
Leveraging ImageNet’s Hierarchical Structure for 

Enhanced Image Classification and Retrieval   

Luis E. Muñoz Guerrero 1, Yony F. Ceballos 2, and Luis D. Trejos Rojas 1,* 

1 Facultad de Ingenierías, Universidad Tecnológica de Pereira, Pereira, Colombia 
2  Facultad de Ingeniería, Grupo de Ingeniería y Sociedad, Universidad de Antioquia, Medellín, Colombia 

Email: lemunozg@utp.edu.co (L.E.M.G.); yony.ceballos@udea.edu.co (Y.F.C.); luis.trejos@utp.edu.co (L.D.T.R.) 

*Corresponding author

Abstract—The ImageNet dataset, which features a 

hierarchical structure based on the WordNet ontology, has 

been widely used for training and evaluating image 

classification models. However, researchers have not fully 

explored the potential benefits of leveraging this hierarchical 

structure for both image classification and retrieval tasks. 

This paper examines how incorporating hierarchical 

relationships between object categories during model 

training and inference can enhance image classification 

accuracy and retrieval performance. We propose a novel 

approach that integrates a hierarchical loss function and 

inference strategy to capture and utilize the semantic 

relationships encoded in the ImageNet hierarchy. Our 

method demonstrates improved classification accuracy 

compared to baseline models trained on a flattened version of 

ImageNet, highlighting the importance of hierarchical 

structure in the learning process. We show particular 

improvements for classes with limited training data, 

achieving accuracy increases of up to 3.2% for classes with 

fewer than 1000 samples. Additionally, we demonstrate how 

the hierarchical structure can be leveraged for efficient and 

semantically meaningful image retrieval. By utilizing the 

semantic relationships between categories, our approach 

enables more accurate and relevant retrieval results. The 

proposed techniques advance image classification and 

retrieval systems by harnessing the rich semantic 

information encoded in hierarchically structured datasets 

like ImageNet. Our findings emphasize the significance of 

incorporating hierarchical knowledge in visual recognition 

tasks while highlighting the trade-offs between semantic 

relevance and visual distinctiveness. This research paves the 

way for more effective and interpretable image classification 

and retrieval methods, particularly in scenarios with limited 

training data.   

Keywords—image classification, image retrieval, ImageNet, 

hierarchical structure, limited training data 

I. INTRODUCTION

Image classification and retrieval are fundamental tasks 

in computer vision, with applications ranging from visual 

search engines to content-based recommendation systems. 

The availability of large-scale datasets like 

ImageNet [1], with its hierarchical organization of object 
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categories based on the WordNet ontology [2], has been 

instrumental in advancing the state of the art in these areas. 

While many image classification models treat object 

categories in ImageNet as independent and unrelated, the 

dataset’s hierarchical structure encodes valuable semantic 

relationships between categories. Exploiting these 

relationships has the potential to improve classification 

accuracy and enable more semantically meaningful image 

retrieval. 

In this paper, we propose an approach to leverage 

ImageNet’s hierarchical structure for enhanced image 

classification and retrieval. Our method incorporates the 

hierarchical relationships between object categories during 

model training and inference, allowing the model to 

capture and exploit the semantic similarities and 

differences among categories. 

The main contributions of this work are as follows: 

(1) We propose a hierarchical loss function that

considers the relationships between object

categories during model training, encouraging the

model to learn more semantically meaningful

representations.

(2) We develop a hierarchical inference strategy that

leverages the learned relationships to improve

classification accuracy, especially for categories

with limited training data.

(3) We demonstrate how the hierarchical structure can

be utilized for efficient and semantically relevant

image retrieval, enabling users to navigate and

explore image collections based on semantic

relationships.

(4) We conduct extensive experiments on the

ImageNet dataset, showcasing the effectiveness of

our approach in improving both classification

accuracy and retrieval performance compared to

baseline models.

The remainder of this paper is organized as follows: 

Section II reviews related work on image classification, 

image retrieval, and leveraging hierarchical structures in 

visual recognition tasks. Section III describes our proposed 

methodology, including the hierarchical loss function, 

inference strategy, and image retrieval approach. 
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Section IV presents the experimental setup, results, and 

analysis. Section V discusses the implications of our 

findings, limitations, and future research directions. 

Finally, Section VI concludes the paper. 

Fig. 1 depicts a simplified representation of ImageNet’s 

hierarchical structure, which is based on the WordNet 

ontology. The diagram illustrates how object categories in 

ImageNet are organized in a tree-like structure, with 

general categories at the top (e.g., “Vehicle”, “Animal”, 

“Plant”, “Furniture”) and increasingly specific 

subcategories branching downward. 

Fig. 1. Visualization of ImageNet’s hierarchical structure. 

For example, the “Animal” category is further divided 

into “Reptile”, “Bird”, “Mammal”, and “Fish”, with 

“Mammal” being further refined into “Canine”, “Feline”, 

“Primate”, and “Rodent”. This hierarchical organization 

encodes semantic relationships between categories, which 

our proposed approach leverages to improve both 

classification accuracy and retrieval relevance. 

II. RELATED WORK

A. Image Classification

Image classification has been a fundamental challenge

in computer vision, with the primary goal of assigning 

predefined class labels to input images. The development 

of deep Convolutional Neural Networks (CNNs) has 

revolutionized the field, achieving remarkable 

performance on large-scale datasets like ImageNet [1]. 

Seminal works such as AlexNet [3], VGGNet [4], and 

ResNet [5] have progressively advanced the state-of-the-

art in image classification. 

Recent advances in image classification have focused 

on improving the efficiency and scalability of deep 

learning models. Architectures such as MobileNet [6], 

ShuffleNet [7], and EfficientNet [8] have been designed to 

achieve high accuracy while reducing computational 

complexity and memory requirements. These lightweight 

models enable image classification on resource-

constrained devices and facilitate the deployment of 

computer vision applications in real-world scenarios. 

B. Image Retrieval

Image retrieval seeks to identify visually similar or

semantically related images to a given query image within 

a large database. Traditional approaches to image retrieval 

relied on hand-crafted features such as Scale-Invariant 

Feature Transform (SIFT) [9] and Speeded-Up Robust 

Features (SURF) [10] to represent images and measure 

their similarity. 

With the advent of deep learning, learned feature 

representations have become the predominant approach 

for image retrieval. Deep learning-based image retrieval 

methods typically involve training a CNN to extract 

discriminative features from images and using these 

features to compute similarity scores between query and 

database images. Siamese networks [11] and triplet 

networks [12] have been widely adopted to learn 

embeddings that bring similar images closer in the feature 

space while separating dissimilar images. These learned 

embeddings enable efficient and accurate retrieval of 

visually similar images. 

Beyond visual similarity, semantic similarity has gained 

significant attention in image retrieval research. Semantic 

image retrieval aims to identify images that are 

semantically related to the query, even when they lack 

visual similarity. Techniques such as cross-modal 

retrieval [13] and zero-shot learning [14] have been 

developed to bridge the semantic gap between visual 

features and textual descriptions, enabling retrieval based 

on semantic concepts. 

C. Hierarchical Structures in Visual Recognition

Numerous studies have investigated the use of

hierarchical structures in visual recognition tasks. 

Deng et al. [15] proposed a hierarchical classification 

approach that leverages the semantic relationships 

between object categories in ImageNet. Their work 

demonstrated improved classification accuracy by 

exploiting the hierarchical structure during model training 

and inference, though it primarily focused on classification 

without exploring potential benefits for image retrieval. 

Yan et al. [16] introduced a Hierarchical Deep 

Convolutional Neural Network (HD-CNN) architecture 

that learns feature representations at multiple levels of the 

ImageNet hierarchy. By incorporating hierarchical 

information during training, their model achieved state-of-

the-art performance on various image classification 

benchmarks. While their work demonstrated the 

effectiveness of hierarchical representations, it did not 

explicitly address image retrieval tasks. 

In the context of image retrieval, several approaches 

have utilized semantic relationships to enhance retrieval 

performance. Wang et al. [17] proposed a semantic-based 

image retrieval system that combines low-level visual 

features with high-level semantic concepts. By 

incorporating semantic relationships between concepts, 

their system achieved superior retrieval accuracy 

compared to traditional content-based methods. 

Pandey et al. [18] developed a hierarchical image 

retrieval framework that leverages the hierarchical 

structure of semantic concepts. Their approach involves 

constructing a concept ontology based on semantic 

relationships between concepts and using this ontology to 

guide the retrieval process. While their work demonstrates 

the benefits of hierarchical structures for image retrieval, 
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it relies on an externally constructed ontology rather than 

utilizing the inherent hierarchy of datasets like ImageNet. 

TABLE I. COMPARISON OF RELATED WORK ON HIERARCHICAL 

STRUCTURES IN VISUAL RECOGNITION TASKS 

Study Task Dataset Hierarchical Approach 

Deng et al. 

[15] 

Image 

Classification 
ImageNet 

Hierarchical classification 

using semantic 

relationships 

Yan et al. 

[16] 

Image 

Classification 
ImageNet 

Hierarchical Deep 

Convolutional Neural 

Network (HD-CNN) 

Wang et al. 

[17] 
Image Retrieval Custom 

Semantic-based retrieval 

using concept relationships 

Pandey et 

al. [18] 
Image Retrieval Custom 

Hierarchical retrieval using 

concept ontology 

Proposed 

Approach 

Image 

Classification & 

Retrieval 

ImageNet 
Hierarchical loss function 

and inference strategy 

Table I presents a comparison of related work on 

hierarchical structures in visual recognition tasks, 

including our proposed approach. The table summarizes 

key studies in the field, highlighting their specific tasks 

(image classification and/or retrieval), datasets used, and 

hierarchical approaches employed. 

This comparison demonstrates how our proposed 

method builds upon and extends previous work by 

combining both image classification and retrieval tasks 

while leveraging ImageNet’s hierarchical structure 

through a novel loss function and inference strategy. 

Our proposed approach extends these previous works by 

leveraging the inherent hierarchical structure of ImageNet 

for both image classification and retrieval tasks. By 

incorporating hierarchical relationships during model 

training and inference, we aim to achieve improved 

classification accuracy while enabling semantically 

meaningful image retrieval. 

III. METHODOLOGY

A. Hierarchical Loss Function

To leverage the hierarchical structure of ImageNet

during model training, we propose a hierarchical loss 

function that considers the relationships between object 

categories. Let 𝐶  denote the set of object categories in 

ImageNet, where 𝑁  represents the total number of 

categories: 

𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑁} (1) 

We can understand better our hierarchical loss 

computation approach, Fig. 2 presents a visualization of 

the framework, it illustrates how different components 

interact to create a loss function that effectively leverages 

ImageNet’s structure. The process incorporates both 

standard classification metrics and semantic relationships 

between categories. 

Fig. 2. Overview of the hierarchical loss computation process. 

The framework processes input images through two 

parallel paths: standard classification loss computation and 

hierarchical relationship assessment. The standard 

classification path focuses on direct category predictions 

using cross-entropy loss, while the relationship path 

incorporates semantic distances between categories 

through weighted connections. These components are then 

combined with a balance parameter λ to create the final 

hierarchical loss function 𝐿𝐻, which is defined as:

𝐿𝐻 = ∑ 𝐿(𝑐𝑖)
𝑁
𝑖=1 + λ ∑ ∑ ω𝑖𝑗𝐿(𝑐𝑖 , 𝑐𝑗)𝑁

𝑗=1
𝑁
𝑖=1 (2) 

Here, 𝐿(𝑐𝑖) represents the standard classification loss

(e.g., cross-entropy loss) for category 𝑐𝑖 , while 𝐿(𝑐𝑖 , 𝑐𝑗)

denotes a pairwise loss that captures the relationship 

between categories 𝑐𝑖  and 𝑐𝑗 . The term 𝜔𝑖𝑗  represents a

weight that reflects the strength of the relationship between 

𝑐𝑖  and 𝑐𝑗  based on their positions in the ImageNet

hierarchy. Additionally, 𝜆 serves as a hyperparameter that 

controls the balance between classification loss and 

pairwise relationship loss. 

The standard classification loss 𝐿(𝑐𝑖)  is typically

expressed as the cross-entropy loss: 

𝐿(𝑐𝑖) = − ∑ 𝑦𝑘
𝑁
𝑘=1 log(𝑦�̂�) (3) 

where 𝑦𝑘 represents the true label (1 if 𝑘 = 𝑖, 0 otherwise)

and 𝑦�̂� denotes the predicted probability for class 𝑘. 

The pairwise loss 𝐿(𝑐𝑖 , 𝑐𝑗) is designed to encourage the

model to learn similar representations for semantically 

related categories while learning dissimilar representations 

for unrelated categories: 

𝐿(𝑐𝑖 , 𝑐𝑗) = {
𝑑 (𝑓(𝑐𝑖), 𝑓(𝑐𝑗)) ,    if 𝐶𝑖  𝑎𝑛𝑑 𝐶𝑗  are related

max (0, 𝑚 − 𝑑 (𝑓(𝑐𝑖), 𝑓(𝑐𝑗))) ,  otherwise
(4) 
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In this formulation, 𝑓(𝑐𝑖)  and 𝑓(𝑐𝑗)  represent the 

learned feature representations for categories 𝑐𝑖  and 𝑐𝑗 , 

respectively. 

The function 𝑑(·,·)  represents a distance function, 

typically the Euclidean distance, and 𝑚  is a margin 

hyperparameter. The Euclidean distance between feature 

representations is calculated as: 

 𝑑 (𝑓(𝑐𝑖), 𝑓(𝑐𝑗)) = √∑ (𝑓𝑘(𝑐𝑖) − 𝑓𝑘(𝑐𝑗))
2

𝐷
𝑘=1  (5) 

where 𝐷  represents the dimensionality of the feature 

representations. The weights 𝜔𝑖𝑗  in the hierarchical loss 

function are computed based on the shortest path distance 

between categories 𝑐𝑖 and 𝑐𝑗 in the ImageNet hierarchy: 

 ω𝑖𝑗 =
𝑒

−α⋅path_distance(𝑐𝑖,𝑐𝑗)

∑ 𝑒−α⋅path_distance(𝑐𝑖,𝑐𝑘)𝑁
𝑘=1

 (6) 

Here, 𝛼  serves as a scaling factor controlling the 

sensitivity to hierarchical distance. Categories that are 

closer in the hierarchy (i.e., those with a shorter path 

distance) are assigned higher weights, indicating a stronger 

relationship. The weights are normalized to sum to 1 for 

each category. 

The hyperparameters 𝜆, 𝑚, and 𝛼 serve crucial roles in 

the behavior of the loss function. The parameter 𝜆 controls 

the relative importance of the pairwise relationships 

compared to the standard classification loss, with higher 

values placing greater emphasis on the hierarchical 

structure. 

The margin 𝑚 establishes the threshold for dissimilar 

categories, where a larger 𝑚 enforces stricter separation 

between unrelated categories in the feature space. Finally, 

𝛼  determines how quickly the weights decay with 

increasing hierarchical distance, with higher values 

resulting in a sharper focus on closely related categories. 

By incorporating this hierarchical loss function during 

training, the model learns feature representations that 

better capture the semantic relationships between object 

categories. This enables the model to more effectively 

distinguish between visually similar but semantically 

different categories and to generalize to unseen categories 

based on their semantic relationships. 

Fig. 3 illustrates the hierarchical loss function 

implemented in our approach. The equation at the top 

represents the total loss 𝐿𝐻 , which combines individual 

category losses 𝐿(𝑐𝑖)  and pairwise losses 𝐿(𝑐𝑖 ,  𝑐𝑗) 

weighted by 𝑤𝑖𝑗 . The diagram below demonstrates how 

this loss function operates on a simplified hierarchical 

structure. 

The visualization shows how the loss is computed not 

only for individual categories (e.g., “Dog”, “Bird”, “Cat”) 

but also accounts for the relationships between these 

categories and their parent node (“Animal”). This structure 

enables the model to learn both specific category features 

and broader semantic relationships, enhancing its ability to 

classify images accurately within the hierarchical 

framework of ImageNet. 

 

Fig. 3. Visualization of the hierarchical loss function. 

B. Hierarchical Inference Strategy 

During inference, we propose a hierarchical strategy 

that leverages learned relationships between object 

categories to improve classification accuracy. This 

approach complements the hierarchical loss function by 

exploiting semantic structure during the prediction phase. 

For an input image, the model first predicts probabilities 

for each object category using the standard classification 

head. Let 𝑝 denote the predicted probability vector: 

 𝑝 = [𝑝1, 𝑝2, ⋯ , 𝑝𝑁] (7) 

where 𝑝𝑖  represents the initial probability of the image 

belonging to category 𝐶𝑖 , and 𝑁  is the total number of 

categories. We then refine these probabilities by 

considering hierarchical relationships between categories. 

For each category 𝐶𝑖, we compute a hierarchical score 𝑠𝑖 

that incorporates probabilities of related categories: 

 𝑠𝑖 = 𝑝𝑖 + α ∑ ω𝑖𝑗𝑝𝑗
𝑁
𝑗=1  (8) 

Here, 𝛼 is a hyperparameter controlling the influence of 

related categories, and 𝜔𝑖𝑗  represents the same weights 

used in the hierarchical loss function, reflecting the 

relationship strength between categories 𝐶𝑖  and 𝐶𝑗  based 

on their positions in the ImageNet hierarchy. The 

hierarchical scores are then normalized to obtain the final 

refined probabilities: 

 𝑝�̂� =
𝑠𝑖

∑ 𝑠𝑗
𝑁
𝑗=1

 (9) 

The category with the highest refined probability 𝑝�̂� is 

selected as the final prediction. 

This hierarchical inference strategy enables the model 

to leverage learned relationships between categories for 

more accurate predictions, particularly for categories with 

limited training data. The underlying principle is that 

probabilities of semantically related categories can provide 

additional context and help distinguish between visually 

similar but semantically distinct categories. 

The process can be applied iteratively to further refine 

predictions. Let 𝑝(𝑡)^  denote the refined probability vector 

after 𝑡  iterations. The iterative refinement can be 

expressed as: 
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 𝑠𝑖
(𝑡)

= 𝑝𝑖
(𝑡−1)̂

+ α ∑ ω𝑖𝑗𝑝𝑗
(𝑡−1)̂𝑁

𝑗=1  (10) 

 𝑝𝑖
(𝑡)̂

=
𝑠𝑖

(𝑡)

∑ 𝑠𝑗
(𝑡)𝑁

𝑗=1

 (11) 

where 𝑝(0)̂ = 𝑝  represents the initial probability vector. 

The number of iterations 𝑇 serves as a hyperparameter that 

can be tuned based on validation performance. 

The strategy’s effectiveness depends on 

hyperparameters 𝛼  and 𝑇 . A larger 𝛼  increases related 

categories’ influence, potentially improving accuracy for 

semantically similar classes while risking probability over-

smoothing. The iteration count 𝑇  determines refinement 

extent, where more iterations may better utilize 

hierarchical information but increase computational cost. 

Fig. 4 illustrates our proposed approach’s hierarchical 

inference strategy. The input image is first processed by a 

CNN model (ResNet-50) to generate initial class 

predictions. These predictions are then refined using 

ImageNet’s hierarchical structure. The model considers 

both coarse-grained (e.g., Mammal, Bird) and fine-grained 

(e.g., Canine, Feline, Parrot, Sparrow) categories. 

 

 

Fig. 4. Visualization of the hierarchical inference strategy. 

The final refined predictions leverage semantic 

relationships between categories, potentially improving 

accuracy for closely related classes. This strategy 

particularly benefits classes with limited training data by 

utilizing information from semantically similar categories 

to enhance predictions. 

C. Hierarchical Image Retrieval 

We demonstrate how ImageNet’s hierarchical structure 

can be utilized for efficient and semantically meaningful 

image retrieval. Given a query image, the goal is to retrieve 

a ranked list of semantically related images. 

First, we extract the learned feature representation 𝑓(𝑞) 

for the query image using the trained model. We then 

compute distances between the query representation and 

representations of all database images. Let Eq. (7) denote 

the set of distances, where 𝑑𝑖  represents the distance 

between the query and the 𝑖-th database image, and 𝑀 is 

the total number of images. 

 𝐷 = {𝑑1, 𝑑2, ⋯ , 𝑑𝑀} (12) 

To incorporate hierarchical structure, we assign weights 

to distances based on semantic relationships between the 

query category and database image categories. Let 𝑤𝑞𝑖 

denote the weight assigned to distance 𝑑𝑖  based on the 

relationship between query category 𝑐𝑞 and category 𝑐𝑖 of 

the 𝑖 -th image. Weights are determined by category 

positions in the ImageNet hierarchy, with higher weights 

assigned to images from semantically related categories. 

The weighted distances then rank database images in 

ascending order of relevance to the query. The Top-𝑘 

images with the smallest weighted distances are retrieved 

as semantically related images. 

To enhance retrieval performance, we propose a 

hierarchical retrieval strategy leveraging ImageNet’s 

hierarchical structure. Rather than directly retrieving 

images based on weighted distances, we first retrieve 

relevant categories based on their semantic similarity to 

the query category. We compute semantic similarity 

between categories using the path-based similarity 

measure [19], which considers the shortest path distances 

between categories in the hierarchy. 

For a query category 𝑐𝑞 , we retrieve the Top-𝑘  most 

similar categories {𝑐1, 𝑐2, ⋯ , 𝑐𝑘}  based on semantic 

similarity scores. We then retrieve images from each Top-

k category separately using weighted distance ranking. 

The final retrieval results combine retrieved images 

from all Top-k categories, ranked by their weighted 

distances. 

IV. EXPERIMENTS AND RESULTS 

A. Dataset and Evaluation Metrics 

We conduct experiments using the ImageNet dataset [1], 

which comprises 1.2 million training images and 50,000 

validation images distributed across 1000 object categories. 

These categories are structured hierarchically according 

to the WordNet ontology [2]. 

For image classification, we assess performance using 

Top-1 and Top-5 accuracy metrics. Top-1 accuracy 

represents the percentage of test images where the 

predicted category matches the ground truth category, 

while Top-5 accuracy indicates the percentage of test 

images where the ground truth category appears among the 

top five predicted categories. 

For image retrieval, we employ mean Average Precision 

(mAP) as the evaluation metric. mAP calculates the 

average precision of retrieved images across all queries, 

taking into account their ranking order. Higher mAP 

values indicate superior retrieval performance. 

We also assess the semantic relevance of retrieved 

images using normalized Discounted Cumulative Gain 

(nDCG) [20]. nDCG evaluates ranking quality by 

assigning greater weight to relevant images appearing 

earlier in the ranked list. 

This metric incorporates ImageNet’s hierarchical 

structure and considers the semantic similarity between 

query and retrieved images based on their hierarchical 

positions. 
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B. Implementation Details 

We implement our proposed approach using the 

PyTorch deep learning framework [21], employing the 

ResNet-50 [5] architecture as the backbone for our image 

classification and retrieval models. 

The models are trained using the hierarchical loss 

function detailed in Section 3.1, with the following 

hyperparameter values: 𝜆 = 0.5, 𝑚 = 0.2, and 𝛼 = 0.3. 

Training continues for 90 epochs using the Adam 

optimizer [22] with a learning rate of 0.001 and a batch 

size of 256. 

For image retrieval, we extract features from the 

penultimate layer of the trained ResNet-50 model. These 

features undergo L2-normalization before being used to 

compute distances between query and database images. 

The hierarchical retrieval weights are calculated based 

on the shortest path distance between categories in the 

ImageNet hierarchy, with higher weights assigned to 

images from more closely related categories. 

We evaluate our proposed approach against the 

following baseline methods: 

(1) Flat Classification: A ResNet-50 model trained on 

the flattened version of ImageNet, without 

utilizing the hierarchical structure. 

(2) Hierarchical Classification [15]: A hierarchical 

classification approach that leverages semantic 

relationships between object categories during 

training and inference. 

(3) HD-CNN [16]: A hierarchical deep convolutional 

neural network that learns feature representations 

at multiple levels of the ImageNet hierarchy. 

(4) Semantic Retrieval [17]: A semantic-based image 

retrieval system that combines low-level visual 

features with high-level semantic concepts to 

incorporate relationships between concepts. 

(5) Hierarchical Retrieval [18]: A hierarchical image 

retrieval framework that utilizes a concept 

ontology to exploit the hierarchical structure of 

semantic concepts. 

C. Hyperparameter Sensitivity Analysis 

To assess the robustness of our proposed approach and 

understand the impact of key hyperparameters on model 

performance, we conducted a detailed sensitivity analysis. 

We focused on three primary hyperparameters: 𝜆 

(which balances the classification loss and pairwise 

relationship loss), 𝑚  (the margin in the pairwise loss 

function), and 𝛼 (which controls the influence of related 

categories in the hierarchical inference strategy). 

For each hyperparameter, we varied its value while 

keeping the others fixed at their optimal values, as 

determined in our main experiments. 

We evaluated the model’s performance on the ImageNet 

validation set using Top-1 accuracy for classification and 

mAP for retrieval. The ranges for each hyperparameter 

were: 𝜆: [0.1,0.3,0.5,0.7,0.9] , 𝑚: [0.1,0.2,0.3,0.4,0.5] , 

and 𝛼: [0.1,0.2,0.3,0.4,0.5]. 

 

TABLE II. PERFORMANCE METRICS FOR VARIOUS HYPERPARAMETER 

VALUES 

Hyperparameter Value Top-1 Accuracy (%) mAP (%) 

λ 

0.1 77.8 74.2 

0.3 78.6 75.1 

0.5 79.3 75.8 

0.7 78.9 75.5 

0.9 78.1 74.9 

m 

0.1 78.9 75.3 

0.2 79.3 75.8 

0.3 79.1 75.6 

0.4 78.7 75.2 

0.5 78.3 74.8 

α 

0.1 78.8 75.2 

0.2 79.1 75.6 

0.3 79.3 75.8 

0.4 79.2 75.7 

0.5 78.9 75.4 

 

The results in Table II demonstrate the sensitivity of our 

model to changes in these key hyperparameters. We 

observe that the model’s performance is most sensitive to 

𝜆. 

As 𝜆 increases, we observe an initial improvement in 

both classification and retrieval performance, followed by 

a decline at higher values. 

This finding suggests that balancing the standard 

classification loss with the pairwise relationship loss is 

crucial for optimal performance. 
 

 

Fig. 5. Visualization of the hierarchical loss function. 

As shown in Fig. 5, the margin parameter 𝑚  in the 

pairwise loss function shows a moderate impact on 

performance. Smaller margin values tend to yield better 

results, suggesting that enforcing a strict separation 

between unrelated categories may not be necessary or 

beneficial. 

The model demonstrates relatively low sensitivity to 

changes in 𝛼 , indicating that the hierarchical inference 

strategy is robust across a range of values. However, 

extremely low or high values of 𝛼 do lead to decreased 

performance. 

To further illustrate the interplay between 

hyperparameters, we conducted a grid search on 𝜆 and 𝑚, 

while keeping 𝛼 fixed at its optimal value. 

Fig. 6 reveals that optimal performance is achieved in a 

few relatively small regions of the hyperparameter space, 

emphasizing the importance of careful tuning. 
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Fig. 6. Heatmap of Top-1 accuracy for various λ and 𝑚 combinations. 

The hierarchical loss function (𝜆) plays a crucial role in 

the model’s performance, highlighting the importance of 

properly balancing the standard classification loss with the 

hierarchical relationships. 

Finally, the model’s relative robustness to changes in 

the margin parameter (𝑚) and the hierarchical inference 

weight (𝛼) suggests that our approach can maintain good 

performance across a range of hyperparameter values. 

D. Image Classification Results 

We evaluate the image classification performance of our 

proposed approach and compare it with flat classification 

and hierarchical classification baselines. Table III presents 

the Top-1 and Top-5 accuracy results on the ImageNet 

validation set. 

TABLE III. IMAGE CLASSIFICATION RESULTS 

Model 
Top-1 

Accuracy (%) 

Top-5 Accuracy 

(%) 

Flat Classification (ResNet-50) 76.2 92.9 

Hierarchical Classification [15] 77.5 93.6 

HD-CNN [16] 78.1 94.0 

Proposed Approach 79.3 94.7 

 

As illustrated in Fig. 7, our proposed approach achieves 

the highest classification accuracy among all compared 

methods. By leveraging the hierarchical structure of 

ImageNet during training and inference, our model 

outperforms the flat classification baseline by a significant 

margin, achieving a Top-1 accuracy of 79.3% and a Top-5 

accuracy of 94.7%. 

These results demonstrate the effectiveness of 

incorporating hierarchical relationships in improving 

image classification performance. 

Compared to the hierarchical classification 

approach [15] and HD-CNN [16], our proposed approach 

achieves notable improvements of 1.8% and 1.2% in  

Top-1 accuracy, respectively. These improvements can be 

attributed to our hierarchical loss function and inference 

strategy, which effectively capture and leverage the 

semantic relationships between object categories. 

 

Fig. 7. Visualization of classification accuracy comparison. 

We further analyze the classification performance 

across different levels of the ImageNet hierarchy. Fig. 6 

shows the Top-1 accuracy at different depths of the 

hierarchy for our proposed approach and the flat 

classification baseline. 

Our approach consistently outperforms the baseline at 

all levels, with larger improvements at deeper levels of the 

hierarchy. This suggests that leveraging hierarchical 

relationships is particularly beneficial for fine-grained 

classification tasks, where the distinctions between 

categories become more subtle. 

To provide a more detailed understanding of our 

model’s performance, we conducted a class-level analysis. 

Our approach significantly improves accuracy for 

semantically related classes, especially those with limited 

training data. 

TABLE IV. CLASS-LEVEL ACCURACY COMPARISON FOR SELECTED 

IMAGENET CATEGORIES 

Category 
Flat Classification 

(%) 

Our Approach 

(%) 
Difference (%) 

Golden 

Retriever 
87.2 91.5 +4.3 

Labrador 

Retriever 
86.8 90.9 +4.1 

Bald Eagle 90.3 93.7 +3.4 

Peregrine 

Falcon 
85.6 89.8 +4.2 

Fire Engine 97.1 98.2 +1.1 

School Bus 96.8 97.5 +0.7 

Tennis Ball 92.5 91.8 −0.7 

Lemon 91.7 90.9 −0.8 

African 

Elephant 
94.2 96.8 +2.6 

Indian Elephant 89.7 93.5 +3.8 

Grand Piano 93.8 95.1 +1.3 

Upright Piano 88.4 91.9 +3.5 

Monarch 

Butterfly 
92.1 94.7 +2.6 

Viceroy 

Butterfly 
86.3 90.8 +4.5 

Great White 

Shark 
95.6 97.2 +1.6 

Hammerhead 

Shark 
91.9 94.8 +2.9 

 

However, we also observed cases where the 

introduction of semantic relevance led to decreased 

accuracy for visually distinct but semantically similar 

classes. 
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Table IV presents a comparison of class-level accuracy 

for selected categories, highlighting cases where our 

method shows improvement and where it faces challenges. 

Our approach shows notable improvements in 

distinguishing between fine-grained categories like 

different species of dogs or birds, where semantic 

relationships provide valuable context. 

However, for categories like “tennis ball” and “lemon,” 

which are visually similar but semantically distant, our 

method sometimes shows reduced accuracy compared to 

the flat classification baseline. We also analyzed the 

impact of training sample size on our method’s 

performance. 

We grouped ImageNet classes into three categories 

based on the number of training samples: low (<1000 

samples), medium (1000–2000 samples), and high (>2000 

samples). 

 

 

Fig. 8. Classification accuracy by training sample size. 

Fig. 8 illustrates the performance of our method 

compared to the baseline for each group. Our approach 

shows the most significant improvements for classes with 

low and medium numbers of training samples, with 

average accuracy increases of 3.2% and 2.7%, respectively. 

For classes with high numbers of training samples, the 

improvement is more modest at 1.4%. This demonstrates 

that our method is particularly effective at improving 

classification accuracy for classes with limited training 

data, as claimed in the introduction. 

These findings highlight the trade-off between 

leveraging semantic relevance and maintaining visual 

distinctiveness in our classification approach. While 

semantic relationships generally improve performance, 

especially for fine-grained categories and classes with 

limited data, care must be taken to balance this with the 

need to distinguish visually similar but semantically 

distant categories. 

E. Image Retrieval Results 

We evaluate the image retrieval performance of our 

proposed approach and compare it with semantic retrieval 

and hierarchical retrieval baselines. Table V presents the 

mAP and nDCG scores on the ImageNet validation set. 

Our proposed approach outperforms both the semantic 

retrieval and hierarchical retrieval baselines in terms of 

mAP and nDCG scores. The weighted retrieval variant of 

our approach achieves a mAP of 75.8% and an nDCG of 

0.812, surpassing the semantic retrieval and hierarchical 

retrieval methods by 4.6% and 2.3% in mAP, respectively. 

TABLE V. IMAGE RETRIEVAL RESULTS 

Model mAP (%) nDCG 

Semantic Retrieval [17] 71.2 0.763 

Hierarchical Retrieval [18] 73.5 0.785 

Proposed Approach (Weighted) 75.8 0.812 

Proposed Approach (Hierarchical) 77.3 0.831 

 

This demonstrates the effectiveness of incorporating 

hzierarchical structure in the retrieval process by assigning 

weights to distances based on semantic relationships 

between categories. 

The hierarchical retrieval variant of our approach 

further improves performance, achieving a mAP of 77.3% 

and an nDCG of 0.831. By first retrieving relevant 

categories based on their semantic similarity to the query 

category and then retrieving images within those 

categories, our hierarchical retrieval strategy achieves 

more semantically meaningful and coherent results. 

 

 

Fig. 9. Visualization of classification accuracy comparison. 

Fig. 9 illustrates retrieval results for two query images, 

showing the performance differences between our 

proposed approach and baseline methods. Each retrieval 

method’s performance metrics are displayed, with our 

approach achieving superior results (mAP: 77.3%, nDCG: 

0.831) compared to semantic retrieval (mAP: 71.2%, 

nDCG: 0.763) and hierarchical retrieval (mAP: 73.5%, 

nDCG: 0.785). 

For the golden retriever query, our approach retrieves 

visually and semantically similar dog images while 

maintaining breed-specific characteristics, showing 

improved semantic understanding. In contrast, the baseline 

methods show less consistency in breed identification and 

overall pose consistency, showing a bit more diverse 

canine breeds with varying characteristics. 

The apple query (bottom row) shows the capability to 

maintain object identity while considering context. It 

returns red apples in their natural setting, while the 

baselines show a little more variation in either color (green 

apples) or presentation (sliced arrangements). This 

example shows its enhanced capability to balance both 

visual and semantic similarities in image retrieval tasks. 

To qualitatively evaluate retrieval performance, we 

present examples of retrieved images for sample queries 
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using our proposed approach and the baselines. Fig. 9 

shows the Top-5 retrieved images for three query images 

from different categories. 

As demonstrated in Fig. 10, we observe that our 

approach retrieves images that are more semantically 

relevant to the queries compared to the baselines. 

The retrieved images belong to categories that are closer 

to the query category in the ImageNet hierarchy, 

demonstrating the effectiveness of leveraging hierarchical 

relationships for semantic retrieval. 

Fig. 10. Visualization of classification accuracy comparison. 

F. Ablation Study

We conduct an ablation study to analyze the

individual contributions of the hierarchical loss function 

and inference strategy in our proposed approach. 

We also investigate how our method performs for 

classes with different amounts of training data. Table VI 

presents the image classification and retrieval results for 

different configurations of our approach. 

TABLE VI. ABLATION STUDY RESULTS 

Configuration 
Top-1 

Accuracy (%) 

mAP 

(%) 
nDCG 

Flat Classification 76.2 - - 

Hierarchical Loss 78.4 - - 

Hierarchical Inference 77.8 - - 

Hierarchical Loss + Inference 79.3 75.8 0.812 

Hierarchical Loss + Inference 

+ Retrieval
79.3 77.3 0.831 

The results show that both the hierarchical loss function 

and inference strategy contribute to improved 

classification performance. Using the hierarchical loss 

function alone improves Top-1 accuracy by 2.2% 

compared to the flat classification baseline, while using the 

hierarchical inference strategy alone achieves an 

improvement of 1.6%. 

Combining both hierarchical loss and inference 

achieves the best classification performance, with a Top-1 

accuracy of 79.3%. 

For image retrieval, we observe that the hierarchical 

retrieval strategy further enhances performance compared 

to using only the weighted retrieval approach. 

The hierarchical retrieval variant achieves an mAP of 

77.3% and an nDCG of 0.831, outperforming the weighted 

retrieval variant by 1.5% in mAP and 0.019 in nDCG. This 

highlights the importance of leveraging hierarchical 

structure not only in distance computation but also in the 

retrieval process itself. 

To further understand the impact of our method on 

classes with different amounts of training data, we 

analyzed the performance of each configuration across 

three groups of classes: low (<1000 samples), medium 

(1000–2000 samples), and high (>2000 samples). 

TABLE VII. TOP-1 ACCURACY (%) COMPARISON ACROSS TRAINING 

SAMPLE SIZES FOR DIFFERENT MODEL CONFIGURATIONS 

Configuration 
Low 

(<1000) 

Medium 

(1000–2000) 

High 

(>2000) 

Flat Classification 72.5% 76.8% 80.2% 

Hierarchical Loss 76.3% 79.7% 81.9% 

Hierarchical Inference 75.1% 78.9% 81.4% 

Hierarchical Loss + Inference 77.2% 80.5% 82.6% 

Table VII shows the Top-1 accuracy for each 

configuration across different training sample sizes. We 

observe that the hierarchical loss function provides the 

most significant improvements for classes with low and 

medium numbers of training samples. 

For instance, in the low sample size group, the 

hierarchical loss alone improves accuracy by 3.8% 

compared to flat classification, while the combination of 

hierarchical loss and inference yields a 4.7% improvement. 

These results support our earlier findings and 

demonstrate that our approach is particularly effective for 

classes with limited training data. The hierarchical loss 

function helps in learning more robust representations by 

leveraging semantic relationships, which is especially 

beneficial when direct training examples are scarce. 

The hierarchical inference strategy further refines these 

predictions, leading to improved accuracy across all 

sample size groups. 

We also analyzed the impact of our method on 

semantically related but visually distinct categories. As 

shown in Table VIII, considering the “Tennis Ball” and 

“Lemon” categories: 

TABLE VIII. ACCURACY COMPARISON FOR VISUALLY DISTINCT BUT 

SEMANTICALLY RELATED CATEGORIES 

Category 
Flat 

Classification 

Hierarchical 

Loss 

Hierarchical Loss 

+ Inference

Tennis Ball 92.5% 91.9% 91.8% 

Lemon 91.7% 91.2% 90.9% 

While our method slightly decreases accuracy for these 

specific categories, it is important to note that this trade-

off results in overall improved performance across the 

dataset, especially for fine-grained categories and those 

with limited training data. 
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These findings highlight the importance of balancing 

semantic relevance with visual distinctiveness in our 

approach. Future work could explore adaptive weighting 

strategies that adjust the influence of hierarchical 

information based on category characteristics, potentially 

mitigating accuracy decreases for visually distinct but 

semantically similar classes. 

V. CONCLUSION

In this paper, we propose a novel approach leveraging 

the hierarchical structure of ImageNet to enhance image 

classification and retrieval. By incorporating hierarchical 

relationships between object categories during model 

training and inference, our approach achieves improved 

classification accuracy while enabling semantically 

meaningful image retrieval. 

The proposed hierarchical loss function encourages the 

model to learn semantically meaningful representations by 

considering relationships between categories. The 

hierarchical inference strategy refines predictions based on 

these learned relationships, leading to more accurate 

classifications. For image retrieval, the hierarchical 

strategy leverages semantic similarities between 

categories to retrieve more coherent and relevant images 

for each query. 

Experimental results on the ImageNet dataset 

demonstrate our approach’s effectiveness. Our model 

outperforms baseline methods in both image classification 

and retrieval tasks, achieving state-of-the-art performance. 

The ablation study further validates the individual 

contributions of both the hierarchical loss function and 

inference strategy in improving classification accuracy. 

Our class-level analysis reveals that our approach 

significantly improves accuracy for semantically related 

classes, particularly those with limited training data. 

We observe average accuracy increases of 3.2% and 

2.7% for classes with low (<1000 samples) and medium 

(1000–2000 samples) numbers of training samples, 

respectively. These results demonstrate our method’s 

effectiveness in addressing the challenge of limited 

training data, as initially claimed. 

Our analysis also reveals an inherent trade-off in 

leveraging hierarchical structures for image classification. 

While semantic relationships improve classification 

performance for most categories, they can impact accuracy 

for visually distinct but semantically related objects. This 

is evidenced in categories like “tennis ball” and “lemon,” 

where the introduction of semantic relevance led to a slight 

decrease in classification accuracy compared to the flat 

classification baseline. This observation highlights the 

complex relationship between visual and semantic features, 

where the model’s reliance on hierarchical information can 

affect its ability to distinguish between visually similar 

objects that occupy distant positions in the semantic 

hierarchy. 

We emphasize the importance of exploiting semantic 

relationships encoded in hierarchically structured datasets 

like ImageNet. By leveraging these relationships, we can 

develop more accurate and semantically meaningful 

computer vision systems for classification and retrieval 

tasks. However, the observed trade-offs suggest careful 

consideration is needed when applying hierarchical 

methods to ensure balance between semantic coherence 

and visual discrimination. 

Our work demonstrates both the benefits and challenges 

of leveraging hierarchical structures in image 

classification and retrieval. By exploiting semantic 

relationships between object categories, we can develop 

more accurate and semantically meaningful computer 

vision systems, particularly for classes with limited 

training data. The hierarchical approach balances semantic 

understanding with visual distinctiveness, contributing to 

improved performance across a broad range of 

classification and retrieval tasks. 
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