels & optical disk segmentation. 

A. U-NET Network

The U-NET architecture is a network based on Fully

Convolutional Networks (FCNs). The topology of this 

system is similar to that of FCN, NUNET [22] and 

UNET++ [23], since it makes use of encoders and 

decoders, along with skip connections. The U-Net network 

is distinguished by its symmetrical network architecture, 

with an encoder on the left side to capture contextual 

information and a decoder on the right side to accurately 

locate and restore the feature map size. The output feature 

maps of the encoder-part are duplicated and cropped. 

These duplicated and cropped feature maps are then fused 

with the deconvolution feature maps of the decoder. The 

resulting fused feature maps are transmitted to the next 

layer for upsampling. During the process of upsampling in 

the U-Net network, a large number of feature channels are 

able to transmit contextual information to higher 

resolution levels. The multi-attention MA-UNET design 

utilizes a conventional encoder-decoder topology. This 

process involves the sequential application of convolutions 

and down-sampling at the encoder step [24]. As a 

consequence, the feature maps produced have reduced 

resolutions but still include compact, high-dimensional 

semantic representations. Afterwards, the decoder 

undertakes a continuous process of convolution and up-

sampling to restore the segmentation result to its original 

size. In order to enhance the backbone’s capacity to extract 

fine-grained features, it is suggested that a residual encoder 

be developed, which would be based on a simple attention 

module. The encoder-decoder architecture underpins the 

deep supervised network known as UNET++ [25]. A 

number of nested, dense skip connections are used by the 

encoder and decoder subnetworks to produce feature 

fusion. This reduction in semantic loss between the feature 

mappings is accomplished via the use of these 

connections.   The combined model of UNet++ with FPN 

has achieved accurate results in [26]. 

B. Introduction of the Attention Mechanism

Introduce a network called Spatial Attention [27] U-Net

(SA-UNet) that is designed to be lightweight and does not 

rely on a large number of annotated training examples. 

This network may also be used in a data augmentation 

approach to make better use of the existing annotated 

samples. Spatial attention makes it easier for the network 

to focus on important parts of an image or feature map. 

This lets the model put the most important information at 

the top of the list and lessen the impact of less important 

or irrelevant data. By learning to allocate more attention 

weights to essential spatial regions, the network can 

eliminate noise, background clutter, and other distractions 

that might impede the job at hand. This approach generates 

an attention map that highlights the most critical areas of 

the feature map relevant to the job, such as object detection, 

segmentation, or classification. We frequently employ a 

convolutional layer or other techniques to generate the 

attention map. We employ these strategies to discern 

spatial connections and highlight aspects essential for 

understanding the input. This enables the model to 

concentrate on the areas that significantly influence the 
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decision-making process, hence enhancing overall 

performance. 

Spatial attention enhances the network’s ability to 

manage intricate spatial connections by concentrating on 

essential spatial regions. In medical imaging, spatial 

attention enables the model to concentrate on critical 

structures, such as tumors or lesions, which may be 

diminutive or irregularly shaped and easily overlooked 

without this concentration. In real pictures, spatial 

attention enables the model to focus on relevant items or 

areas while disregarding insignificant background 

components. Spatial attention not only diminishes noise 

but also facilitates the network’s acquisition of more 

pertinent and distinctive characteristics; hence, it enhances 

the model’s generalization capabilities. This makes the 

model more resistant to changes in input, such as changes 

in lighting, orientation, or scale, while still being able to 

focus on the most important parts. 

Ultimately, spatial attention enhances the efficiency and 

precision of model input processing. This renders it an 

effective instrument for jobs requiring a comprehensive, 

context-aware comprehension of spatial relationships 

within an image or feature map. Spatial attention facilitates 

the model’s ability to concentrate on pertinent regions and 

manage intricate spatial connections. This results in 

enhanced feature representation, improved performance, 

and more precise predictions across several domains, 

including computer vision and medical diagnostics 

In Ref. [28], by paying attention to hierarchical 

bottlenecks, the U-Net architecture was revised, and its 

application for fundus analysis was shown. DAB-block is 

used for the segmentation of retinal landmarks. It is 

suggested that an end-to-end encoder-decoder network, 

known as DRNet [29], be used for the purpose of 

localizing OD and Fovea centers. In order to compensate 

for the spatial feature that is lost in the encoder as a result 

of pooling, we suggest the use of residual skip connection 

in our DRNet. The skip connection that has been suggested 

does not instantly concatenate low-level feature maps from 

the early layers of the encoder with the matching same 

scale decoder. Wang et al. [30] provided the Efficient 

Channel Attention (ECA) module as a potential solution. 

In order to improve the learning of effective channel 

attention, a unique local cross-channel interaction 

technique was presented. This strategy eliminated the 

dimensionality reduction. A dual attention network was 

presented in [31], which included both spatial attention and 

channel attention modules. The purpose of this network 

was to dynamically integrate local characteristics with 

their global dependencies. 

C. Vessels & Optic Disk Segmentation

Retinopathy may result in significant fluctuations in the

shape, color, and size of the optic disc. Muhammed [32] 

recommended an examination of local feature spectrums. 

During the training step, each candidate is recreated using 

a set of local characdteristics. The building of the 

dictionary employs a sparse selection method, while the 

classification utilizes the k-Nearest Neighbor (KNN) and 

Support Vector Machine (SVM) algorithms. An approach 

that is based on template matching is described. Gui et 

al. [33] contains this method. The use of adaptive template 

size design and the examination of blood vessel patterns 

that are present on the surface of the optic disc are 

components that are necessary for the identification of the 

optical disc. A phase that involves removing blood vessels 

through the use of Alternating Sequential Filtering (ASF) 

and removing bright areas through the use of 

morphological reconstruction is included into the 

procedure before the subsequent stage of segmenting the 

optic disc. 

Converting the traditional two-dimensional searching 

space into a one-dimensional searching space, which 

would result in a more expedient localization process, was 

one of the suggestions made by Orlando et al. [34]. The 

encoding of the x and y coordinates, as well as the 

development of two projections of the image properties of 

the OD, are both components of the approach. A study was 

provided by Orlando et al. [35], in which they created a 

deep learning model for glaucoma, in which an 

unsupervised Convolutional Neural Network (CNN) 

retrieved the models’ characteristics. Between normal and 

glaucomatous patients, a Cup-to-Disc Ratio (CDR) 

threshold of 0.5 was used to differentiate between the two. 

In Ref. [36], a system that is based on deep learning and is 

called RDCU-Net has been presented for the purpose of 

segmenting three sections of brain tumors. When 

compared to the traditional U-Net, this technique 

overcomes challenges such as direct feature fusion, poor 

accuracy of segmentation at area edges, and lower 

resolution. In this strategy, the Dilated Convolution (DC) 

block is responsible for fusing both high-level and low-

level features together. This model achieves a better level 

of precision than the approaches that are now in use by 

using two different methodologies and a smaller number 

of parameters than those that are already in use. High-level 

and low-level characteristics are integrated using the first 

method, which involves the use of Dilated Convolution 

(DC) blocks that have proportionate conversion rates.

Li et al. [37] presented a unique approach for the

segmentation of retinal vessels that makes use of the 

BCOSFIRE filter for the diagnosis of diabetic retinopathy 

and glaucomam. Contour enhancement, area of interest 

extraction, and morphological filtering are all integrated 

into the procedure, which allows it to get accurate results 

while minimizing the amount of time spent processing. 

DRIVE, Stare, and CHASEDB1 datasets have all been 

evaluated, and the results reveal that it has competitive 

performance metrics, which makes it appropriate for real-

time diagnosis. In the initial pipeline that Faria et al. [38] 

developed, we coupled the capabilities of eXplainable AI 

(XAI) with eight well-known CNN models that had 

already been educated. In addition to enabling rapid image 

classification, the second pipeline employs Attention U-

Net, Trans U-NET, and Swin-UNET designs to tackle the 

difficult task of retinal blood vessel segmentation. This is 

done in order to get the desired results. using meticulous 

segmentation as a method.  

Due to the distinctive needs and difficulties associated 

with retinal image registration, deep learning techniques in 

this field have been approached with caution. One of these 
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issues is the preservation of sparsely defined structures, 

such as vasculature, across very uniform backdrops. Other 

challenges include the evolution of illnesses and the 

anticipated massive displacement alterations. Despite the 

fact that deep learning has been used for image 

classification and segmentation, its use in retinal image 

registration is still in need of improvement, and there have 

only been a few research that have tested its potential. 

Nevertheless, these algorithms are able to acquire the 

ability to map intricate connections between images and 

precisely align them, even when applied to massive 

datasets [39].  

This study uses a DeepDR network that has been trained 

from beginning to finish, making use of features from the 

lesionaware sub-network as well as the original images. 

This is in contrast to prior research that utilized numerous 

CNNs in order to detect and categorize lesions. 

As a consequence of this all-encompassing strategy, the 

grading results were enhanced, and the performance of 

diagnosing different stages of DR in real-world datasets 

performed much better [40]. Jabbar et al. [41] develop a 

computer-based solution that utilizes diagnostic and 

analysis techniques to accurately detect and classify 

different stages of diabetic retinopathy. On the other hand, 

weakly supervised learning [42] and conv model given 

good results. Upon conducting an extensive examination 

of the existing literature, it was found that there was few 

research that used CNN, however yielded significant 

outcomes. Even among the group of people who saw 

positive results, the method was found to be 

computationally intensive, therefore necessitating the use 

of sophisticated computer equipment. 

III. METHODOLOGY  

The primary function of a network is to acquire feature 

maps at various spatial resolutions. To achieve this 

objective, we use ResNet 50 Model [43]. In order to 

provide support for the evidential classifier that is based on 

the Dempster-Shafer theory, CNN gathers features from 

the input data.  In particular, deep convolutional neural 

networks, often known as CNNs, have emerged as one of 

the most widely used architectures for deep learning 

applications in the field of image categorization [44]. The 

feature maps, in addition to the original image, were then 

processed into a modified U-NET architecture. Within the 

framework of the U-Net design [45], a contracting sub-

network is connected to a symmetric upsampling sub-

network in such a way that the representation that is 

produced by the last layer of the upsampling route matches 

to the dimensions of the layer that comes immediately after 

the final layer. Our model evaluated on three public 

different datasets which is described in the datasets section.  

The purpose of this research is to offer a unique model that 

was developed for the purpose of OC and OD 

segmentation by MaskRCNN. This model was especially 

targeted to enhance glaucoma screening efforts. Through 

the use of the UNET model, Dual Attention Block, and 

pretrained modules, we were able to optimize the structure 

of the model. Further, we offer a technique for the 

processing of fundus photographs, with the goal of 

standardizing and improving fundus illustrations. 

A.  Datasets 

Our experiment used three different datasets. Firstly, 

published in 2011, the first Retinal IMage Database 

version for Optic Nerve Evaluation (RIM-ONE) [46]. The 

dataset consists of three versions. The RIM-ONE, STARE, 

and IDRiD databases, frequently utilized for retinal image 

analysis, possess several limitations: RIM-ONE possesses 

a limited sample size, inconsistent picture quality, and 

insufficient comprehensive annotations, hindering the 

ability to generalize and construct stable models. STARE 

can only hold 40 pictures, and its main purpose is to 

separate retinal vessels, which makes it less useful for 

other tasks. It also experiences class imbalance and 

annotation difficulties. IDRiD doesn’t have a smooth 

distribution of conditions, picture quality varies, and there 

aren’t many annotations for some lesions, which makes it 

less useful for training deep models. Common issues 

across datasets include inconsistent annotations, noisy or 

low-quality pictures, and insufficient diversity in 

demographics and circumstances, all of which hinder 

models’ ability to generalize and perform well. 

Notwithstanding these problems, these datasets retain their 

value; integrating them with additional datasets or 

employing augmentation techniques may mitigate some of 

these drawbacks. 

Along with the particular uncertainty and even incorrect 

usage noted in certain situations of the three versions 

released, prompted us to propose updating and integrating 

them into a new, publicly accessible version named RIM-

ONE DL (Rim-ONE for Deep Learning). Fig. 1 shows 

some samples of RIM-ONE DL dataset.  

 

 

Fig. 1. Samples of RIM-ONE DL datasets for Glaucoma and glaucoma 

suspicious and Normal phase. 

Secondly, STARE [47]. The dataset has a total of 400 

images. The camera used was the Topcon TRV-50 fundus 

camera, which has a Field of View (FOV) of 35 degrees. 

Fig. 2 illustrates some samples of the STARE dataset. 

 

 

Fig. 2. Samples of STARE dataset at different stages of Diabetic 

retinopathy. 
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Third, datasets are used for the localization of OD 

centers, whereas the IDRiD dataset [48] is employed 

specifically for the localization of Fovea centers.  On the 

other hand, the lack of a validation set in some datasets is 

absolutely necessary for the effective operation of 

supervised learning systems. The selection of the training, 

validation, and testing sets was accomplished by the use of 

a cross-validation approach. We used 5-fold cross-

validation to test model performance. We randomly mixed 

the dataset and divided it into five equal folds to prevent 

data leakage. Each fold was used as a validation set once, 

while the other four folds were utilized for training. We 

chose this method to strike a balance between 

computational efficiency and performance stability. 

Annotations were verified by two retinal specialists 

after the images were taken in India using a digital fundus 

camera (Kowa-VX-10a). The images were manually 

labeled after they were collected. Several examples of the 

IDRiD dataset are shown in Fig. 3.  

 

 

Fig. 3. Samples of IDRiD dataset including retinal vessel segmentation 

mask. 

B. Optic Disk Removal Model 

Due to the optic disc’s presence in the fundus image of 

the retina, it is difficult to differentiate between light and 

dark lesions. Because the two lesions have similar intensity 

levels. the neural network has a hard time distinguishing 

between them. Therefore, in order to reduce its negative 

effect on the forecasts, it is necessary to remove the optic 

disc [49]. 

Given the varied appearances of Optic Disc (OD) in 

both normal and Glaucoma situations, we have developed 

a comprehensive feature descriptor by combining several 

characteristics to ensure its robustness. For the purpose of 

extracting glaucomatous qualities, such as texture, 

intensity, color moments, and histogram attributes, we 

presented a combination of many different forms of 

content-based features. The primary benefit of the optic 

disk removal technique is its ability to generate images 

without Areas of Interest (ROI) including Optic Disk (OD) 

pixels [50]. This enhances the performance of exudates 

identification or segmentation, particularly when the 

exudates have a similar yellow hue to the OD pixels. 

Following the training of a Mask-RCNN model that 

includes a backbone, we were able to eliminate OD. We 

train Mask R-CNN to eliminate all regions related to the 

optic disk before feeding the dataset to our model for 

predicting segmentation. This enhances the performance 

of exudate identification or segmentation, particularly 

when the exudates have a similar yellow hue to the OD 

pixels. Following the training of a Mask-RCNN model that 

includes a backbone, we were able to eliminate OD. 

Furthermore, it is a two-head branch detector in addition 

to a region proposal network. To extract features, the 

backbone is responsible for doing so. The Region Proposal 

Network (RPN) determines the region of interest that the 

various branches of the head will include. While the 

succeeding head is responsible for categorizing, the initial 

head is responsible for facilitating bounding box 

regression. Mask-RCNN, an improvement on Faster-

RCNN, incorporates an additional fully connected 

network branch, such as segmentation, which utilizes the 

region of interest throughout the training process. 

Furthermore, it is a two-head branch detector in addition 

to a region proposal network. In order to extract features, 

the backbone is responsible for doing so. The region 

Proposal Network (RPN) is responsible for determining 

the region of interest that will be included into the various 

branches of the head. While the succeeding head is 

responsible for categorizing, the initial head is responsible 

for facilitating bounding box regression. Mask-RCNN is 

an improvement on Faster-RCNN that incorporates an 

extra fully connected network branch, such as 

segmentation, that makes use of the region of interest 

throughout the training process. 

An illustration of the process of optic disc segmentation, 

which is an essential part of the approach for detecting 

diabetic retinopathy, may be seen in Fig. 4. It displays the 

segmentation technique that removes the optical disc from 

retinal fundus pictures, which makes it easier to precisely 

identify lesions. This is accomplished by using visual 

representation. It is possible to have a better understanding 

of the impact that segmentation has on the visibility of 

lesions, such as microaneurysms and hemorrhages, by 

comparing the pictures taken before and after the 

procedure. 

 

 

Fig. 4. Optic disk removal segmentation. 
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C.   Preprocessing Techniques 

The process starts with the enhancement of contrast. 

The contrast of fundus images decreases as the pixel 

distance from the image’s center increases. To alleviate 

this condition, adaptive contrast equalization improves the 

contrast while simultaneously resolving the problems of 

noise and oversaturation in associated regions. 

CLAHE [33] is mostly used for the purpose of 

improving the contrast with digital medical photographs. 

It has been shown that this strategy is more effective in this 

particular domain compared to both the conventional 

histogram equalization and the adaptive histogram 

equalization. It provides localized contrast enhancement, 

enabling the improvement of selected picture regions 

without affecting others. The use of a clip limit mitigates 

excessive contrast enhancement in regions characterized 

by uniform intensity or substantial noise. Its adaptability 

renders it appropriate for uses including medical imaging, 

satellite images, and low-light photography. Furthermore, 

CLAHE proficiently preserves and enhances nuanced 

information that conventional histogram equalization may 

overlook. This approach is very successful in enhancing 

visual contrast in low-light or foggy circumstances. 

 

Algorithm 1. Data pre-processing Pipeline for 

enhancement and augmentation of images. 

Input Layer: Images of fundus datasets. 

Output Layer: Augmented Images. 

1- function CLAHE (Image, clip limit) // Contrast 

Enhancement. 

Grayscale image = convert to grayscale(image) 

clahe = create CLAHE (clip Limit = cliplimit) 

enhanced image = clahe apply (grayscale image) 

return Enhanced images. 

2-function illumination correction (image, desired 

intensity) // Illumination Correction 

Local average intensity = calculate local average intensity 

(image) 

Correction factor = desired intensity / local average 

intensity. 

Corrected image = image ∗ correction factor 

return corrected image 

set: augmented_images = [ ] 

For i in images do // Cropping 

Cropped image = crop_image(image) 

Augmented images_append (cropped_image) 

For angle in [90, 120, 180, 270] do // Rotation 

Rotated image = rotate image (image, angle) 

Augmented images append (rotated image) 

End For 

Horizontally flipped image = flip image 

horizontally (image) 

Vertically flipped image = flip image 

vertically(image) 

Augmented images extend ([horizontally flipped 

image, 

Vertically flipped image]) 

return augmented images 

The CLAHE algorithm is used to the luminosity channel 

in order to keep shading distances constant. The image is 

converted into the l×a×b space in order to accomplish this 

particular objective. As a result, the brightness is improved 

with the use of CLAHE [23]. The preprocessing steps are 

described in Algorithm 1. For enhancement and 

augmentations process.  

Edges in an image are defined as sudden shifts or 

discontinuities that may effectively store almost the same 

amount of information as pixels. The canny edge detection 

approach involves reducing noise by smoothing the image 

and then detecting sudden changes in intensity. The 

procedure involves many processes, including noise 

reduction, intensity gradient detection, non-maximum 

suppression, and hysteresis thresholding. 

This method utilizes the pixel-area correlation to 

resample the data, which leads to an output that is devoid 

of noise. 

The normalizing method is used to modify the 

boundaries of pixel values. It might also be referred to as 

contrast stretching or histogram stretching. The purpose of 

this process is to decrease the amount of noise in the image 

and then return the resulting values to the intensity level.  

In order to do this, it is necessary to divide each pixel by 

255, so scaling them to a range between zero and one. The 

contrast enhancement that was conducted on the image 

reveals the intricacies of the optic disc, which is an 

essential stage in the process of doing research on the area 

of interest. 

In order to address the issue of overfitting caused by the 

scarcity of fundus datasets, the photos were enhanced. 

Additionally, one of the goals of the enhancement was to 

reduce the gap that existed between the sample groups. 

Image rotation, scaling, cropping, horizontal reflection 

(mirror), and flipping (vertical, diagonal, and orthogonal) 

were some of the augmentation alterations that were 

performed. The OD detection system may be able to 

recognize a higher number of issues in fundus images and 

variations in image acquisitions as a result of these 

advancements. The rationale for using the augmentation 

technique with the transfer learning approach is because 

pre-trained models mostly utilize genuine images. 

D.  Model Structure 

A pertained ResNet-50 model applies for getting feature 

extraction at the initial step of feed data. The model using 

weights trained on a large dataset e.g., ImageNet. This 

enables the model to provide decent initial feature 

representations even in cases where uses different datasets. 

The process of the network starts with loading a pretrained 

ResNet-50 model after that modify the ResNet-50 to 

output intermediate feature maps. Next, Extract layer for 

instantiate the encoder and pass an input image through it.  

Finally, save all shapes of the feature maps. After that, 

these feature maps, in addition to the initial images, were 

included into a modified version of the U-Net framework. 

Dual Attention Block DAB add to skin connection. For 

the purpose of producing the exudates, OD, and vessels 

segmentation mask of expected, the outputs of the DAB 

blocks were sampled and aggregated. Our objective is to 

add DAB layers to the process of reducing computational 

complexity while simultaneously avoiding a significant 

increase in the complexity of the computations. We 

redesigned the U-Net to accommodate multiple DAB 

blocks by establishing local bottleneck structures in skip-

connection pairs. To emphasize key contributions of DAB 
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is made up of channel and content attention modules, and 

combining these two types of attention models increases 

the number of robots in the model while reducing 

complexity.  

It was observed that the performance of the network was 

significantly improved by incorporation of a self-attention 

mechanism into the bottleneck layers, which included a 

decreasing route, the attention module, and an expanding 

path. 

Fig. 5 represents the proposed model of DAB block 

architecture; the framework includes channel attention. As 

a result, we redesigned U-Net in order to accommodate 

numerous DAB blocks into the network. This was 

accomplished by establishing local bottleneck structures in 

each skip-connection pair. function at different spatial 

resolutions.  

 

 

Fig. 5.  DAB block architecture, the framework includes channel attention, which produces (AC) as output of red box, and content attention 

employing multi-head self-attention, which produces (AS) as output blue box. 

DAB is formed up of channel and content attention 

modules; the combination of these two types of attention 

models will result in an increase in the number of robots in 

the model while simultaneously reducing the complexity. 

However, in each spatial feature map, content attention 

was devoted to the pixels that were represented 

individually. 

After each down-convolution block was finished, the 

features were pooled and then down-sampled before being 

transferred to the block. This process was repeated until 

that block was finished. This was then followed by up-

sampling to the size that they had been at when they were 

first established. If they are processed in this fashion, the 

pairs of down-sampling and up-sampling convolution 

blocks may be considered to be local bottleneck structures 

that work at distinct spatial resolutions. This is because 

they are able to illustrate Fig. 6 using the layers q, k, and v, 

we were able to determine the query from Dense-CNN 

layers. 

The Attention Score (AC) that was produced as a result 

of the content attention was a combination of the key (k) 

and the query vectors q. 

 

 

Fig. 6. The architecture of DAB-block. A U-Net model, equipped with a 

novel attention block and a redesigned skip-connection pathway, is used 

to simultaneously locate the fovea and segment the optic disc.  

IV. RESULT AND DISCUSSION 

We implement the suggested DAB-UNet model using 

the Keras framework, with TensorFlow serving as the 

backend. We run all experiments on an NVIDIA TITAN 

XP GPU with 12 GB of RAM. We selected this GPU for 

deep learning projects due to its optimal combination of 

processing capacity and resource availability. In 

preparation for further tests, we modified the training 

technique such that it would continue until 60 epochs 

passed. To fine-tune the model’s hyperparameters, we 

used a grid search to determine which parameters provide 

optimal performance on the test data provided. It is critical 

to choose the best hyperparameters to guarantee effective 

model training. Here, we’ve set the learning rate at 0.0001 

and fixed the number of training epochs at 50. We further 

enhanced the image’s patches by rotating them by 90 

degrees. It entails delineating a range of potential values 

for each hyperparameter and assessing all conceivable 

combinations within this established grid. 

Starting with a learning rate of 103, the training regimen 

was implemented, and during the training process, a 

learning rate decay method was used. We used the Adam 

optimizer with a momentum value of 0.9 in order to get the 

model parameters to their optimal state. 

However, the number of nth convolutional layer of our 

proposed DAB-UNET determined for accurate segment. 

the f-map Xn input is used to generate a final output f-map 

Xn output by computing the proposed residual-skip 

connection of Resnet50 model as: Xn output = S (Xn input) 

+ Xn input. Where S is the stack of convolution layers in 

the shortcut-path of the algorithm.   
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Accordingly, the output of a residual skip connection 

where Xnout ∈ ℛB×H×W×E.  This function is then 

concatenated with the scaled nth decoder output.  

Firstly, where Yn out ∈ ℛB×H×W×D is computed to regain 

the lost spatial information of model. all features aggregate 

to represent the final prediction.  

Second, where Xn C ∈ ℛB×H×W×(G+E) and (B, H, W, G, and 

E) respectively denote the channel concatenation, batch 

size [B], height [H], width [W], and depth of Xn
out.   

On the other hand, Batch normalization layers are 

applied after each convolution in both the encoder and 

decoder. This is done to standardize the inputs to the layers 

inside each mini batch, in order to address the issue of 

internal covariate shift. Furthermore, the DAB-UNET 

utilizes the sigmoid activation function to generate a 2D 

feature map, which may be used for segmentation or 

regression purposes. In the process of segmentation, the 

output maps are processed by thresholding in order to get 

binary masks of the OD. The output heatmaps that 

approximate the intended localization are subjected to a 

two-dimensional argmax operation in order to ascertain the 

spatial coordinates of the OD and Fovea centers. However, 

when compared to the backdrop, the OD of ROIs are much 

tiny. In the event if a typical measure is used, which 

considers both the background and the foreground pixels 

in equal measure, it would include the introduction of bias 

towards the background pixels. 

 

𝐼𝑜𝑈𝑠(𝑦, 𝑦̑) =
∑ 𝑦𝑖×𝑦̑𝑖
𝑁
𝑖=1

∑ 𝑦𝑖+∑ 𝑦̑𝑁
𝑖=1 −∑ 𝑦𝑖×𝑦̑𝑖

𝑁
𝑖=1

𝑁
𝑖=1

           (1) 

 

The actual label, the projected label, and the total pixel 

count are denoted by and N, respectively. In Eq. (1), the 

measure of similarity predicted between the real label and 

the annotation is equal to the product of y and y. On the 

other hand, the architecture that was provided results in the 

model obtaining binary cross-entropy and mean squared 

errors, both of which are used as loss functions for 

segmentation and regression, respectively. The loss 

functions for both tasks are optimized without 

modification by using a momentum optimizer with a 

starting learning-rate of 0.001 and exponential decay 

values (β1-first layer, β2-second layer) as the beginning 

values. Over the course of ten epochs, the LR will decrease 

by ten percent in the event that validation loss does not 

improve. Setting the epoch to 100 at the beginning of the 

training process, we terminate the training phase with a 

callback when the test loss stops getting better. 

A grid search is used to determine which parameters 

provide the optimal performance on the test data provided 

in order to fine-tune the model’s hyperparameters. It is 

critical to choose the best hyperparameters to guarantee 

effective model training. Here, we’ve set the learning rate 

at 0.0001 and fixed the number of training epochs at 50. 

The image’s patches were further augmented by rotating 

them by 90°. A total of 1156 MA image patches were 

utilized to train the DCNN. Furthermore, the training 

process included the use of 5000 images patches that were 

not from Massachusetts. 

Down-sampling and up-sampling are two methods that 

are used in a U-Net to encode spatial information to 

various channels. We are of the opinion that channel-wise 

attention is an excellent method for making use of this 

information at the bottleneck layers, which often include a 

great number of channels. 

The input feature map A was sent through the average 

pooling and max pooling layers simultaneously, which 

resulted in each channel being compressed to a single 

value. After being sent through a single, shared multi-layer 

perceptron with one hidden layer inside the model, these 

two feature maps were then merged together in order to 

calculate the final channel attention score (AC). 

 

                         𝐴′ = ReLU(𝐴𝑆)𝜎(𝐴𝐶)𝜈                         (2) 

 

The value vector was scaled not just according to the 

content Attention Score (AS), but also according to the 

channel Attention Score (AC). This was done in order to 

ensure that the value vector was accurate. Eq. (2) 

represents the output of the DAB block, which is denoted 

by the 'A . The SoftMax algorithm was applied to all of the 

attention heads, and the symbol  refers to the sigmoid 

function.  The exact location of the OD border will be of 

great assistance in the investigation of the progression of a 

variety of eye illnesses and the outcomes of therapy. There 

is a possibility that failures might be attributed to the fact 

that pictures are often very inhomogeneous. Additionally, 

lesions have the potential to generate false targets or alter 

the predicted OD characteristics, particularly in the 

vicinity of its boundaries. A unique technique is presented 

to enhance the identification of the Optic Disc (OD) border. 

This method involves localizing the OD area, extracting 

the segmentation of blood vessels, and using an active 

contour model with a variational level set formulation. 

It has been shown that skip connections are successful 

in recovering fine-grained information of the target objects; 

they are also capable of constructing segmentation masks 

that include fine details even when applied to complicated 

backgrounds. Skip connections are also essential to the 

success of instance-level segmentation models like Mask-

RCNN, which allows the segmentation of OD and 

eliminates the false-positive results.  

This is because skip connections allow for the success 

of these models. When it comes to the retinal images, the 

most luminous region is the Optic Disc (OD), and the 

blood vessels start from the center section of the OD. 

Accordingly, there are a great number of ships that are 

crossing their limit, which makes its division more difficult. 

The use of the vesselness filter, which is a method that is 

often utilized for the purpose of improving the visibility of 

blood vessels, is what allows for the identification of blood 

vessels. 

However, the suggested approach was used to segment 

the Optic Disc (OD) of the IDRiD and RIMONE data sets. 

The retinal Optic Disk border detection mechanism yields 

a result that classifies each pixel. Each pixel is categorized 

as either OD (optical density) or non-OD. Next, we 

evaluate each binary image obtained by comparing it with 

the matching ground truth. This evaluation is done by 
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calculating four performance metrics. Fig. 7 illustrates the 

final output results of STARE images as predicted by our 

proposed model, while Fig. 8 showed Results 

segmentation of RIM-ONE DL datasets.  

 

 

Fig. 7. Results segmentation of STARE datasets. 

 

Fig. 8. Results segmentation of RIM-ONE DL datasets. 

We assess the segmented OD masks using sensitivity 

(Sn), accuracy (Acc), Intersection over Union (IoU). 

Whereas the mIoU measures the overlap between the real 

and projected OD masks, the mSn and mAcc are used to 

assess the false-negative area and the proportion of 

properly categorized pixels. 

The effectiveness of our proposed model is showing the 

feature extraction with ResNet model 50 encoders before 

feed to scale UNET model of encoder-decoder. The second 

stage of our proposed model is used ResNet-50 model for 

the decoder that is responsible for eliminating all false 

positive errors. On the other hand, we preprocess stage 

with train Mask-RCNN model for extracting optic disk 

region, that helpful to increase the accurate model. 

Fig. 9 shows overlay visualizations with randomly 

applied preprocessing to enhance the prediction and clarify 

small regions and tiny lesions. The red line predicts the 

hard extrudates while blue line detects the small regions of 

infected and soft exudates. 

 

 

Fig. 9. Comparison of hard extrudates and soft extrudates with ground 

truth.  

Table I shows results of OD segmentation using the 

proposed DAB-UNET with transfer learning (TR) and 

Data Augmentation (DA). Table II presents the results of 

OD segmentation using the proposed DAB-UNET on 

three publicly accessible datasets without data 

augmentation transfer learning. 

TABLE I. THE RESULTS OF OD SEGMENTATION USING DAB-UNET 

WITH TRANSFER LEARNING AND DATA AUGMENTATION 

Datasets 
Sn% Acc% IoU% 

Mean Median Mean Median  Mean Median 

IDRiD 97.8 98.5 99.4 86.8 84.7 94.5 

RIMONE 96.7 96.2 98.7 93.0 88.3 95.5 

STARE 97.5 98.4 98.8 94.6 84.2 94.6 

TABLE II. THE RESULTS OF OD SEGMENTATION DAB-UNET ON 

DIFFERENT DATASETS  

Datasets 
Sn% Acc% IoU% 

Mean Median Mean Median  Mean Median 

IDRiD 88.5 95.0 97.7 96.8 85.5 90.5 

RIMONE 95.9 97.7 96.2 97.4 90.6 92.9 

STARE 96.2 98.0 99.9 99.9 92.0 93.7 
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Moreover, we added a Dual Attention Block for UNET 

model that works effectively for extracting lesions with 

attention map. Fig. 10 illustrates the results of final 

semantic segmentation of our proposed DAB-UNET with 

gray scale and generated mask of OD and Hard Exudates 

lesions.   

 

 

Fig. 10. A) illustrates input image dataset B) represent gray scale C) optic 

disk mask D) Hard exudates mask label E) and F) Final segmentation 

results of our proposed model DAB-Unet. 

Fig. 11 illustrates the comparative ROC curve of three 

models. This performance improvement shows the 

effectiveness of the network architecture we suggested, 

like dual attention blocks, feature extraction, and skip 

connections. Furthermore, the UNET model incorporates 

a dual attention block that efficiently extracts lesions using 

an attention map.  

 

   

Fig. 11. DAB-UNET comparative ROC curve with three models. 

Table III shows the State-of-Art methods used in some 

segmentation with different conv models with STARE 

dataset. According to Accuracy (ACC) and Intersection 

over Union (IoU), this comparison illustrates how various 

approaches fare in terms of their respective performance. 

Based on the results, it seems that the DAB-UNET 

technique with Resnet50 has obtained the maximum 

accuracy and IoU.  

Table IV describes some experimental results of the 

suggested methodologies for retina blood vessel 

segmentation, which were then compared to other classical 

and deep learning-based algorithms for the IDRiD dataset. 

DAB-UNET demonstrates competitive performance 

with elevated AUC and accuracy, signifying efficient 

segmentation of retinal blood vessels. The U-Net versions 

often exhibit commendable performance, with R2U-Net 

and Residual U-Net demonstrating robust outcomes. 

Conventional techniques, however successful, generally 

exhibit marginally worse performance metrics relative to 

deep learning-based alternatives. 

TABLE III. EXPERIMENTAL RESULTS OF THE PROPOSED APPROACHES 

FOR RETINA BLOOD VESSEL SEGMENTATION WERE OBTAINED AND 

COMPARED AGAINST OTHER TRADITIONAL AND DEEP LEARNING-

BASED APPROACHES (STARE) 

Study Methodology Segmentation Results 

[51] 

Adaptive Active 

Morphological 

Operation 

Otsu 

Thresholding 
ACC 60% 

[52] 
Deep CNN, 

Seg-net 

DeepLabV3, 

Segnet 
ACC 88% 

[53] 

Generative 

Adversarial 

Network (cGAN) 

U-Net, 

HEDNet 
84.05% 

[54] DR-Net, CNN Regression 84.50% ACC 

Segnet 

(Our) 
Multilayer-CNN 

Semantic 

segmentation 

57% ACC 

54% IoU 

DeepLab 

V3 (Our) 

Deep classify 

model 

Extract 

features for 

semantic 

region 

88% ACC 

80% IoU 

ResNet 50 Residual model segmentation 0.9509 

DAB-Unet 
Resnet50, DAB-

Unet 
Segment 

98.86%ACC 

94.6% IoU 

TABLE IV. EXPERIMENTAL RESULTS OF THE PROPOSED APPROACHES 

FOR RETINA BLOOD VESSEL SEGMENTATION WERE OBTAINED AND 

COMPARED AGAINST OTHER TRADITIONAL AND DEEP LEARNING-

BASED APPROACHES FOR IDRID DATASET 

Study SE % SP % AC % AUC % 

Marin et al. [55] 69.40 97.70 95.20 98.20 

Fraz [56] 75.48 97.63 95.34 97.68 

Roychowdhury [57] 77.20 97.30 95.10 96.90 

Liskowsk [58] 78.67 97.54 95.66 97.85 

Qiaoliang Li [59] 77.26 98.44 96.28 98.79 

WSF [60] 78.80 97.60 95.70 95.90 

U-Net 82.70 98.42 96.90 98.98 

CE-Net [61] 78.41 97.25 95.83 97.87 

R2U-Net [62] 82.98 98.62 97.12 99.14 

Residual U-Net (our) 82.03 98.56 97.00 99.04 

Recurrent U-Net (our) 0.8108 0.9871 0.9706 0.9809 

DAB-UNET (our) 0.856 0.9857 0.9889 0.9909 

 

Table V illustrates the severity of Diabetic Retinopathy 

(DR), a complication of diabetes that affects the eyes, 

using the. The table provides a detailed comparison of 

different neural network architectures for classifying 

various severity levels of Diabetic Retinopathy (DR) on 

the IDRiD dataset. DAB-UNET significantly enhances the 

classification accuracy for different DR severity levels. 

Table VI illustrates the severity of Diabetic Retinopathy 

(DR), a complication of diabetes that affects the eyes, 

using the STARE dataset. DAB-UNET outperforms others 

significantly with 88.30%, followed by Attention UNet at 

85.94%.
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TABLE V. THE NETWORKS FOR THE VARIOUS DR SEVERITY LEVELS ON IDRID 

Network No DR % Mild% Moderate % Severe % Proliferative % 

Residual U-Net 95.27 82.46 80.63 76.98 74.70 

Recurrent U-Net 97.48 85.59 86.53 81.48 80.32 

Attention UNet 98.80 88.73 87.63 83.74 85.94 

U-Net ++ 97.59 87.97 85.73 81.83 80.57 

DAB-UNET (our) 99.67 89.35 86.13 84.76 88.30 

TABLE VI. THE NETWORKS FOR THE VARIOUS DR SEVERITY LEVELS ON STARE 

Network No DR % Mild % Moderate % Severe % Proliferative % 

Residual U-Net 98.43 84.79 83.46 73.94 76.23 

Recurrent U-Net 97.89 86.74 87.37 80.30 84.31 

Attention UNet 99.65 91.03 88.76 85.90 87.50 

U-Net ++ 96.74 88.89 86.69 83.78 84.47 

DAB-UNET (our) 99.56 90.67 88.04 86.65 87.83 

 

Finally, the current experiments put the suggested 

DAB-UNet model to the test on certain datasets, showing 

that it works well with the given conditions. To fully show 

how robust and useful it is, however, it is important to test 

the model’s ability to work in a variety of imaging settings, 

such as those with different image capture equipment. In 

the future, we will apply augmentation strategies to 

enhance data augmentation approaches, imitating varied 

imaging situations during training to increase 

generalization. 

V. CONCLUSION 

The study that we have conducted represents a 

significant step forward in the area of early health 

detection. This is accomplished by carefully evaluating 

retinal blood vessels in fundus and DR images. In this 

research, we proposed the network that is referred to as 

DAB-UNET which is proposed with the purpose of 

automatically segregating optic disk circles and 

determining the locations of Fovea-centers region. 

Foreground pushing is the primary emphasis of the region-

guided attention network block, while the cascaded partial 

decoder is responsible for aligning the high-level and low-

level features, which ultimately leads to an improvement 

in the model’s performance. 

The proposed residual skip connection has been shown 

to improve segmentation and localization final results in 

comparison to traditional skip connections, such as those 

found in UNet. This is despite the fact that the structure is 

more lightweight than other skip connections. Our further 

plan was to evaluate the impact of the number of 

parameters, number of layers, and depth of the DAB-

UNET to obtain the most preferred outcomes that are 

possible in the future. And since the recommended skip 

connection will also have a better capability to reconstruct 

spatial information that got lost in the pooling process of 

the encoder, the same will be used in other parts of medical 

pictures inclusive of segmentation and localization. This is 

because; right spatial information is critical in these areas. 
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