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Abstract—Deep learning has transformed medical image 

analysis; in particular, many different brain tumors are 

being produced. Accurate detection is crucial for effective 

treatment and contributes to prolonging the life of patients. 

While MRI is a standard diagnostic tool, manual 

interpretation can be slow and sometimes error prone. As 

such, automatic classification systems based on 

Convolutional Neural Networks (CNNs) are gaining 

importance. However, standard CNNs are generally good for 

capturing only the continuous features within one region of 

the data, and that means they need huge amounts of training 

samples to work well in practice. We also struggle to capture 

diverse shapes, sizes and positions of brain tumors. To meet 

this challenge, our paper proposes the SPP-MobileNet model, 

which integrates a Spatial Pyramid Pooling (SPP) block into 

the MobileNet architecture. With the SPP layer for multi-

scale feature extraction, our classifier is much better at 

spotting tumor appearance changes without resizing images. 

By building this into MobileNet, SPP-MobileNet maintains 

all that model’s computational efficiency while boosting 

classification accuracy. On two Magnetic Resonance Imaging 

(MRI) datasets, the proposed model outperformed other 

state-of-the-art methods with an accuracy of 98.86% and 

perfect precision. Its recall rate was 97.68%, while the 

Matthews Correlation Coefficient value reached 97.75 %. 

These results suggest that SPP-MobileNet is a powerful tool 

for brain tumor classification, and it should go some way to 

improving diagnostic accuracy and speed. In the future, we 

will focus on tuning the model for more complex types of 

brain tumors and applying it across various other medical 

imaging tasks.  
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neuroimaging, SPP-MobileNet 
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I. INTRODUCTION

Deep learning has revolutionized medical image 

analysis in recent years, particularly in classifying brain 

tumors [1, 2]. Brain tumors have a wide range of 

differences in size, shape and location [3]. They pose great 

challenges in diagnosis and treatment planning if not 

identified properly [4, 5]. Accurate detection and 

classification of these tumors are critical for effective 

treatment plans and for improving patient survival rates [6]. 

Traditionally, Magnetic Resonance Imaging (MRI) has 

been the standard for diagnosing brain tumors [7, 8]. 

Moreover, the risk of human error is always there. As a 

result, for several years, many people involved in scientific 

research have explored the possibility of developing 

systems to automatically classify these brain tumor data 

sets based on deep learning networks [5, 9, 10]. These 

systems have the potential to provide faster, more accurate 

diagnoses, thus aiding clinicians when they make clinical 

decisions [11, 12]. Convolutional Neural Networks 

(CNNs), deep-learning models, have performed 

remarkably in various image classification tasks [13, 14]. 

They learn hierarchical features from raw images and are 

very suitable for medical applications in image 

processing [15]. CNNs can be successfully used for 

multiple functions, such as detecting diabetic retinopathy, 

classifying skin lesions and identifying lung cancers from 

CT scans [16]. For example, within brain tumor 

classification, CNNs can be used to distinguish between 

different tumor types like gliomas, meningiomas and 

pituitary tumors. However, CNN-based models are still 

faced with many difficulties in this field. Because every 

patient and MRI modality has inherent variables, getting 
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equally successful results across all situations and data 

types is hard [17, 18]. 

Our main contributions are as follows: (i) Integrating 

the Spatial Pyramid Pooling (SPP) block into the 

MobileNet architecture (SPP-MobileNet) enables the 

model to capture multi-scale features effectively from MRI 

images, managing such issues as size, shape, and location 

differences among tumors. Combining SPP with 

MobileNet further enhances the generalization 

characteristics of the model. It can now seafood features at 

several different scales and positions simultaneously, 

increasing its accuracy rating in classification without 

needing an image to be rescaled or cropped. (ii) In addition 

to a more complicated SPP layer, the addition of SPP still 

allows the model to keep MobileNet’s computational 

efficiency: It contains a Depthwise Separable 

Convolutional architecture.  

II. LITERATURE REVIEW

Brain tumor localization is essential to medical 

diagnosis, which plays a role in accurate diagnosis and 

effective treatment planning [2, 6]. Radiological imaging 

techniques do not earn responsibility for this. Great 

improvements have been made [19]. Brain tumor 

diagnosis is one of the most challenging problems of its 

kind. It is difficult because tumors can take on many 

shapes and appearances in an MRI scan [20, 21]. It is 

essentially slow-growing and well-defined, whereas high-

grade tumors are diffuse, large and invasive [22]. Because 

of this variation in size, shape intensity and location within 

the brain, standard CNN designs with fixed-size receptive 

fields have difficulty capturing all relevant features for 

accurate classification [12, 22]. 

Furthermore, MRI signal intensities differ according to 

the specific sequence (e.g., T1-weighted or FLAIR 

image) [23]. The appearance and anatomic structure 

variations of MR images affect the interpretation 

model [24]. Therefore, they must be able to cope with 

these differences often among patients and even at 

different hospitals. Thirdly, a problem arises from the 

scarcity of annotated medical data [25]. Thus, deep 

learning models need large amounts of labeled data for 

good performance in a medical setting. However, 

collecting large, well-annotated datasets in the medical 

field is often difficult due to the need for expert 

annotations [26]. This process is both time-intensive and 

costly. 

Furthermore, in volume, the incidence of brain tumors 

is relatively low compared with other cancers, and 

distribution among different tumor types is 

nonuniform [27]. Consequently, some tumor types are 

considerably more common than others; it is not balanced 

data [28, 29]. This lack of balance can cause models that 

are strong on common tumor types but weak at the 

classification of rare ones [29]. Consequently, we need 

various ways to solve these problems to improve the brain 

tumor classification model’s generalization ability [30]. 

However, in brain tumor classification, the paramount 

obstacle is to build a model that can handle the variation in 

tumor appearance across different patients and MRI 

modalities effectively while at the same time maintaining 

high accuracy [31, 32]. These traditional CNN models 

have fixed receptive fields, which are insufficient to 

capture the all-scale nature of brain tumors and thus deliver 

suboptimal performance [33]. In addition, the scarcity of 

annotated medical data and the imbalance in types of 

tumors exacerbate the difficulty in constructing a robust, 

generalized model [34]. Thus, a better approach is needed 

to capture multi-scale features from MRI images while 

circumventing the data constraints routinely encountered 

in medical image classification tasks [35, 36]. 

However, this statement is challenged by manual 

analysis. As large volumes of data and complex visual 

details are involved in MRI scans, it takes great skill to 

perform this task, which can take hours or even days. 

Therefore, automatic MRI must be taken up as it will 

greatly enhance efficiency and accuracy [24]. Although 

much previous research has been devoted to developing 

machine learning models for brain tumor detection, these 

models are often trained on relatively small datasets [37]. 

Unable to handle the transfer learning task, such models 

cannot achieve high accuracy and reliability in some cases. 

This issue underscores the need to develop more robust 

techniques to cope with larger and more complex datasets 

for better model results. Several approaches have been 

proposed that combine preprocessing, extracting features 

and classification [38]. 

For example, Woodbright et al. [39] address the critical 

issue of interpretability in deep learning models, 

specifically in the context of medical applications. In these 

cases, knowing what decisions are made transparently is 

essential. Their work introduces the Autonomous 

Relevance Technique for Explainable Neurological 

Disease Prediction (ART-Explain). Their system 

automatically extracts features of deep learning 

architectures to offer entirely new visual explanations for 

predictions. In the high stakes of incorrect diagnoses with 

neurological conditions, where errors significantly affect 

morbidity and mortality, the need for such transparent 

models is the greatest. ART-Explain is an attempt to 

provide an end-to-end solution that gives intuitive human-

oriented overviews of predictions, enhancing trust and 

understanding for its users. They report the method’s 

performance on three data sets for neurological disorders, 

concluding with 98.32% accuracy, 98.34% recall and 

98.27% specificity. Najeih et al. [40] have contributed 

significantly to the field of brain tumor classification using 

deep learning models, specifically focusing on improving 

the accuracy of automatic detection and diagnosis in 

medical imaging. Their research emphasizes using CNNs 

and other deep learning architectures to enhance the 

precision of tumor classification based on MRI images. 

Like other contemporary studies, Najeih et al. [40] 

leveraged pre-trained models such as VGG16, ResNet, and 

DenseNet, building on their ability to automatically extract 

relevant features from complex medical images. In a key 

study, Najeih et al. [40] incorporated a variety of image 

preprocessing techniques, including filtering and contrast 

enhancement, to improve image quality before feeding the 

data into deep learning models. This approach aligns with 

316

Journal of Image and Graphics, Vol. 13, No. 4, 2025



the methods used in other studies, such as the current 

research, which also integrates preprocessing techniques 

like Kuwahara filtering and homomorphic sharpening to 

boost the visibility of key structures within MRI images. 

By enhancing the clarity of tumor regions, Najeih et al.’s 

methodology [40] increases the accuracy of classification, 

particularly when distinguishing between tumor types like 

glioma, meningioma, and pituitary tumors. 

Zhang et al. [41] have taken up the challenge of grading 

meningiomas, which will be measured according to 

peritumoral edema regions. In their approach, they 

integrate radiomic and deep learning techniques. Their 

work embodies a transfer learning-based engineering of 

the Meningioma Feature Extraction Model (MFEM), 

which combines the virtues of both Vision Transformer 

(ViT) and CNN architectures for better feature extraction. 

It is worth noting that they draw later attention to an often-

neglected area: the PTE region, Nonsense behind which 

can be higher-grade tumors. The method performed well, 

achieving a grading accuracy rate of 92.86%, and precision, 

sensitivity and specificity were 93.44%, 95% and 89.47%, 

respectively, for a data set with 98 patients. Their findings 

suggest that incorporating radionics and deep learning into 

preoperative meningioma grading to combat inter-aural 

variability effectively improves the accuracy of 

preoperative diagnosis and minimizes observer errors, 

which will offer direct help for clinical decision-making. 

Ibrahim et al. [42] explore the potential of CNNs in 

classifying MRI images, particularly for Alzheimer’s 

disease detection and brain tumor identification. While 

CNNs have demonstrated significant potential, optimizing 

their parameters remains a challenge due to the complexity 

of the search space, often leading to suboptimal results. 

This limitation necessitates trial-and-error methods and 

expert judgment in parameter tuning, which can hinder the 

development of real-world applications. To address this 

issue, the authors proposed a hybrid model that combines 

Particle Swarm Optimization (PSO) with CNNs to 

optimize hyper-parameters more effectively. The PSO 

algorithm was employed to determine the optimal 

configuration of CNN parameters, which are then applied 

to the CNN architecture for improved classification 

accuracy. The hybrid model was evaluated using three 

benchmark datasets. The results demonstrate the model’s 

superiority, achieving accuracy, precision, and recall rates 

of 97.12, 92.66, and 99.02, respectively, thereby 

highlighting the effectiveness of PSO in enhancing CNN 

performance for MRI image classification. To improve the 

performance of machine learning models used for tumor 

diagnosis, Shilaskar et al. [43] looked into various 

preprocessing techniques designed to eliminate noise from 

MRI images, ensuring that doctors have accurate 

information to work on.  

Further input to the strength of model feature extraction 

techniques they developed is always based on textures, 

gradient-based descriptor types, and even the tiny overall 

shakes and jiggles of their systems, such as histograms of 

movement directions. An effective feature extraction 

process was seminal in successfully classifying machine 

learning models. Perhaps XGBoost consistently performs 

better than other algorithms because it engages in 

ensemble learning techniques. This result suggests that 

ensemble learning techniques, such as XGBoost, offer a 

promising path forward in automating brain tumor 

detection, providing doctors with an ever more reliable and 

efficient diagnosis tool. 

III. MATERIALS AND METHODS

MobileNet architecture is the foundation of the 

proposed model, structured as a series of Depthwise 

separable convolutions. This architecture efficiently 

reduces computational complexity while maintaining 

performance. The input to the model is an MRI image 𝐼 of 

size H×W×3, where H and W  represent the height and 

width of the image, and 3 refers to the RGB color channels. 

This study introduces the SPP-MobileNet model for 

brain tumor classification by integrating the SPP layer into 

the MobileNet architecture. The model is designed to 

extract multi-scale features effectively from MRI images 

of brain tumors, enhancing classification accuracy across 

diverse tumor types. However, we extend the MobileNet 

architecture, displayed in Fig. 1, with the SPP-MobileNet 

model shown in Fig. 2. 

Fig. 1. Backbone MobileNet architecture. 

The initial convolutional layers of MobileNet apply a 

series of filters to the input image, extracting features as: 

𝑋 = 𝑓(𝑊 ∗∗ 𝐼) (1) 

where 𝑋 is the feature map, 𝑊 represents filter weights, 

∗∗ denotes convolution, and 𝑓  is a non-linear activation 

function such as ReLU (Rectified Linear Unit). These 

layers output feature maps with reduced spatial 

dimensions and increased depth, capturing high-level 

features from the input image. 

The core enhancement of the proposed model is the 

inclusion of the SPP layer, which allows for multi-scale 

feature extraction. The SPP layer performs spatial pyramid 

pooling at multiple levels, allowing the model to generate 

fixed-length feature vectors from input images of variable 
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sizes. The SPP layer applies pooling operations at different 

scales, with pooling sizes defined as 𝑃1, 𝑃2, … , 𝑃𝑛.

For each pooling scale 𝑃𝑖 , the input feature map 𝑋 is

partitioned into non-overlapping blocks, each of size 
𝐻

𝑃𝑖
×

𝑊

𝑃𝑖
. The pooling operation within each block can be 

represented as: 

𝑋𝑃𝑖
= 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑋, 𝑃𝑖) (2) 

where 𝑋𝑃𝑖
 is the output of the pooling operation for scale

𝑃𝑖, and 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 is the MaxPooling function. The result

is a downsampled representation of the feature map at each 

scale. 

Each pooled feature map 𝑋𝑃𝑖
 is then flattened into a

vector and concatenated with the other pooled feature 

vectors across the scales: 

𝑆𝑃𝑃(𝑋) = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑋𝑃𝑖
) ⨁ … ⨁ 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑋𝑃𝑛

) (3)

where ⨁ represents vector concatenation. The output of 

the SPP layer is a fixed-length vector regardless of the 

input size, which contains multi-scale information crucial 

for capturing diverse tumor sizes and shapes. 

The concatenated feature vector from the SPP layer is 

passed through a series of fully connected layers for 

classification. Let the output of the SPP layer be denoted 

as 𝑍𝑆𝑃𝑃 . The first fully connected layer applies a linear

transformation followed by a non-linear activation 

function. 

𝑍1 = 𝑓(𝑊1𝑍𝑆𝑃𝑃 + 𝑏1) (4) 

where 𝑍1 is the output of the fully connected layer, 𝑊1 and

𝑏1  are the weights and biases of the layer, and 𝑓  is the

ReLU activation function: 

𝑓(𝑥) = max (0, 𝑥) (5) 

Next, a dropout layer is applied to reduce overfitting 

during training. The output from the first fully connected 

layer is transformed into: 

𝑍1
′ = Dropout (𝑍1, 𝑝) (6) 

where 𝑝 is the dropout probability, this prevents the model 

from overly relying on any subset of neurons during 

training. 

Finally, the output is passed through another fully 

connected layer with a SoftMax activation function to 

generate the final classification scores for the 𝐶 classes: 

�̂� = SoftMax (𝑊2𝑍1
′ , 𝑏2) (7) 

The SoftMax function converts the raw logits into 

probabilities for each class: 

SoftMax(𝑧𝑖) =
exp (𝑧𝑖)

∑ exp (𝑧𝑖)𝐶
𝑗=1

(8) 

The utilization of Depthwise separable convolutions 

distinguishes the latter. These convolution layers are 

intended to reduce the computational complexity of the 

model while maintaining a high level of accuracy. 

MobileNet takes the input MRI images through a series of 

lightweight convolution operations, drawing out spatial 

features and reducing the spatial dimensions of the image 

while increasing data depth for that image.  

This enhancement will set the scene for feature 

extraction of the classification problem and allow the 

model to efficiently handle the rich and complex 

information present in human brain tumor MRI images in 

a very robust manner. The core innovation of the proposed 

model lies in integrating the SPP block into MobileNet, as 

shown in Fig. 2. 

Fig. 2. The proposed SPP-MobileNet architecture. 

The SPP Layer allows the model to capture multi-scale 

features by performing max-pooling on the feature maps at 

different levels spatially. A different scale of pooling 

divides the feature map into non-overlapping blocks, 

taking the maximum value in each block.  

This method makes the model capable of producing 

fixed-size feature vectors, no matter how big the input 

image is. MRI is a very important property because it may 

have pictures that vary in resolution from poor to sufficient. 

That feature vector helps the train camper the model to 

classify different tumor types and sizes effectively. In 

Figs. 3 and 4, we highlight the structure of our customized 

SPP block, which enhances the original SPP, Fig. 3, by 

adding more refined pooling operations and concatenation 

strategies. 

This block produces multi-scale features, (1 × 1), (3 ×
3), (5 × 5), (7 × 7) , and (9 × 9)  vectors fed into fully 

connected layers for classification. The SPP block 

contributes to the model’s robustness by key spatial 

information at different resolutions, thus boosting 

classification accuracy. Introducing this SPP block 

preserving allows the SPP-MobileNet model to generalize 

better across various types of brain tumors, applying more 
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powerful tools in medical image analysis by using these 

golden features that span multiple scales. 

Fig. 3. Original SSP block. 

Fig. 4. Our proposed SSP block. 

Furthermore, the model is designed to handle input 

images resized to 224×224 pixels and can handle multi-

class and binary classification problems. It is trained for 20 

epochs with a batch size of 32. the learning rate was tuned 

to 0.0001. The optimizer used for optimization is Adam, 

and cross-entropy is the loss function. The model uses 

accuracy as the primary metric when evaluating 

performance. These hyper-parameters define the training 

process and allow for a comprehensive assessment of 

model performance. 

However, the performance of the proposed model is 

evaluated using standard classification metrics, including 

accuracy, precision, recall, F1-score, and the Matthews 

Correlation Coefficient (MCC). These metrics are 

computed as follows [18, 44, 45]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
(9) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

𝑇𝑃+𝐹𝑃
(10) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

𝑇𝑃+𝐹𝑁
(11) 

𝐹1 =
2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(12) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁 

𝑇𝑁+𝐹𝑃
(13) 

𝑀𝐶𝐶 =
(𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁) 

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
(14) 

where TP and FP represent the true and false positives, 

respectively, TN and FN represent the true and false 

negatives. 

IV. RESULT AND DISCUSSION

In this section, we present the performance of our 

proposed model, which integrates the SPP layer into the 

MobileNet architecture for brain tumor classification. The 

model was evaluated on two MRI datasets: Brain Tumor 

MRI Datasets [46], displayed in Fig. 5, and Brain Tumor 

Dataset [47], presented in Fig. 6. The Brain Tumor MRI 

Dataset consists of 7023 MRI images of human brains and 

can be divided into four types: glioma, meningioma, no 

tumor, and pituitary tumors. This dataset was gathered 

from a variety of sources. Among them are the figshare, 

the SARTAJ, and the Br35H datasets. One interesting fact 

about it is that all the pictures in the tumor class were 

drawn from Br35H, which means there is an equal chance 

of having no brain tumors. Images in this dataset vary in 

scale, complexity and type of Tumor, giving us a rich 

source for multi-class tumor classification. Brain Tumor 

Dataset: This binary class dataset of 5264 MRI images. 

NoTumor contains 2500 images, while Tumor comprises 

2764. It focuses on solving the binary classification 

problem and distinguishing between Tumor and NoTumor 

conditions. 

Fig. 6. Brain tumor MRI dataset samples [47]. 

Further, the binary dataset was divided into three 

subgroups: 80% training, 10% validation, and 10% testing. 

The Brain Tumor MRI Dataset has already been split into 

training and testing sets. The training set contains 5702 

images across four classes: glioma (1321), meningioma 

(1339), no tumor (1595), and pituitary tumors (1457). The 

testing set includes a total of 1311 images distributed 

across the four classes as follows: glioma (300), 

meningioma (306), no tumor (405), and pituitary tumors 

(300). The authors split the training set into training 90% 

and validation 10%. 

Fig. 5. Brain tumor dataset samples [46]. 
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To make the model more robust and avoid overfitting, 

we employed various data enhancement techniques on 

training data via a semi-automatic pipeline. We used a 

flow of data augmentation techniques based on the training 

phase. These techniques included normalization, resizing 

images to match the input size of models, random flip 

(horizontal), random rotation at a 0.02 factor and random 

scaling with a magnitude up to 20%. These transformed 

photographs increase model accuracy and generalization 

capabilities by adding statistical artificial noise into the 

training set. A simpler data augmentation pipeline was 

used for the validation and test data. It involves only 

normalizing and resizing, leaving all random 

transformations aside. This way, the validation and testing 

frameworks can accurately evaluate models on real-world 

data scales. To ensure that the normalization layers were 

adjusted based on the training data for universal uniform 

scaling across all datasets. 

We will now present the outcome of training and 

validation of four deep learning models, our proposed 

SPP-MobileNet, the backbone MobileNet, ResNet, and 

AlexNet—using the Brain Tumor dataset, a collection of 

MRI images labeled under two classes of normal (i.e., no 

tumor) and abnormal (i.e., having a brain tumor).  

As for AlexNet, Fig. 7, with results contributing to a 

reasonable level of performance, has lagged while 

maintaining this simpler type of architecture that is easier 

to build and comprehend. By this measure, it reaches its 

maximum accuracy at 98%. 

Fig. 7. AlexNet training and validation loss and accuracy regarding the 

brain tumor dataset. 

ResNet, Fig. 8, achieves good results with this dataset 

at some times but has unstable performance, with wildly 

swinging validation loss, which is also attributed to 

fluctuations in accuracy.  

Fig. 8. ResNet training and validation loss and accuracy regarding the 

brain tumor dataset. 

As shown in Figs. 9 and 10, the best performance score 

is the SPP-MobileNet model, in which both the training 

and validation accuracy reached 99 percent and very low 

final loss values prevailed, see Fig. 10. This is due to SPP 

Blocking enabling the capture of multi-scale spatial 

features, which are critical for identifying tumors of 

varying sizes in the brain. MobileNet, on the other hand, 

Fig. 9, still displays good abilities in this context, is slightly 

less accurate in its validation and achieves 96% 

recognition rates. Its efficient construction provides 

opportunities for improvement here and simultaneously 

eliminates the SPP block that previously played such a 

crucial role in extracting features on different scales. 

Fig. 9. Backbone MobileNet training and validation loss and accuracy 

regarding the brain tumor dataset. 

Fig. 10. Our proposed SSP-MobileNet training and validation loss and 

accuracy regarding the brain tumor dataset. 

This implies that the intricate dynamics of this dataset 

may call for further adjustment or an alternative approach 

on ResNet.  

Fig. 11. Confusion Matrix: (left) AlexNet and (right) ResNet. 

Fig. 12. Confusion Matrix: (left) MobileNet and (right) SSP-MobileNet. 
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From Figs. 11 and 12, SPP-MobileNet gives the best 

results in brain tumor detection in the confusion matrix. 

When it comes to brain tumor identification, even a few 

mistakes in judging whether a test sample contains tissue 

from any source other than a tumor or nontumor test. The 

benefits of using SPP block for multi-scaling feature 

extraction in medical images. AlexNet and MobileNet also 

achieve high performance. The gap between their results 

and those of SPP-MobileNet suggests that state-of-the-art 

features, such as the SPP block, should be built into model 

architectures. ResNet, however, exhibits great limitations 

in that it overfits the model. The result is an unacceptably 

high rate of false positives. Thus, SPP-MobileNet is the 

most powerful and best model for this dataset. This makes 

it a promising tool in brain tumor detection and diagnosis. 

Furthermore, the performance metrics of our proposed 

SPP-MobileNet, the backbone MobileNet, ResNet, and 

AlexNet are shown in Table I. 

TABLE I. COMPARATIVE ANALYSIS OF PROPOSED SPP-MOBILENET 

WITH STATE-OF-THE-ART TECHNIQUES REGARDING THE BRAIN TUMOR 

DATASET 

Metrics 
AlexNet 

[48] 

ResNet 

[49, 50] 

MobileNet 

[51] 

SPP-

MobileNet 

Accuracy 98.48% 91.27% 96.96% 98.86% 

Precision 99.21% 83.40% 98.02% 100% 

Recall 97.67% 98.14% 95.75% 97.68% 

F1 98.43% 90.17% 96.88% 98.83% 

Specificity 99.26% 86.54% 98.13% 100% 

MCC 96.97% 83.30% 93.95% 97.75% 

According to performance metrics in Table I, SPP-

MobileNet, other models on brain tumor classification 

were tested by comparison for outperforming all of them. 

It has high accuracy and a low false positive rate. It 

possesses strong generalization abilities as well. However, 

all these suggest that it promises good medical applications 

particularly where brain tumors must be diagnosed with an 

MRI image. Its feature extraction capabilities of lessening 

the feature volume enable the model to employ complex 

and multi-scale characteristics in medical imaging data 

easily. This ability is rather significant since such 

characteristics complicate more than anything else as a 

medical technology manufacturer not in any sense least 

because MRI images are a case in point.  

Furthermore, the performance of the proposed SPP-

MobileNet model was evaluated using another dataset, the 

Brain Tumor MRI Dataset, which includes four classes: 

glioma, meningioma, no tumor, and pituitary Tumor. The 

results are presented using a confusion matrix and training 

and validation loss and accuracy curves, demonstrating the 

model’s effectiveness in classifying brain tumors. Fig. 13. 

Displays the and training and validation loss and accuracy 

curves, while Fig. 14. shows the confusion matrix of the 

proposed SPP-MobileNet. 

Fig. 13. Our proposed SSP-MobileNet training and validation loss and 

accuracy regarding the brain tumor MRI dataset. 

The training and validation loss curves in Fig. 8 show 

that both losses decreased rapidly during the first few 

epochs and stabilized near-zero values after the seventh 

epoch. By the 20th epoch, both losses were consistently low, 

with little difference between them. This trend suggests 

that the model learns quickly and efficiently without 

overfitting. The close training and validation loss indicate 

generalization to validation sets: SPP-MobileNet is robust 

enough on unobserved data retention and has powerful 

predictivity capabilities. 

Fig. 14. Our proposed SSP-MobileNet confusion matrix regarding the 

brain tumor MRI dataset. 

From the results, we can conclude that SPP-MobileNet 

performs exceptionally well on the Brain Tumor MRI 

Dataset. It has high accuracy and achieves class-leading 

performance for all these tumors. From the confusion 

matrix, the model distinguishes between no-tumor and 

tumor cases. High cumulative classification precision 

suggests that the SPP block’s fast convergence makes 

multi-scale feature extraction by the model itself work 

very well. These results show that SPP-MobileNet, though 

it may suffer a slight misclassification between 

meningioma and pituitary tumors, is a very good model for 

brain tumor classification and performs excellently on this 

dataset. Moreover, Table II provides the results of the SPP-

MobileNet model of the Brain Tumor MRI Dataset from 

Table I, including key performance metrics such as 

accuracy, precision, recall, specificity, and F1-score for 

each brain tumor type: meningioma, pituitary tumors, non-

tumor, part of the brain or glial cell cancer on any depth 

level; and, finally, pituitary tumors. In short, this gives us 

an average value across all aspects rather than just by 

category. 
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TABLE II. SPP-MOBILENET RESULTS REGARDING THE BRAIN TUMOR 

MRI DATASET 

Classes Accuracy Precision Recall F1 Specificity 

Glioma 99.01 97.33 98.32 97.82 99.51 

Meningioma 97.71 96.73 93.67 95.18 98.01 

No Tumor 99.39 99.75 98.30 99.02 99.23 

Pituitary 98.55 94.67 98.95 96.76 99.70 

Average 98.67 97.12 97.31 97.20 99.11 

We can see from Table II that SPP-MobileNet has 

achieved high accuracy for all four classes. The model 

does well even in a challenging environment, with very 

high accuracy on MRI images. The score for meningioma 

and pituitary tumors is less than no tumor and glioma, a 

sign that more work remains to raise these values; 

nonetheless, overall, the model shows its exceptional 

reliability and accuracy. It is a highly recommended 

alternative for the medical image classification task based 

on deep learning CNN, not just because of its smooth and 

powerful performance. SPP-MobileNet boasts 

overwhelming accuracy rates and an x-hard-like condition 

with no tumor. 

Nevertheless, both meningioma and pituitary tumors 

collect very low scores, hinting that we could adjust the 

model’s error rates by fine-tuning there; this method has 

very good reliability and achieves a considerable success 

rate. These figures express what was already found 

through the confusion matrix and training/validation 

accuracy. I have further confirmed that the methodology is 

robust. Finally, we compare our proposed SPP-MobileNet 

with state-of-the-art methods. 

Table III comprehensively compares different models 

for MRI image classification. These efforts especially 

concentrated on recognized benchmarks in brain tumor 

identification. From the models above, concerning most of 

the indexes mentioned, our SPP-MobileNet achieves the 

highest of any other model. Its accuracy is up to 98.67%, 

precision attains 97.12%, recall rates 97.31%, and the F1-

Score 97.20%. Further, with a remarkable specificity level 

of 99.11%, it is obvious that this model is not only skillful 

at accurately telling true negatives from false ones but also 

possesses high-tech abilities for preventing many types of 

misidentifications.  

TABLE III. COMPARATIVE ANALYSIS OF THE SPP-MOBILENET WITH 

STATE-OF-THE-ART TECHNIQUES REGARDING THE BRIAN TUMOR MRI 

DATASET 

Author, Ref Accuracy Precision Recall F1 Specificity 

Nigjeh et al. 

(VGG19) [40] 
93.00 92.75 92.50 92.50 - 

Nigjeh et al. 

(DenseNet) [40] 
93.00 93.25 93.00 93.25 - 

Nigjeh et al. 

(ResNet) [40] 
91.00 91.00 90.75 87.50 - 

Ibrahim et al. [42] 97.12 92.66 99.02 - - 

Woodbright et al. 

[39] 
98.32 - 98.34 - 98.27 

Shilaskar et al. [43] 92.02 92.07 91.82 91.85 - 

Our SPP-

MobileNet 
98.67 97.12 97.31 97.20 99.11 

Nigjeh et al. [40] compare three data pictures (VGG19-

DenseNet-ResNet) architectures under wide-ranging data 

conditions. Results of their model: success was invariable 

over VGG19 and Dense net, 93% either way. The ResNet 

model, however, performed worse with an accuracy of 

91% and an F1-Score that showed a dramatic dip to 

87.50%. This indicates that ResNet has difficulty 

achieving a good balance between both sides, leading it 

into valleys where everything fluctuates up and down 

perforce. Ibrahim et al. introduced a combined model of 

CNN and PSO.  

That model achieved an accuracy of 97.12% and a recall 

of 99.02. However, the precision rate is so low-just 92.66%; 

it seems to show that there may be some tradeoffs between 

identifying truly infected cases when false alarms also rank 

higher. Woodbright et al. achieved high recall (98.34%) 

and specificity (98.27%), relative to an overall accuracy of 

98.32%, as it can catch most true positives and negatives.  

However, only the latter was characterized in the 

manuscript; no other metrics like precision or F1-Score are 

reported for this system, which restricts our ability to 

estimate its performance more fully compared with the 

above steps. Shilaskar et al. [43] have more decent scores 

of 92.02% accuracy, 92.07% precision and 91.82 % recall, 

respectively. The F1-Score of 91.85% indicates that the 

tradeoff between precision and recall is quite stable, 

though not on par with most other models.  

Furthermore, the performance of SPP-MobileNet is 

superior in the following discussion section. Its speed 

drops slowly as it enters bigger and bigger scales of tumors, 

but clarity is high apart from that. However, some 

limitations also need to be considered. One of these is the 

misclassification between meningiomas and pituitary 

tumors, even though future developments include 

improving the model specifically for these tough cases and 

enlarging its applicability to all kinds of medical imaging 

tasks. 

V. CONCLUSION

This study introduced the integration of the SPP block 

into the MobileNet for brain tumor classification. This 

integration allows the MobileNet model to capture multi-

stage appearances over a single patient in terms of different 

sizes, shapes and locations of brain tumors, which is very 

challenging and has never been achieved by traditional 

attention mechanisms. By adding the SPP layer, the model 

excels in accuracy and generalization between various 

tumor types and, therefore, is strongly fitting for medical 

image classification tasks. Indeed, results reveal that SPP-

MobileNet significantly outperforms other state-of-the-art 

deep learning models and the baseline MobileNets. The 

model also keeps MobileNet’s low computational 

overhead, allowing for an efficient algorithm in a clinical 

setting. Although it appeared that the study does have 

merits, some limitations surrounding this study were noted. 

The model did not achieve the same high level of accuracy 

in differentiating between meningiomas and pituitary 

tumors, so further optimization is needed for some tumor 

types. Moreover, like many deep learning models, SPP-

MobileNet needs far more annotated medical data to 
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perform at these levels. The lack of such data and potential 

bias in the available datasets could affect the 

generalization of this model to larger patient populations 

and clinical settings.  

In future work, more optimizations can concentrate on 

increasing model performance on distinct, challenging-to-

classify tumor types like meningiomas and pituitary 

tumors. Researchers may also investigate methods to 

alleviate the potential for input sparsity, such as utilizing 

transfer learning or synthetic data augmentation to 

improve training. Generalizing the model to other medical 

imaging tasks, like detecting various neurological 

conditions, would extend its clinical relevance and 

importance. 
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