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Abstract—Cerebral Microbleeds (CMBs) are referred to tiny 
foci of hemorrhage in brain parenchyma which are smaller 
than 5 (to 10) mm in size. The presence of CMBs is implicated 
in pathophysiology of cognitive impairment, dementia, 
radiation-induced vascular injury, traumatic brain injury, 
hypertensive microangiopathy, and aging. On brain 
Magnetic Resonance Imaging (MRI) scans, CMBs appear as 
hypointense foci, most notable on T2*-weighted or 
Susceptibility-Weighted Imaging (SWI). Detecting these tiny 
microbleeds with naked eye is a difficult and time-consuming 
task for radiologists. In this study we developed an algorithm 
for automatic detection of CMBs. We applied a two-step 
strategy: at first, we applied pre-processed 2D image dataset 
to You Only Look Once (YOLO V2) for detection of CMBs. 
Then, these detected CMBs locations are used to segment 3D 
patches from their original SWI volume in the datasets. Next, 
these patches are used as inputs for Convolution Neural 
Network (CNN). In the second step, we reduced the number 
of False Positives (FP) and improved our classification 
accuracy using 3D CNN. We used two datasets consisting of 
979 patients: 879 of whom for training of models, and the 
remainder for independent validation. We were able to 
achieve an accuracy of 81% and reduce the ࢍ࢜ࢇࡼࡲ to 0.16. 

Keywords—Cerebral Microbleeds (CMBs), classification, 
detection, You Only Look Once (YOLO), 3D Convolution 
Neural Network (CNN) 

I. INTRODUCTION

Cerebral Microbleeds (CMBs) are small foci of 
hemorrhages that are created by focal accumulations of 
hemosiderin containing macrophages in brain parenchyma. 
The paramagnetic properties of these hemorrhagic 
products lead to susceptibility effects and signal loss on 
T2*-GRE and Susceptibility-Weighted Imaging (SWI) 

sequences in brain MRI [1]. The presence of CMBs is 
associated with higher risk of future intracranial 
hemorrhage and can be a biomarker for cerebral amyloid 
angiopathy and cerebrovascular diseases. Recent studies 
have shown a higher prevalence of CMBs among patients 
with hematological disorders, brain tumors, abnormalities 
of blood vessel, hypertension, head trauma, and 
aneurysm [1]. CMBs are also implicated in 
pathophysiology of cognitive impairment, and 
Alzheimer’s dementia [2]. On brain MRI scans, CMBs 
present as tiny black dots which are best seen on three-
dimensional T2*-weighted imaging, SWI, and related 
techniques [3]. Among different MRI sequences [4], SWI 
series are the most sensitive technique for identification of 
CMBs [5]. 

Currently, brain MRI is the most dependable screening 
modality for identification of CMBs. Utilization of high-
field (3T and higher) magnet MRI scanners and sensitive 
SWI techniques have improved the sensitivity and 
accuracy of radiologists in detecting tiny CMBs. In current 
day-to-day clinical practice, radiologists are tasked to 
identify CMBs, which implies a subjective and tedious 
process, prone to human errors. Consequently, CMBs may 
be missed, ignored, or not consistently reported [6]. 
Identification of CMBs via Computer Assisted Diagnostic 
(CAD) appears as a viable option to facilitate, expedite, 
and increase the accuracy of radiologists in detection and 
quantification of microbleeds. 

II. LITERATURE REVIEW

So far, many authors have proposed different automated 
models for identification of CMBs, many of which limited 
by small sample size [7]. Barnes et al. [8] developed an 
algorithm with statistical thresholding to recognize 
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hypointensities inside the images and utilized Support 
Vector Machines (SVM) to separate confirmed CMBs. 
They included 126 CMBs in their dataset and achieved a 
sensitivity of 81.7%. Bian et al. [9] proposed a semi-
automatic strategy for recognizing CMBs on SWI series. 
Their algorithm was based on initial radial symmetry 
transform to detect CMBs followed by exclusion of FPs by 
using region growing method. A dataset of 15 patients 
were used in this study. Fazlollahi et al. [10] proposed a 
two-stage model, using multi-scale Laplacian of Gaussian 
and Random Forests (RF). Their model was validated on 
66 patients and achieved 86 % sensitivity. Chen et al. [11] 
developed an algorithm based on CNN. They used a 20-
patient dataset with 117 CMBs and achieved a sensitivity 
of 89.13%. Wang et al. [12] also applied CNN with a rank-
based pooling scheme to detect CMBs, and achieved 
96.94% sensitivity. However, their dataset only included 
10 patients. Hong et al. [13] described an algorithm based 
on CNN using transfer learning and ResNet-50, but also 
using images from 10 patients. Liu et al. [14] also used a 
CNN-based model in a dataset of 195 patients for training 
and validation, which was tested on images from 25 
patients, achieving 95.8% sensitivity. Chen et al. [15] used 
the 3D residual CNN approach, and reduced the FP 
average results by 89%. Their dataset consists of 73 
patients for training and validation; and 12 patients for 
testing, achieving 90 % sensitivity. Wang et al. [16] 
described a CMB detection method via 2D-DenseNet 
Neural Network. They also achieved 97% sensitivity, but 
using a dataset of 10 patients for training and 10 patients 
for testing. Al-Masni et al. [17] exploited a two-stage 
strategy, where they adopted YOLO and CNN, 
consecutively, for the detection of CMBs, and reducing 
FPs. Their dataset consists of 179 patients, including 107 
with low resolution and 72 subjects with high resolution 
images; and they achieved a sensitivity of 78.85% and 
93.62%, respectively. Hong et al. [18] utilized sliding 
neighborhood processing and CNN to detect and classify 
the microbleeds. They achieved 99% sensitivity but only 
used the data from 10 patients. Doke et al. [19] described 
the Bayesian optimization to find optimum set of 
parameters for CNN to detect the CMBs. They also 
generated data from 10 patients using sliding window 
operation. Lu et al. [20] designed a CNN to identify 
CMBs. Their model achieved average sensitivity of 
98.18% by using a dataset of 20 patients. 
Tummala et al. [21] investigated an ensemble of pretrained 
Vision Transformer (ViT) models (B/16, B/32, L/16, and 
L/32) for brain tumor classification using T1-weighted 
MRI images. The ensemble achieved a high test accuracy 
of 98.7% on a dataset of 3064 MRI slices, demonstrating 
the potential of ViT models for aiding radiologists in 
diagnosis. Hossain et al. [22] tackles multiclass brain 
tumor classification using MRI images, evaluating deep 
learning models such as VGG16, InceptionV3, ResNet50, 
and others. The proposed transfer learning model, IVX16, 
achieved the highest accuracy of 96.94 % on a 3264-image 
dataset. Explainable AI validated the models, and Vision 
Transformer (ViT) models were compared for 
performance. Li et al. [23] exploited the ground truth for 

feature enhancement, and then applied these features for 
training of a CNN. They achieved an average sensitivity 
and precision of 90% and 79.7%, respectively. Their 
dataset included 58 patients, with 50 subjects used for 
training and testing and 8 subjects used for validation. 

Fig. 1. Flowchart of proposed method. 

Over the last decade, Artificial Neural Networks (ANN) 
could achieve extraordinary milestones in the field of 
computer vision. Consequently, many researchers have 
deployed ANN models in the field of biomedical imaging. 
However, the main obstacle in creating generalizable deep 
learning models for assessment of clinical images is the 
relatively small size of samples available for training and 
validation. This is due to the expensive cost of image 
acquisition and labeling as well as patients’ privacy 
regulations, which limits public access to medical images. 
Similarly prior attempts in utilization of deep learning 
models for detection of CMBs are limited by small sample 
size in both training and test datasets, as detailed above. 
Thus, we tried to address this issue by utilizing a large 
dataset of 979 patients for training and validation of an 
automated CMB detection model based on YOLO. Fig. 1 
describes the flowchart of the proposed method.  

The main contributions of this study are: 
 Development of a two-step deep learning model

for automated CMB detection, utilizing YOLO
V2 and Darknet-23 in the first step, followed by
a 3D CNN to enhance classification accuracy and
reduce False Positives (FPs).

 Training the model on the largest dataset used for
CMB detection to date, combining two publicly
available datasets, resulting in a total of 879
patients, and testing on 100 patients.

Demonstrating that using a large dataset with 
preprocessing, augmentation, and fine-tuning significantly 
improves sensitivity and accuracy while reducing the 
number of FPs compared to previously reported models. 
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III. MATERIALS AND METHODS

A. Preprocessing

Image preprocessing is one of the most important steps
in Computer Assisted Diagnostic (CAD) systems. As it is 
often difficult to extract CMBs due to very homogenous 
transitions in the MR images, therefore in the model 
training step we applied a contrast enhancement technique 
to all those slices that has at least one CMB. i.e., ܧ ←COLFILT ,ܫ) 3) 

where COLFIT filter enhances the image ܫ  depending 
upon the global mean and global variance of the 
image [24]. To extend the consistency among the input 
images intensities values, input slices of subjects were 
normalized in range 0 to 1. 

௡௢௥௠ܧ = ௢௥௜௚ܧ − ௠௔௫ܧ௠௔௫ܧ − ௠௜௡ܧ
Here ܧ௢௥௜௚ ௡௢௥௠ܧ , ௠௜௡ܧ , , and ܧ௠௔௫  refer to pixel 

intensities. i.e., original, normalized, minimum and 
maximum respectively. 

B. Data Augmentation

In deep-learning, models are trained to learn a large
number of parameters. This will increase the likelihood of 
over fitting during training due to the model complexity. 
Data augmentation can artificially increase the number of 
subjects to alleviate the risk of over fitting [25]. It 
artificially creates new sample images by applying 
transformations such as flipping, rotation and other 
operations to the actual data sample. For every image, we 
artificially produced seven new sample images using the 
combination of 0º, 90º, 180º, and 270º rotations and 
flipping transformations. 

C. 2D Slices and Brain Extraction

In the next step, the augmented data is converted into
2D images with size of 448×448. It created an input matrix ܯሶ  of size 6096×448×448. Before applying this input 
image matrix to YOLO, we also removed the brain skull 
by apply Brain Extraction Tool (BET) on input data [26]. 
The UK Biobank dataset, however, provides skull-
removed SWI series in for their dataset. Fig. 2 contains the 
examples of original image, binary mask, fused and brain-
extracted image. BET operation produces the output 
images ሶܰ  of size 6096×448×448. Corresponding to each 
image in ሶܰ  we have created a text file. These text files and 
BET output matrix ሶܰ  are given as the input to the YOLO. 

D. YOLO

YOLO is one of the more recent CNN deep learning
techniques which is specialized for object identification in 
images. It can identify areas of interest in images and 
characterize their classification. Many other CNNs can 
also (separately) perform the identification and 
classification tasks but at much higher computational cost. 
YOLO can simultaneously perform these two tasks in a 

single convolutional network as a regression problem and 
with outputs in form of bounding box and class perdition. 
Indeed, the region-based YOLO strategy has already been 
applied in medical images, such as detection of 
lymphocytes on pathological slides [27], identification of 
lung cancer on low-dose chest CT [28, 29] and 
characterization of breast abnormalities on 
mammograms [29] . An overview of YOLO working is 
given below [30]. 

(a) (b) (c) (d) 

Fig. 2. Mask results (left to right) (a) Original Image (b) Mask (c) Fused 
Image (d) Extracted Image. 

Mean square error can be computed after computing the 
loss function for YOLO. Loss function of training, 
predicting and target of bounding box is given below [30]: ܻ݋݈݋௟௢௦௦ = ௟௢௦௦݊݋݅ݐܽݖ݈݅ܽܿ݋ܮ + ௟௢௦௦݊݋݅ݐ݂ܽܿ݅݅ݏݏ݈ܽܥ+௟௢௦௦݂݁ܿ݊݁݀݅݊݋ܥ   

where ݊݋݅ݐܽݖ݈݅ܽܿ݋ܮ௟௢௦௦  is the error between target and 
predicted bounding box. ݊݋݅ݐܽݖ݈݅ܽܿ݋ܮ௟௢௦௦ coefficient can 
be calculated as: 

௟௢௦௦݊݋݅ݐܽݖ݈݅ܽܿ݋ܮ = ଵݏ ෍ ෍ ݈௔௕௢௕௝ሾ(ݔ௔ − ௔ሷݔ )ଶ + ௔ݕ) − ௔ሷݕ )ଶሿௗ
௕ୀ଴

௖మ
௔ୀ଴ +

ଵݏ ෍ ෍ ݈௔௕௢௕௝ ൥൫ඥݓ௔ − ඥݓ௔ሷ ൯ଶ + ቆඥℎ௔ − ටℎ௔ሷ ቇଶ൩ௗ
௕ୀ଴

௖మ
௔ୀ଴

where ݏଵ is the weight, ܿ belongs to grid cell and ݀ is the 
count of bounding box in each ܿ. (ݔ௔ −  ሷ௔) represent theݔ
center of ܿ and ݀, (ܹ, ℎ) express the width and height of ݀ in ܿ. (ݔሷ௔, ሷݓሷ௔) and ൫ݕ ௔, ℎሷ ௔൯ are the target’s center in ܿ. If 
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here is an object in ݀ in each ܿ then ݈௔௕௢௕௝ is 1 otherwise it 
is 0. ݂݁ܿ݊݁݀݅݊݋ܥ௟௢௦௦ is the confidence error, if the object is 
detected in ݀ bounding box of the ܥ ௟௢௦௦݂݁ܿ݊݁݀݅݊݋ܥ .  is 
calculated as under: 

ଶݏ ෍ ෍ ݈௔௕௢௕௝൫ܿ݊݋ ௔݂ − ݊݋ܿ ௔݂ሷ ൯ଶௗ
௕ୀ଴

௖మ
௔ୀ଴ + ଷݏ ෍ ෍ ݈௜௝௢௕௝൫ܿ݊݋ ௜݂ − ݊݋ܿ ప݂ሷ ൯ଶௗ

௝ୀ଴
௖మ

௜ୀ଴ݏଶ and ݏଷ are the weights for the confidence error. ܿ݊݋ ௔݂ 
express the confidence score of ݀  in ܿ ሷ݂݊݋ܿ . ௔  is the 
confidence score of target’s center in ܿ. if there is an object 
of ݀ in each ܿ, ݈௔௕௢௕௝ is 1 otherwise it is 0. 

The ݊݋݅ݐ݂ܽܿ݅݅ݏݏ݈ܽܥ௟௢௦௦  is the error between 
conditional probabilities of each class in the grid cell ܽ. It 
is defined in equation below: 

ସݏ ෍ ݈௔௢௕௝ ෍ ቀ ௔ܲ(α) − ௔ܲሷ (α)ቁଶ
஑∈classes

௖
௔ୀ଴

Here ݏସ, is the weight of Classification error, ௔ܲ(ߙ) and ሷܲ௔(ߙ) ) represents the probabilities of estimated and actual 
objects class in cell ܽ.  

In this study we used YOLO V2 with darknet-23 for the 
detection of the CMBs. Fig. 3 explains the basic 
architecture of YOLO V2. This V2 version of YOLO has 
better detection results and quick execution due to its high 
network resolution, multi-level training, anchor boxes and 
batch normalization. For YOLO V2 training, We have 

used batch size of 16. Momentum and learning rate are 0.9 
and 0.0005 respectively. 

Fig. 3. YOLO V2 architecture. 

We applied a two-step strategy: at first, we applied pre-
processed 2D image dataset to You Only Look Once 
(YOLO) for detection of CMBs. Then, these detected 
CMBs locations are used to segment 3D patches from their 
original SWI volume in the datasets. Next, these patches 
are used as inputs for CNN. 

Fig. 4. 3D CNN Architecture. 

E. 3D CNN

The proposed 3D CNN architecture is given in Fig. 4.
In 3D convolution layer, set of small kernels is convolved 

with the feature maps of previous layer. The 3D 
convolution layer can be formulated as below: 
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,ܽ)௜௟ݓ ܾ, ܿ) = ݂ ቌ෍ ෍ ܽ)௞௟ିଵݓ − ,ݔ ܾ − ,ݕ ܿ௫,௬,௭௞− ℎ௞௜௟(ݖ ,ݔ) ,ݕ (ݖ + ݀௜௟ቍ
Here, ݓ௞௟ିଵ  represents the ܭ௧௛  feature map of ݈ − 1௧௛ 

layer. ℎ௞௜௟  is 3D weights for ݓ௜௟  and ݓ௞௟ିଵ layers. ݀௜ 
denoted ݅௧௛ biased and ݂(. ) is the activation function. 

The activation function used in this model is is ܴܷ݁ܮ 
and it is defined as: 

ሷ(ݔ)݂ = ሷ(ݔ)ܷܮܴ݁ = ൜ݔ , ሷݔ ݂݅    > 00, ሷݔ ݂݅   < 0
In Eq. (7) the output ݓ௜௟(ܽ, ܾ, ܿ) represents the feature 

maps of the current convolution layer. Maximum polling 
of 2×2 is used for this study and it can be defined as under: ℎ௔௕௖,௞௟ = max൫ℎ௔ᇱ௕ᇱ௖ᇱ,௞ᇱ௟ିଵ ൯: ܽ ≤ ܽ′ < ܽ + ,ݓ ܾ ≤ ܾ′ < ܾ + ℎ, ܿ ≤ ܿ′ < ܿ + ݀
where, ℎ௔௕௖,௞௟  is the output of pooling layer ݈  at ܾܽܿ 
Position. ℎ௔ᇱ௕ᇱ௖ᇱ,௞ᇱ denotes the 3D cube at region ܽ′ܾ′ܿ′ in ݈ − 1௧௛ layer. Weight, height and depth of pooling layer 
are represents by ݓ, ℎ, ݀  respectively. Average pooling 
layer can be defined as given below: ℎ௔௕௖,௞௟ = ݓ1 × ℎ × ݀ ∑ℎ௔ᇱ௕ᇱ௖ᇱ௞ᇱ௟ିଵ ܽ ≤ ܽ′ < ܽ + ܾݓ ≤ ܾ′ < ܾ + ℎܿ ≤ ܿ′ < ܿ + ݀  

A flatten layer is used to convert the multidimensional 
input of previous layer into the one dimensional data. 
Optimizers are used to calculate and update the network 
parameters that affect model training and its output. The 
Adam optimizer have the advantages over other optimizers. 
It combines the characteristics of AdaGrad and RMSProp 
optimizer and has high efficiency, convenient 
implementation and its parameters are updated without 

gradient transformation. Therefore, for the 3D CNN model 
we used the Adam optimizer. Adam’s update steps are 
given bellow. To calculate the exponential moving average 
of the gradient and ଴ܶ is initialized to 0. ݃௧ = ∇ఏܬ(ߠ௧ିଵ), ௧ܶ = ଵߙ ௧ܶିଵ + (1 −  ଵ)݃௧ߙ

Then, calculate the exponential moving average of the 
square of the gradient; ݒ଴is initialized to 0. ݒ௧ = ௧ିଵݒଶߙ + (1 −  ଶ)݃௧ଶߙ

The deviation correction is performed on the gradient 
mean ௧ܶ and the gradient variance ݒ௧. ෠ܶ௧ = ௧ܶ(1 − ො௧ݒ (ଵ௧ߙ = ௧(1ݒ −  (ଶ௧ߙ

To update the parameters, the initial learning rate ߛ is 
multiplied by the ratio of the gradient mean to the square 
root of the gradient variance. 

௧߆ = ௧ିଵߠ − ∗ߛ ෠ܶ௧ඥݒො௧ + ߜ
In above equations, ߙଵ represents the exponential decay 

rate, which controls the weight assignment, usually taking 
a value close to 1, with a default of 0.9; ߙଶ represents the 
exponential decay rate, which weights the mean of the 
gradient squares, with a default of 0.99; ߜ = 10ି଻, which 
prevents the denominator from being 0. 

Detailed framework of proposed architecture is 
illustrated in Fig. 5. The five convolution and two max 
pooling layers are used. Convolution layers have kernels 
with size 3×3×3 and pooling layers are with kernels of size 
of 2×2. The dropout ratio used at this stage is 0.4. Whereas, 
the learning rate is 1×10ି଻ and batch size is 50. 

Fig. 5. 3D CNN layers detail. 
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IV. DATASETS

For this study, we utilized two publicly available 
datasets. The first dataset was from Gachon University Gil 
Medical Center (GUGMC) [17], and the second dataset 
was from UK Biobank [31] . 

A. Original Dataset

The MRIs in GUGMC dataset were obtained utilizing
3.0 T Verio and Skyra Siemens MRI scanners. It has a total 
of 179 patients, out of whom, 72 patients had 188 
microbleeds with an image matrix size of 512×448×72. 
The remaining 107 patients had 572 microbleeds and an 
image matrix of size 288×252×72. We also included 800 
patients from the multicentric UK Biobank  
dataset with an image matrix size of 
288×256×48 (https://www.ukbiobank.ac.uk/enable-your-
research/about-our-data/imaging-data). All of GUGMC 
dataset in addition to 100 patients from the UK Biobank 
were used to train the YOLO model for detection of CMBs. 

In FP reduction part, we used all the GUGMC data and 
700 patients from UK Biobank to train the 3D-CNN model. 
For the FP reduction, detected CMBs locations from 
YOLO were used to segment 16×16×16 patches from their 
respective images in the dataset. Thus, the size of input 
image for the 3D-CNN model was set as 16×16×16. Again 
augmentation operation were applied to these segmented 
patches. For every image, we artificially produced seven 
new sample images using the combination of 0º, 90º, 180º 
and 270º rotations and flipping transformations. Moreover, 
these rotations and flipping were across each axis. Thus, 
the resulting dataset contained twenty-two times more 
images than the original series. The remaining 100 patients 
from the UK Biobank were used for independent testing of 
the proposed models. 

B. Ground Truth Labeling

The ground truth labels for GUGMC dataset were
available online. For UK Biobank dataset, a 
neuroradiologist (SP)—with 11 years of experience in 
interpretation of brain MRIs – reviewed and generated the 
ground truth labeling for the presence of CMBs. The 
labeling of ground truth was performed as per international 
standards [32]. The diameter of CMB were set as ≤ 10 mm. 

C. Training and Testing

In order to determine the generalizability and reliability
of our proposed model, we applied K fold cross-validation, 
setting the value of K = 5. Both datasets were split into five 
folds separately, first fold of each dataset were used for 
validation while other four for training and testing purpose. 
The proposed research was performed on the clusters of 
Yale university, with 4 CPU per Node and 3 GPU of 
NVIDIA-SMI 450.80.02. The CMBs detection and their 
classification were performed by the Python programming 
language using keras and tensorflow. 

V. RESULT AND DISCUSSION

In this section, results of the proposed algorithms are 
presented. As we have discussed in literature review 

section that many studies have adopted two stages strategy 
for detection of CMBs due to large number of FP in single-
stage models. Our method performs well in both detection 
and FP reduction stages. At Stage 1, it has already 
achieved very low ܨ ௔ܲ௩௚  and 100% sensitivity even on 
large test dataset. All other method at Stage 1 neither could 
able to achieve as low ܨ ௔ܲ௩௚  and nor achieved as high 
sensitivity and they are missing the patients even in low 
test dataset. 

Although, at Stage 1 our model already has achieved the ܨ ௔ܲ௩௚ of 0.37 that other models not able to achieved even 
after two stages. The proposed model after utilization of a 
large dataset for training with appropriate prepossessing, 
augmentation and fine tuning of the deep learning model 
have provided higher sensitivity and accuracy as well as 
lower number of FPs. 

A. Evaluation Metrics

The proposed method is evaluated in terms of True
Positive (TP) , False Positive (FP)  patients, specificity, 
precision, sensitivity, and False Positive average ൫ܨ ௔ܲ௩௚൯. 

In medical image classification, a False Positive (FP) is 
the incorrect classification of subjects, i.e., the model 
predicts the presence of disease while in reality the subject 
is disease-negative. On the other hand, a False Negative 
(FN) is the incorrect classification of subjects where a test 
result incorrectly indicates the absence of a disease. A TP 
is the correct classification of positive subjects, whereas a 
true negative is the correct classification of negative 
subjects. Specificity is the most commonly used 
assessment measure, and it represents all the negative 
cases with TN or FP. ܵݕݐ݂݅ܿ݅݅ܿ݁݌ = ܲܨܰܶ + ܶܰ

Precision or Positive Predicated Value (PPV) is defined 
as the number of correctly detected positive cases over all 
detected positive cases. 

ܸܲܲ = ܲܨܲܶ + ܶܲ
Sensitivity is defined as the proportion of the detected 

positive cases over the actual positive cases, including only 
disease-positive subjects. 

ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ = ܰܨܲܶ + ܶܲ
Accuracy (Acu) is sum of the total number of true 

values in test dataset and is defined as below: 

ݕܿܽݎݑܿܿܣ = ܶܲ + ܶܰܶܲ + ܶܰ + ܲܨ + ܰܨ
The False Positive Average ൫ܨ ௔ܲ௩௚൯ is number of false 

positive per subject and is defined as: ܨ ௔ܲ௩௚ = ܭܲܨ
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where ܭ  represents the number of subjects in testing 
dataset. 

The Matthews Correlation Coefficient (ܥܥܯ) is used in 
machine learning as a measure of binary classifications. 
The coefficient takes into account all the true and false 
values either they are positives or negatives and is regarded 
as a balanced measure which can be used even if the 
classes are of very different sizes. It returns a value 
between −1 and +1. 

ܥܥܯ = ܶܲ × ܶܰ − ܲܨ × ܲܶ)ඥܰܨ + ܲܶ)(ܲܨ + ܰܶ)(ܰܨ + ܰܶ)(ܲܨ + (ܰܨ
B. Detection of CMBs

First, we trained the model using the GUGMC dataset.
This dataset had the 762 CMBs therefore, we gave notation 
to our trained model as ଻ܶ଺ଶ. Fig. 6 presents the detection 
results, including (a) the ground truth labels, (b) the 
predicted labels, (c) the correctly identified instances (true 
positives), (d) the incorrectly identified instances (false 
positives), and (e) the missed detections (false negatives). 
Table I represents the results of this experiment on 
validation dataset. With Confidence Score (CS) of 0.5, out 
of 14 patients 12 of them are detected successfully and 2 
patients are detected as FN, the number of FP are 62. Then 
we evaluated the results with CS of 0.6, where we could 
only identify 5 patients as TP. There are 9 FN, while 14 
are detected as FPs. Given the number of FPs, we trained 
the model with another 100 patients from UK Biobank. 
These 100 patients had 102 CMBs so we denoted the 
model as ଼ܶ ଺ସ. Again, applying 5-fold cross validation to 
add additional data in each fold. 

Table II describes the results on validation dataset, with 
0.5 and 0.6 CS. Here, all 20 patients with CMBs are 
detected correctly and 37 patients are detected as FP, with 
sensitivity, specificity, and accuracy of 1, 0.65 and 0.71, 
respectively. Similarly, with CS of 0.6, model detected 11 
patients as TP. There are 15 FP but number of FN 
increased up to 9. 

Thus, the results of the ଼ܶ ଺ସ model with SC 0.5 were 
most promising: no FN, and reduced FP rate of 37 in 
validation dataset. To further improve our model, we 
trained our model with another set of 100 patients from the 
UK Biobank. These additional patients had 24 CMBs so 
we denoted the model as ଼ܶ ଼଼ . Again, applying 5-fold 
cross validation, Table III summarizes the results of the 
model on validation dataset, with 0.5 and 0.6 CS. Model ଼ܶ ଼଼  successfully detected all patients with CMBs. 
However, there was an increase in the FP rate. In this 
model, the CS of 0.6 led to a high rate of FN as well. 

As per results summarized in Tables I–III, ଼ܶ ଺ସ with CS 
of 0.5 appeared to have the optimal predictions among all 

models. In Table IV, we present the prediction results in 5 
test fold in cross-validation of model ଼ܶ ଺ସ with 0.5 of CS. 
In all folds, the models achieved high sensitivity but with 
high FP rate. 

Fig. 6. Detection Results (a) True Labels; (b) Predicted Labels; (c) True 
Positives; (d) False Positives; (e) False Negatives. 

Then, we tested our models on an isolated cohort of 100 
patients (Table V). Model ଻ܶ଺ଶ detects 12 TP with 2 FN, 
while there are 24 TN and 62 FP. Model ଼ܶ ଺ସ had better 
performance, as there is no FN and FP rate is reduced to 
37. Model ଼ܶ ଼଼, however, only identified 1 TN but with 54
FP.

We also tested our model, applying CS of 0.55, on an 
isolated cohort of 100 patients (Table VI). Out of 14 
patients with CMBs, model ଻ܶ଺ଶ detects 8 TP with 36 FP. 
Again, model ଼ܶ ଺ସ had better performance, but still with 3 
FN and 25 FP. Model ଼ܶ ଼଼ achieved almost same results 
as ଼ܶ ଺ସ but with 37 FP. 

Table VII summarizes the results of CMB detection 
applying CS of 0.6 in different models on the 100-patient 
test dataset. For CMB detection, applying a CS of 0.6 
reduced the sensitivity of all models, while increasing their 
specificity (mostly as a result of the drop in number of FP 
subjects). With CS of 0.6, low TP rate was the major issue 
for performance of all models, with model ଼ܶ ଺ସ  again 
outperforming others. 

TABLE I. DETECTION of CMBS WITH ଻ܶ଺ଶ ON VALIDATION DATASET 

Trained CMBs Conf score = 0.5 Conf score = 0.6 ࢀૠ૟૛ 
TP FN FP TP FN FP
12 2 62 5 9 14
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TABLE II. DETECTION OF CMBS WITH ଼ܶ ଺ସ ON VALIDATION DATASET 

Trained CMBs Conf score = 0.5 Conf score = 0.6 ଼ܶ ଺ସ 
TP FN FP Sen Spe Acu TP FN FP Sen Sep Acu 
20 0 37 1 0.65 0.71 11 9 15 0.55 0.83 0.77 

TABLE III. DETECTION OF CMBS WITH ଼ܶ ଼଼ ON VALIDATION DATASET 

Trained CMBs Conf score = 0.5 Conf score = 0.6 ࢀૡૡૡ 
TP FN FP TP FN FP
11 0 54 8 6 17

TABLE IV. FOLD TEST OF MODEL  ଼ܶ ଺ସ WITH CONF SCORE = 0.5 

FOLD TP FN FP TN Sen Spe Acu
Fold 1 11 2 32 61 0.84 0.65 0.67 
Fold 2 20 0 37 71 1 0.65 0.71 
Fold 3 12 2 37 70 0.85 0.64 0.66 
Fold 4 17 0 39 47 1 0.54 0.62 
Fold 5 15 1 28 55 0.93 0.66 0.7

TABLE V. DETECTION OF CMBS WITH CONFIDENCE SCORE = 0.5 ON 100 PATIENTS 

Trained CMBs TP FN FP TN Sen Spe Acu ଻ܶ଺ଶ 12 2 62 24 0.85 0.27 0.36଼ܶ ଺ସ 14 0 37 49 1 0.56 0.63଼ܶ ଼଼ 13 1 54 32 0.92 0.37 0.45

TABLE VI. DETECTION OF CMBS WITH CONFIDENCE SCORE = 0.55 ON 100 PATIENTS 

Trained CMBs TP FN FP TN Sen Spe Acu ࢀૠ૟૛ 8 6 36 50 0.57 0.58 ૡ૟૝ 11ࢀ0.58 3 25 61 0.78 0.7 ૡૡૡ 11ࢀ0.72 3 37 49 0.78 0.56 0.6

TABLE VII.  DETECTION OF CMBS WITH CONFIDENCE SCORE = 0.6 ON 100 PATIENTS 

Trained CMBs TP FN FP TN Sen Spe Acu ࢀૠ૟૛ 6 8 14 72 0.42 0.83 ૡ૟૝ 10ࢀ0.78 4 12 74 0.71 0.86 ૡૡૡ 8ࢀ0.84 6 17 69 0.57 0.8 0.77

C. False Positive Reduction

As depicted in Tables I–VII, all models had relatively
high rate of ܲܨ in their predictions. To mitigate the high ܲܨ  rate, we devised a 3D CNN model to improve the 
classification accuracy. 

Table VIII depicts the prediction results from applying 
3D CNN on output of YOLO-based models with CS of 0.5. 
Here, the output of each model ( ଻ܶ଺ଶ, ଼ܶ ଺ସ and ଼ܶ ଼଼ ) was 
separately given as input to 3D CNN model for binary 
classification. Model ଻ܶ଺ଶ predicted 8 TP and 45 TN, it has 
sensitivity of 0.57 and ܨ ௔ܲ௩௚ dropped to 0.41. Model ଼ܶ ଼଼ 
predicted 11 TP and 54 TN, it has sensitivity of 0.78 and ܨ ௔ܲ௩௚  reduced to 0.32. Model ଼ܶ ଺ସ  produced the best 

result with 11 TP and 70 TN. There are 3 FN, with ܨ ௔ܲ௩௚ 
reduced to 0.16. The model achieved an accuracy of 0.81 
with sensitivity and specified of 0.78 and 0.81, 
respectively. 

We also tested the results of model after applying CS of 
0.55 in YOLO prediction models. Table IX shows that 3D 
CNN could reduce the FP rate in output of YOLO-based 
models using CS of 0.55. Model ଻ܶ଺ଶ predicted 6 TP and 
64 TN, with sensitivity of 0.42 and ܨ ௔ܲ௩௚ of 0.22. Model ଼ܶ ଺ସ predicted 8 TP and 73 TN, achieving specificity of 
0.84 with ܨ ௔ܲ௩௚ reduced to 0.13. However, there is a drop 
in sensitivity to 0.57. Similarly, the 2nd step 3D CNN 
reduced the ܨ ௔ܲ௩௚ to 0.18 for model ଼ܶ ଼଼ output, but with 
a concomitant drop in sensitivity to 0.64. 

TABLE VIII. REDUCTION OF FALSE POSITIVE CMBS WITH 3D CNN, CONFIDENCE SCORE = 0.5 ON 100 PATIENTS 

Trained CMBs TP FN TN Sen Spe MCC Acu ࢀ ࢍ࢜ࢇࡼࡲૠ૟૛ 8 6 45 0.57 0.52 0.06 0.53 ૡ૟૝ 11ࢀ0.41 3 70 0.78 0.81 0.46 0.81 ૡૡૡ 11ࢀ0.16 3 54 0.78 0.62 0.28 0.65 0.32

TABLE IX. REDUCTION OF FALSE POSITIVE CMBS WITH 3D CNN, CONFIDENCE SCORE = 0.55 ON 100 PATIENTS 

Trained CMBs TP FN TN Sen Spe MCC Acu ࢀ ࢍ࢜ࢇࡼࡲૠ૟૛ 6 8 64 0.42 0.74 0.13 0.7 ૡ૟૝ 8ࢀ0.22 6 73 0.57 0.84 0.35 0.81 ૡૡૡ 9ࢀ0.13 5 68 0.64 0.79 0.33 0.77 0.18
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TABLE X. REDUCTION OF FALSE POSITIVE CMBS WITH 3D CNN, CONFIDENCE SCORE = 0.6 ON 100 PATIENTS 

Trained CMBs TP FN TN Sen Spe MCC Acu ࢀ ࢍ࢜ࢇࡼࡲૠ૟૛ 4 10 80 0.28 0.93 0.24 0.84 ૡ૟૝ 8ࢀ0.06 6 78 0.57 0.9 0.34 0.86 ૡૡૡ 7ࢀ0.08 7 78 0.5 0.9 0.39 0.85 0.08

TABLE XI. 5 FOLD TEST OF OUR MODEL FOR FALSE POSITIVE REDUCTION TRAINED ON 700, CONF SCORE = 0.5 

FOLD TP FN FP TN Sen Spe Acu
Fold 1 13 2 16 69 0.86 0.81 0.82
Fold 2 18 2 9 71 0.9 0.88 0.89
Fold 3 11 0 12 77 1 0.86 0.88
Fold 4 6 2 4 88 0.75 0.95 0.94
Fold 5 5 2 4 89 0.71 0.95 0.94

TABLE XII. COMPARISON OF EXISTING TECHNIQUES WITH OUR PROPOSED METHOD 

Method Total/Test Patients Sensitivity Precision ࢍ࢜ࢇࡼࡲ 

2D-ResNet-50 [13] 10/- 95.71 99.18 3.4 

1st stage: 3D-FRST [14] 179/41 99.4 - 276.8 

2nd stage: 3D-ResNet 95.24 70.9 1.6

1st stage: 2D-FRST [15] 61/12 86.5 - 231.88 

2nd stage: 3D-ResNet 94.69 71.98 11.58 

2D-DenseNet [16] 20/- 97.78 97.65 11.8

1st stage: YOLO [17] 151/37 93.62 - 52.18 

2nd stage: 3D-CNN 94.32 61.94 1.42 

1st stage: 3D-FCN [33] 106/20 98.29 - 282.8 

2nd stage: 3D-CNN 93.16 44.31 2.74 

Proposed 1st stage: Yolo V2 with ଼ܶ ଺ସ 279/100 1 - 0.37

Proposed 2nd stage: 3D-CNN CNN with ଼ܶ ଺ସ 879/100 78.57 40.7 0.16

Table X shows the results from reduction of FP rate 
after applying 3D CNN on output of YOLO-based models 
with 0.6 CS threshold. All models achieved >0.8 accuracy 
and reduced the ܨ ௔ܲ௩௚ to <0.1; however, there is a drop in 
prediction sensitivity. Models ଻ܶ଺ଶ , ଼ܶ ଺ସ  and ଼ܶ ଼଼ 
achieved sensitivity of 0.28, 0.57, and 0.50 respectively. 

In summary, model ଼ܶ ଺ସ  with CS of 0.5 had the best 
performance after 3D CNN reduction of FP subjects. In 
Table XI, we present the results of 5 fold test for false 
positive reduction in model ଼ܶ ଺ସ. The proposed model was 
trained on 700 patients dataset. All the CMBs were split 
into 5 folds. Each time 4 folds were used as training, while 
5th fold was used for the validation only. In all 5 fold, 
model has performed achieved >0.7 sensitivity, >0.8 
specificity, and >0.8 Accuracy with lower FP rate 
compared to the first-step YOLO-based models. Table XII 
shows the comparison of existing state of art techniques 
with our proposed method. Our proposed model 
outperforms the existing techniques, as it has tested on 
large dataset and able to reduces the ܨ ௔ܲ௩௚  to the 
significant level. 

VI. DISCUSSION

This study proposes a new two-step model for 
automated detection of CMBs, that is highly generalizable 
and outperformes previously reported models in terms of 
sensitivity, accuracy and ܨ ௔ܲ௩௚. The accurate detection of 
CMBs is of interest for a plethora of different diseases. The 
prior research indicates a role of CMBs as diagnostic and 

prognostic markers for cerebrovascular disease [34]. 
While CMBs are also found in healthy populations, where 
prevalence rises strongly with increasing age, they can also 
be indicative of an underlying small vessel disease [35]. 
The spatial distribution of the CMBs tends to differ 
between different causes of small vessel disease, with 
cerebral amyloid angiopathy most frequently causing lobar 
CMBs, while classic cerebrovascular risk factors such as 
hypertension tend to cause deep CMBs [36]. Lobar CMBs 
were shown to have a high positive predictive value for 
cerebral amyloid angiopathy, even in patients without 
manifest Lobar Intracerebral Hemorrhage (ICH) [37]. This 
suggests that, given correct detection and localization, 
CMBs could helpful to infer the nature of a present small 
vessel disease. The overall presence and location of CMBs 
can also be used as a marker of cerebrovascular risk. The 
risk of ischemic stroke as well as ICH is increased in 
stroke-free individuals given the presence of CMBs [38]. 
CMBs can also play a role when predicting the risk of 
repeated hemorrhage in patients that initially present with 
a hemorrhagic stroke [39].  

The role of CMBs in cognitive impairment and 
dementia have also been subject of interest over the past 
two decades. While the exact causality between loss of 
cognition and presence of CMBs has not been fully 
understood yet, two (non-exclusive) hypothesis are 
commonly discussed: CMBs could have a direct effect 
onto cognition by disrupting the cerebral network [40], or 
they could be a manifestation of the underlying brain 
pathology, which in turn causes the deficits. The 
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Rotterdam study found an association between presence of 
microbleeds and decreased cognitive function in patients 
without dementia, even after adjustment for vascular risk 
factors and other imaging markers of small vessel disease. 
Future research on the clinical significance of CMBs as 
marker of cerebrovascular risk, Alzheimer disease and 
other areas of interest would greatly benefit from a more 
sensitive and accurate detection of CMBs. 

In this study, we perform different pre-possessing 
operations, including image enhancement using COLFIT 
filter is used to enhance the Region of Interest (ROI), 
image normalization is used to increase the consistency 
among the input intensities. Moreover, skull stripping is a 
major phase in MRI brain imaging applications and it 
refers to the removal of the brain’s noncerebral tissues. 
The main problem in skull-stripping is the segmentation of 
the non-cerebral and the intracranial tissues due to their 
homogeneity intensities. In this study, Skull removal was 
accurately perform using BET. To avoid the over fitting 
during training due to the model complexity, we used data 
augmentation. We artificially creates new sample images 
by applying transformations such as flipping, rotation and 
other operations to the actual data sample. For CMBs 
detection we have used YOLO model, finding an optimal 
model for detection is a challenging problem as the 
function may have multiple parameters inputs need to be 
tuned. After several hours long training’s and extensive 
experimental trial optimal selection of model is made. Our 
proposed model achieved outstanding results at 1st stage. 
Similarly, for FP reduction a 3D CNN model is proposed, 
again due to optimal model, architecture layers selection 
and fine tuning of parameters enable our proposed model 
to achieved the lowest ܨ ௔ܲ௩௚  rate as compare to other 
existing models. For medical applications, another main 
hurdle is creating generalize deep learning models. This is 
due to the relatively small size of samples available for 
training and validation. To generalize the results we have 
used the largest dataset for training and validation for an 
automated CMB detection model. 

VII. CONCLUSION

New generation of MRI scanners and sequences 
facilitate depiction of tiny CMBs particularly on SWI 
series. While CMBs are implicated in several neurological 
disorders, their identification and reporting in routine 
clinical practice impose a tedious process for radiologists 
and is prone to human errors. In this study, we proposed a 
two-step automated detection algorithm for localization 
and classification of CMBs. In the first step, we localized 
CMBs using YOLO V2, which achieved high sensitivity 
but with relatively high FP rate. Then we used the output 
of YOLO-based model as an input for a 3D CNN for 
further improving the classification accuracy and reducing 
the FP rates. After the FP reduction stage, our proposed 
model FP rate dropped to 0.16 with 0.81 accuracy, 0.81 
specificity, and 0.78 sensitivity. The proposed algorithm 
can be used for automated detection of CMBs in imaging 
mega-data to investigate the neurobiological consequences 
of CMBs in different disease entities. 
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