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Abstract—In 2020, it was recorded that 5% of the total 
population in Indonesia were people with disabilities. 
Individuals with physical disabilities, especially those who 
cannot use both their hands and feet are facing problem in 
their mobility. Since most wheelchairs are controlled using 
hands, these individuals are unable to operate a wheelchair 
independently. This research aims to create smart 
wheelchairs that use object detection models, to enable the 
user to navigate their wheelchair. The smart wheelchair is 
equipped with a camera that will capture the user’s head 
movement and will move based on it. Deep learning model 
algorithms are used to detect the head movement. In this 
research, three generations of the YOLO (You Only Look 
Once) model—YOLOv5, YOLOv6, and YOLOv7—are 
compared to determine the most suitable model for the 
system. It is found that YOLOv6N has the fastest inference 
time, that is 2.54 ms. All the models are also evaluated on 
several parameters: Precision, recall, mAP@.5, and 
mAP@.5:.95. There’s no huge difference between each 
variation. All of the precision, recall and mAP@.5 of each 
variation are above 0.9. Yet, the difference can be seen for the 
mAP@.5:.95 where the highest score is 0.808 from YOLOv6L 
and the lowest is 0.703 from YOLOv5N.  

Keywords—deep learning, YOLO, head motion, detection, 
wheelchair, computer vision  

I. INTRODUCTION

In 2020, it was recorded that 5% of Indonesia’s total 
population consisted of people with disabilities [1]. 
Disabilities are divided into several types, one of which is 
physical disability. Individuals with physical disabilities 
experience limitations or impairments in bodily movement 
functions. This condition can be caused by several factors 
such as congenital factors or accidents that occur before 
birth (prenatal phase), during birth (natal phase), and after 
birth (post-natal phase) [2]. 

People with physical disabilities often face problems 
and challenges in carrying out daily activities. The 
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difficulty of mobility or movement means that people with 
physical disabilities need assistive devices to help them 
with mobility. People with physical disabilities, especially 
those with hands and feet that cannot function, need 
assistive devices such as wheelchairs for mobility. 

Wheelchairs are divided into two, namely manual 
wheelchairs and electric wheelchairs. A manual 
wheelchair is a wheelchair that is operated by pushing the 
wheels on the right and left sides. Meanwhile, electric 
wheelchairs are wheelchairs that are generally controlled 
using a joystick. Both wheelchairs require hands that can 
function to control the wheelchair. This will cause a 
problem for people with physical disabilities who have 
problems with their hands. 

A number of advances have been investigated to fill this 
gap. One of them is the use of Electroencephalogram (EEG) 
impulses to operate wheelchairs through brain activity. 
Although it has potential, this approach has several 
limitations, including the need for multiple electrodes, 
susceptibility to noise, and user discomfort during 
prolonged use. Moreover, EEG-based control often 
requires extensive calibration and user training, which can 
be time-consuming, making it less practical for real-world 
applications. 

Similarly, alternative control methods, such as 
piezoelectric sensors, offer a different approach by 
detecting muscle movement or pressure variations. 
However, these methods can also pose challenges, such as 
discomfort from prolonged skin contact, potential 
inaccuracies due to unintentional muscle activation, and 
limitations in real-time response. Piezoelectric sensors 
may experience sensitivity degradation over time due to 
material fatigue or intensive use, necessitating periodic 
replacement. This weakness highlights the need for more 
intuitive and efficient control mechanisms that ensure 
reliable mobility assistance without sacrificing user 
comfort or daily functionality. 
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Deep learning, a subset of machine learning, employs 
Artificial Neural Networks (ANNs) to model and solve 
complex problems. One advantage of deep learning is its 
ability to automatically learn patterns and make 
predictions based on data. This enhances performance in 
tasks such as image recognition, speech processing, and 
natural language understanding. Additionally, deep 
learning models can generalize well to new situations by 
learning abstract and hierarchical representations of 
data [3].  

In several fields, deep learning has become a potent 
instrument for automated analysis and categorization. 
Additionally, studies on Convolutional Neural Networks 
(CNNs) for Image Detection and Recognition have shown 
how effective CNNs are in processing visual data, which 
makes them a fundamental method for a variety of image-
based applications. Further demonstrating the versatility of 
YOLO-based models in practical recognition tasks, 
“Research on Car License Plate Recognition Based on 
Improved YOLOv5m and LPRNet” supports their promise 
for high-accuracy object detection and classification. 
These developments show how deep learning can be 
applied more broadly in vision-based systems, such as 
assistive technology for wheelchair navigation. YOLO 
(You Only Look Once) is a deep learning algorithm that 
uses Convolutional Neural Networks for object detection. 
Unlike other algorithms, the YOLO algorithm can reduce 
the computational power and time needed for training and 
inferring objects [4].  

The proposed paper aims to assist the mobility of 
persons with disabilities while also contributing to the 
advancement of health technology in Indonesia by 
utilizing science and technology, particularly by 
implementing the latest methods in the field of Computer 
Vision. 

II. LITERATURE REVIEW

Several innovations have been developed to address 
this issue. One of them is the innovation made by Landu 
Jiang et al. [5]. This innovation utilizes EEG 
(electroencephalogram) signals to record brain electrical 
activity captured from electrodes attached to the head, 
IMU sensors, and cameras to move wheelchairs [5]. It 
presents a BCI-based smart wheelchair control system that 
leverages EEG signals and motion sensing techniques to 
provide intuitive human-machine interaction for people 
with disabilities. To operate the wheelchair, users must 
focus on navigating. However, the number of electrodes 
attached to the user’s head can cause discomfort. In 
addition, improper electrode placement may lead to 
inaccurate biomedical signal recordings. This 
impracticality can make it difficult for the user to control 
the wheelchair.  

Another innovation is made by Charoenporn Bouyam 
and Yunyong Punsawad. This innovation utilizes 
piezoelectric sensors to obtain facial muscle signals to 
observe position when blinking the eyes and moving the 
tongue [6]. Piezoelectric sensors can convert physical 
quantities, i.e. acceleration, strain, force, or pressure into 
electrical signals without an external power supply. Thin 

layer sensors are tiny and sensitive, they are used in high-
frequency applications. In applying the sensor, wheelchair 
users are required to control the movement of the tongue 
and blinking of the eyes periodically. However, it’s 
considered ineffective because it limits the user’s speaking 
ability. Eye blinking, which is a reflex movement, can 
confuse the navigation direction of a wheelchair. The 
placement of electrodes on the face will also interfere with 
user comfort. 

III. MATERIALS AND METHODS

This section discusses the implementation of the YOLO 
algorithm and CNN method to detect the direction of head 
movement. 

A. Dataset

This research utilizes an image dataset consisting of
2224 images. The data was acquired using a standard 
camera with a fixed setup, ensuring consistency in image 
quality and angle. During the image collection process, the 
distance between the participant’s face and the camera was 
maintained uniformly, and variations in head orientation, 
accessories, and data collection locations were considered 
to introduce diversity. The images are then divided into 
four classes. The four classes are front, down, right, and 
left. The sample image of the dataset can be seen in Fig. 1. 

(a) (b)

(c) (d)

Fig. 1. (a) front class (b) down class (c) right class (d) left class. 

The dataset is further divided into two categories: 
training data and testing data. The training data is used to 
train the model, while the testing data evaluates its 
performance. The details of the dataset used can be seen in 
Table I. To support further research in this field, we have 
made the dataset publicly accessible via Roboflow at 
https://universe.roboflow.com/pkm-celia/deteksi-arah-
gerak-kepala. 

TABLE I. PERSEBARAN DATA 

Jenis Depan Bawah Kanan Kiri 
Latih 483 431 422 440

Validasi 81 118 149 99 
Total 564 549 571 539

B. YOLOv5

YOLOv5 is the fifth generation of object detection
model called “You Only Look Once” which is designed to 
provide real-time results with high speed and accuracy [7]. 
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The model consists of four variances known as YOLOv5s, 
YOLOv5m, YOLOv5l, and YOLOv5x. There is no 
difference between the variances structure-wise. The 
difference is in the width and depth of the network [8]. The 
model works by taking the results from k-mean anchors 
and passing them through thousands of actual cost 
functions where the model will be trained [9]. 

YOLOv5N is the smallest model of YOLOv5. It has 
small parameters and relatively low hardware 
requirements [10]. The model has a good balance between 
size, speed and accuracy, which is good for mobile devices 
or embedded systems. Yet, the training process needs a 
longer time and higher hardware configuration. 

YOLOv5S is a lightweight variation of YOLOv5, with 
27M weight data. It is equal to 1/9 of YOLOv4 size, which 
allows this model to detect objects faster [11]. There are 
three parts of YOLOv5s, backbone, neck, and detection 
head [12]. Based on official information from the 
Ultralytics website, YOLOv5S is capable of processing 
images within 0.007 seconds. This is enough for real-time 
detection. Yet, YOLOv5S needs a large amount of training 
and capable hardware. 

YOLOv5M is a YOLOv5 variation that is deeper and 
wider than YOLOv5S. It has a complex structure yet high 
detection accuracy. The network of YOLOv5M consists of 
four parts: input, backbone, neck, and prediction [13]. The 
complexity of the model made it hard to be trained and 
optimized. 

YOLOv5L is a big detection model in all YOLOv5 
variants. It has strong identification and extraction ability, 
high detection accuracy, and the ability to learn and 
quickly adapt [14]. This ability made YOLOv5l ideal for 
detecting big objects such as vehicles. 

The complete comparison of four types of YOLOv5 
models can be seen in Table II. 

TABLE II. DIFFERENCE BETWEEN YOLOV5 VARIANCES [12] 

Model 
mAP 
(0.5) 

mAP 
(0.5:0.95) 

Speed 
v100 (ms) 

Params 
(M) 

FLOPs 
(G) 

YOLOv5N 45.7 28.0 0.6 1.9 4.5 
YOLOv5S 56.8 37.4 0.9 7.2 15.6 
YOLOv6M 64.1 45.4 1.7 21.2 49.0 
YOLOv6L 67.3 49.0 2.7 46.5 109.1 

C. YOLOv6

YOLOv6 algorithm built on YOLO architecture with
some improvements compared to previous YOLO versions. 
YOLOv6 has better performance in detecting small 
objects [15]. It integrates modern quantization techniques 
such as QAT (Quantization-Aware Training) and PTQ 
(Post-Training Quantization). Which is done to improve 
inference speed without lowering the network 
performance [16]. 

YOLOv6 also has four modifications such as renewing 
the network to the size compatible with the industry 
scenario with the best trade-off between accuracy and 
speed, adding a self-distillation strategy for classification 
and regression task, increasing performance by verifying 
detection technique to decide label, lost function, and data 
augmentation. Lastly, it reforms the quantization scheme 
to detect objects with the help of a RepOptimizer and 
channel-wise-distillation [17]. 

YOLOv6 provides four pre-trained models with 
different variations and scales. The four models are 
YOLOv6-N (nano), YOLOv6-S (small), YOLOv6-M 
(medium), and YOLOv6-L (large). The difference 
between the four models can be seen in Table III. 

TABLE III. PERFORMANCE DIFFERENCES BETWEEN YOLOV6 VARIANCES [18] 

Model Size 
mAP

(0.5:0.95) 
SpeedT4 trt fp16 b1 

(fps) 
SpeedT4 trt fp16 b32 

(fps) 
Parameters 

(M)
FLOPs (G)

YOLOv6N 640 37.5 779 1187 4.7 11.4 
YOLOv6S 640 45.0 339 484 18.5 45.3 
YOLOv6M 640 50.0 175 226 34.9 85.8 
YOLOv6L 640 52.8 98 116 59.6 150.7 

D. YOLOv7

YOLOv7 is also an object detection model. This model
is better in speed and accuracy compared to the other 
object detection models such as YOLOv5, YOLOR, 
YOLOX, and others [19]. YOLOv7 focuses on the 
optimization of the training process, including modules 
and the concept “trainable bag-of-freebie”. It’s an 
optimization method that is designed to improve accuracy 
without increasing the inference cost [20]. There are six 
types of YOLOv7. Those types are YOLOv7, YOLOv7-X, 
YOLOv7-W6, YOLOv7-E6, YOLOv7-D6, dan YOLOv7-
E6E.  

YOLOv7 is a base model that is efficient on standard 
GPU training. Neck scale modeling and compound scaling 
is done to improve the model’s depth and width [21]. This 
improvement creates YOLOv7’s variants, YOLOv7-X. 

YOLOv7-X is a YOLOv7 variant that is stronger and 
more advanced. This variation has more layers and 
parameters that allow it to process more information and 
more precise and accurate detection results [22]. This 
made YOLOv7-X need higher computation resources, 
which limits the usage to devices with low computational 
resources such as IoT and GPU Edge. 

YOLOv7-W6 is a variation that is lightweight and 
efficient in object detection. This YOLOv7 variation has a 
smaller network architecture so it has smaller parameters 
and model size. YOLOv7-W6 has been optimized for 
cloud GPU Computing [21]. 

YOLOv7-E6, YOLOv7-D6, and YOLOv7-E6E is the 
optimization of YOLOv7-W6. This is done to get high-end 
GPU clouds [23]. YOLOv7-E6 produced by improvement 
using  E-ELAN (Extended Efficient Layer Aggregation 
Network) to detect small objects. YOLOv7-D6 improves 
performance in some image sizes by compound multi-
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scale method. YOLOv7-E6E is the result of depth and 
width improvements of YOLOv7-E6. This model is the 
biggest and most accurate model, yet has slow speed [24]. 

YOLOv7 performance comparison can be seen in 
Table IV. 

TABLE IV. PEROFORMANCE DIFFERENCES BETWEEN YOLOV7 VARIANCES [25] 

Jenis Test Size 
APtest 

(%) 
AP50 test 

(%) 
AP75 test 

(%) 
Batch 1 

(fps) 
Batch 32 avarage time 

(ms) 

YOLOv7 640 51.4 69.7 55.9 161 2.8 

YOLOv7-X 640 53.1 71.2 57.8 114 4.3 

YOLOv7-W6 1280 54.9 72.6 60.1 84 7.6 

YOLOv7-E6 1280 56.0 73.5 61.2 56 12.3 

YOLOv7-D6 1280 56.6 74.0 61.8 44 15.0 

YOLO-E6E 1280 56.8 74.4 62.1 36 18.7 

 

E. Convolutional Neural Network (CNN) 

CNN (Convolutional Neural Network) is a deep 
learning algorithm designed for image processing, 
utilizing filters (kernels) to extract relevant features [26]. 
The CNN algorithm consists of several layers which are 
divided into five types, namely input layer, hidden layer, 
output layer, convolutional layer, and pooling layer. The 
structure of the CNN algorithm is composed of three-
dimensional neurons, namely width, height, and depth [27]. 
In CNN, height and width represent the size of layers while 
depth represents the number of layers. 

F. Dataset Preprocessing 

Data preprocessing is a process done to the dataset 
before it goes through the training phase. In this research, 
the preprocessing steps applied to the dataset included 
resizing and auto-contrast adjustments to standardize 
image dimensions and enhance contrast for better model 
performance.. 

G. Model Training 

The YOLO model was trained on a dataset with four 
classes (front, down, right, left) using a batch size of 32, a 
416×416 pixel input resolution, and 100 epochs. 
Annotations were stored in a YAML file, and training was 
performed on a single GPU. Performance was evaluated 
using Precision, Recall, mAP@.5, and mAP@.5:.95 on an 
independent dataset. The best checkpoint was selected for 
inference with a confidence threshold of 0.50. 

H. Procedure 

The system started by collecting images that will be 
used to train the model. Then, the images were annotated 
to make them a complete dataset. The images in the dataset 
then go through preprocessing. Here the preprocessing 
processes used were resize and auto contrast. The 
preprocessed data is then used to train the model. The 
models used here are several types of YOLOv5, YOLOv6, 
and YOLOv7. Once trained, these models were applied to 
detect head movements, which were subsequently used to 
control the motor driver via an Arduino. The complete 
workflow can be seen in the flowchart in Fig. 2 

 

 
Fig. 2. The workflow of the control motor of Smart Wheelchair by head 

movement. 

I. Hardware Configuration 

Fig. 3 shows connection between the hardwares used. 
The black arrow shows the power connection between 
items, where the red arrows show both power and data. 
From the image, NUC plays the role of the processor, 
where the main process is done here. This is where the 
object detection model runs. It is then connected to the 
arduino and camera. The Arduino then sends PWM signals 
to the motor driver, which in turn controls the motor’s 
movement based on the received signals. The driver then 
moves the motor based on the signal received. Power 
source used in the circuit is from the battery, which is 
connected to the switch and  power indicator. 

 

 
Fig. 3. The connection between the hardware used. 
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In order to get the wheelchair moving in the desired 
direction, both left and right motors are set. The motors 
will turn on and off based on the detection result. The 
details of the setting of the motor can be seen at Table V. 

TABLE V. MOTORS MOVEMENT 

Arah gerak 
kepala 

Arah gerak 
kursi roda 

Motor kanan Motor kiri 

Depan Maju On On 
Bawah Berhenti Off Off 
Kanan Kanan Off On 

Kiri Kiri On Off 

 
Based on Table V, when the system detects the head 

facing forward, the wheelchair will move forward by 
turning on both right and left motors. If the system detects 
the head facing downward, then the wheelchair will stop, 
by turning off both motors. When the system detects the 
head tilted to the right, then the wheelchair will turn right. 
This is done by turning on the left motor and turning off 
the right motor. On the other hand, if the system detects 
the head tilted to the left, the wheelchair will also turn left 
by turning on the right motor and turning off the left motor. 

J. Design 

 
Fig. 4. Prototype of smart wheelchair. 

Fig. 4 shows the wheelchair’s design with the dimension 
of 83 cm×49 cm×108 cm. There’s a 38 cm×40 cm×6 cm 
storage box under the wheelchair, functioning to store 
electronic components and the circuit. Inside it, NUC, 
Arduino Uno, motor driver and cables can be found. 

IV. RESULT AND DISCUSSION 

A. Testing on the Dataset 

When the model has trained, then it can be tested. Here, 
the model tested on 448 images, which is 20% from the 
whole dataset. The testing is done to compare the model 
speed when it’s detecting the object in the testing images 
set. Here, we compare the detection results from several 
types of YOLOv5, YOLOv6, and YOLOv7. To make a 
balance comparison, all the models were trained on the 
same conditions, which is 60 epochs with 0.8 confidence 
level. The detailed results can be seen in Table VI for 
YOLOv5, Table VII for YOLOv6, and Table VIII for 
YOLOv7. 

 

TABLE VI. RESULT FROM YOLOV5 

Jenis 
Average 

inference time 
Average NMS 

time 
YOLOv5 N 3.9 ms 3.2 ms 
YOLOv5 S 7.0 ms 2.2 ms 
YOLOv5 M 18.5 ms 2.1 ms 
YOLOv5 L 29.3 ms 2.1 ms 

 
Based on Table VI, YOLOv5N has the smallest average 

inference time, that is 3.9 ms. Yet for the average NMS 
time, both YOLOv5M and YOLOv5L are the smallest, 
that is 2.1 ms. 

TABLE VII. RESULT FROM YOLOV6 

Jenis 
Average 

inference time 
Average NMS 

time 
YOLOv6 N 2.54 ms 2.55 ms 
YOLOv6 S 4.23 ms 2.74 ms 
YOLOv6 M 9.50 ms 2.51 ms 
YOLOv6 L 15.37 ms 1.76 ms 

 
From Table VII, YOLOv6N has the smallest inference 

time, 2.54 ms and the biggest is YOLOv6L, with the speed 
of 15.37 ms. For the Average NMS time, YOLOv6L has 
the fastest speed, 1.76 ms and YOLOv6S is the slowest, 
2.74 ms. 

TABLE VIII. RESULT FROM YOLOV7 

Jenis 
Average 

inference time 
Average NMS 

time 
YOLOv7 14.8 ms 1.6 ms 

YOLOv7-X 15.5 ms 1.7 ms 
YOLOv7-W6 14.8 ms 1.7 ms 
YOLOv7-E6 13.2 ms 1.9 ms 
YOLOv7-D6 14.1 ms 1.8 ms 

YOLOv7-E6E 15.6 ms 1.7 ms 

 
Table VIII shows that YOLOv7-E6 has the smallest 

inference time, with the speed of 13.2 ms and the longest 
is YOLOv7-E6E, that is 15.6 ms. For the NMS time, the 
speed is almost the same for the six variants, yet the fastest 
is YOLOv7 with the speed of 1.6 ms. 

B. Model Evaluation 

Besides testing the model based on its performance in 
detecting objects in images, evaluations were also done for 
several parameters. The parameters used to evaluate the 
model are P@.5iou, R@.5iou, F1@.5iou, mAP@.5, and 
mAP@.5:.95. The complete result of the evaluation can be 
seen in Tables VII–IX. 

TABLE IX. EVALUATION FROM YOLOV5 

Types P R mAP50 mAP50-95 
YOLOv5 N 0.965 0.97 0.993 0.703 
YOLOv5 S 0.984 0.972 0.994 0.755 
YOLOv5 M 0.99 0.94 0.995 0.772 
YOLOv5 L 0.984 0.971 0.997 0.761 

 
From Table IX, YOLOvM has the highest precision, 

that is 0.99 and the lowest is YOLOv5N, 0.965. For the 
recall, YOLOv5S has the highest recall with the score of  
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0.972 and YOLOv5M is the smallest, 0.94. YOLOv5M 
has the highest score of mean average precision from 50 to 
95 (mAP50-95), with a score of 0.995. It also has the 

highest score for mean average precision at 50 (mAP50), 
0.772. 

Fig. 5 also shows the confusion matrix and the 
evaluation graph for each variation of YOLOv5.  

 

  

      

 
                    (a)                                     (b)                                            (c)                                            (d)                                           (e)        

Fig. 5. From columns (a) confusion matrix, (b) f1, (c) precision, (d) precision-recall, (e) recall, and from top rows YOLOv5N, YOLOv5S, 
YOLOv5M, YOLOv5L. 

TABLE X. EVALUATION FROM YOLOV5 

Types P@.5iou R@.5iou F1@.5iou mAP@.5 mAP@.5:.95 
YOLOv6 N 0.998 0.99 0.994 0.997 0.807 
YOLOv6 S 0.998 0.99 0.994 0.997 0.81 
YOLOv6 M 0.998 0.99 0.994 0.998 0.802 
YOLOv6 L 0.998 0.99 0.994 0.997 0.808 

 
Table X shows that YOLOv6 has almost the same score 

for every parameter except for Mean Average Precision 
from 0.5 to 0.95 IoU (mAP@.5:.95). YOLOv6N has the 
value of 0.807, YOLOv6S 0.81, YOLOv6M 0.802, and 
YOLOv6L 0.808. YOLOv6M has a slightly different score 
for Mean Average Precision at 0.5 Intersection over Union 
(IoU) (mAP@.5), 0.998. 

Fig. 6 also shows the confusion matrix and the 
evaluation graph for each variation of YOLOv6. 
 

TABLE XI. EVALUATION FROM YOLOV7 

Types P R mAP@.5 mAP@.5:.95 
YOLOv7 0.996 0.997 0.995 0.799 

YOLOv7-X 0.997 0.998 0.995 0.801 
YOLOv7-W6 0.991 0.993 0.995 0.797 
YOLOv7-E6 0.994 0.992 0.995 0.785 
YOLOv7-D6 0.996 0.996 0.995 0.789 

YOLOv7-E6E 0.991 0.993 0.995 0.789 

 
Table XI shows that YOLOv7-X has the highest 

precision, recall, and Mean Average Precision from 0.5 to 
0.95 IoU (mAP@.5:.95). It has precision score of 0.997, 
recall score 0.998, and mAP@.5:.95 score of 0.801. For 
the Mean Average Precision at 0.5 Intersection over Union 
(IoU) (mAP@.5), all variance have the same score, 0.995. 

Fig. 7 also shows the confusion matrix and the 
evaluation graph for each variation of YOLOv7.  
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           (a)                                       (b)                                           (c)                                            (d)                                             (e)      

Fig. 6. From columns. (a) confusion matrix, (b) f1, (c) precision, (d) precision-recall, (e) recall and from top rows YOLOv6N, YOLOv6S, 
YOLOv6M, YOLOv6L. 
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               (a )                                     (b)                                              (c)                                            (d)                                            (e)   
Fig. 7. From columns (a) confusion matrix, (b) f1, (c) precision, (d) precision-recall, (e) recall, and from top rows YOLOv7, YOLOv7-X, YOLOv7-

W6, YOLOv7-E6, YOLOv7-D6, YOLOv7-E6E. 

C. Real-World Testing 

To further validate the effectiveness of the smart 
wheelchair integrated with YOLOv6 in real-world usage 
scenarios, we conducted real-world testing involving three 
actual wheelchair users. The testing parameters include 
navigation accuracy, response time and user feasibility 
aspects such as safety, comfortable to use, and ease to use. 

The testing was conducted in the main entrance and exit 
points of a university building with high foot traffic and 
various obstacles, including pillars, chairs, and automatic 
doors. Each participant was asked to move in the testing 
environment while avoiding existing obstacles using head 
movements.  

During testing, we examined how the wheelchair 
responded to different head movements by analyzing 
motor activation. When the user turned their head right, the 
left motor stayed active while the right motor stopped, 
allowing the wheelchair to turn right. If the camera detects 
the user’s movement to the left, the right motor will 
activate and the left motor will stop. Moving forward 
required both motors to run simultaneously, while tilting 
the head downward stopped both motors, bringing the 
wheelchair to a halt. To ensure safety, the system 
automatically switched to Free Mode and stopped moving 
if it couldn’t reliably detect the user’s head position, 
preventing unintended movements and improving overall 
navigation stability. The test results can be seen in 
Table XII. 

TABLE XII. REAL-WORLD TESTING RESULTS 

Participant Navigation Accuracy (%) Response Time (ms) 
User Feasibility (1-4) 

Safety  Comfortable Ease to Use 

P1 80% 331 4 3 3 

P2 90% 487 4 4 2 
P3 90% 384 4 3 3 

  

Table XII shows the results of real-world testing, an 
average navigation accuracy of 86.67% indicating reliable 
head movement interpretation. The average response time 
of 401 ms ensuring real. Participants rate the feasibility 
positively, particulary for safety and comfort, though 
challenges were noted regarding ease of use and response 
time variability. 

To further analyze the system’s reliability, we evaluated 
the accuracy of the detected head direction by conducting 
tests using head direction image inputs with various test 
data samples, comparing the image processing results from 
the camera with the actual wheelchair movement in 
response to head movements. The results can be seen in 
Tables XIII–XVI. 

TABLE XIII. INTEGRATION TEST RESULTS OF HEAD MOVEMENT DETECTION FOR RIGHTWARD MOVEMENT 

No Input Image 
Head 

Direction 
Detection Result 

Image 

Motor Activation 
Integration 

Right Motor Left Motor 

1 

 

Right 

 

Inactive Active Matches 

2 Right 

 

Inactive Active Matches 

3 Right 

 

Inactive Active Matches 
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Table XIII presents the results of the integration test for 
detecting head movement to the right.  The system 
consistently identifies the head direction accurately and 

activates the motors as expected, with the left motor active 
and the right motor inactive, causing the wheelchair to 
move to the right as intended. 

TABLE XIV. INTEGRATION TEST RESULTS OF HEAD MOVEMENT DETECTION FOR LEFTWARD MOVEMENT 

No Input Image 
Head 

Direction 
Detection Result Image 

Motor Activation 
Integration 

Right Motor Left Motor 

1 

 

Left 

 

Active In-active Matches 

2 Left 

 

Active In-active Matches 

3 Left 

 

Active In-active Matches 

 
The outcomes of the integration test for identifying 

leftward head movement are shown in Table XIV. Smooth 
and exact leftward movement was ensured by the system’s 

accurate recognition of leftward head orientation, which 
triggered the right motor while deactivating the left motor. 

TABLE XV. INTEGRATION TEST RESULTS OF HEAD MOVEMENT DETECTION FOR FORWARD MOVEMENT 

No Input Image Head Direction 
Detection Result 

Image 
Motor Activation 

Integration 
Right Motor Left Motor 

1 

 

Front 

 

Active Active Matches 

2 

 

Front 

 

Active Active Matches 

3 

 

Front 

 

Active Active Matches 

Table XV outlines the integration test results for 
detecting forward head movement. The system 
consistently identified when the user faced forward and 

correctly activated both motors, ensuring the wheelchair 
moved straight ahead as intended with smooth and stable 
motion. 

TABLE XVI. INTEGRATION TEST RESULTS OF HEAD MOVEMENT DETECTION FOR DOWNWARD MOVEMENT 

No Input Image 
Head 

Direction 
Detection 

Result Image 
Motor Activation 

Integra-tion 
Right Motor Left Motor 

1 

 

Down In-active In-active Matches 

2 

 

Down In-active In-active Matches 

3 

 

Down In-active In-active Matches 
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Table XVI shows the results of the integration test for 
downward head movement detection. When the system 
detected the user tilting their head downward, both motors 
were deactivated, bringing the wheelchair to a full stop. 

D. Evaluation of Methodology 

This research shows that the YOLO-based deep learning 
approach for head motion detection in wheelchair 
navigation has advantages over existing approaches (e.g., 
EEG and Piezoelectric based studies), but this study still 
has limitations for future development. Our studys show 
that the proposed methodology produces a wheelchair that 
is less intrusive and more user-friendly. Unlike previous 
methodologies that require electrodes or physical sensors 
attached to the user’s body, our approach relies solely on 
computer vision, making it more practical for daily use. 

From the analysis conducted, it was found that the 
YOLOv6N model had the fastest inference time (2.54 ms), 
outperforming other YOLO variations tested in this study. 
This finding supports the theory that lightweight deep 
learning models can be used for real-time assistive 
technology applications with minimal latency. Another 
promising finding is that the trained model achieved high 
detection accuracy, with a mean average precision 
(mAP@.5) value of 0.99 and a precision-recall score above 
0.9. In line with previous studies on deep learning-based 
object detection, these results confirm that the 
methodology in this study is suitable for real-time mobility 
assistance systems. Furthermore, the proposed approach 
demonstrates scalability and adaptability, as the model can 
be retrained with additional datasets to accommodate 
different variations of user head movements. These 
findings are in line with previous studies that highlight the 
flexibility of deep learning models in assistive technology 
applications. 

However, this study shows a dependence on 
environmental conditions such as lighting and background 
conditions. In the conducted tests, it was found that 
adaptive image processing techniques are needed to 
maintain system performance under various conditions. 
Additionally, further optimization is still needed for the 
high computational power requirements on low-power 
embedded devices. The results of this research still focus 
on the four directions head movement, unlike previous 
research that included more complex movement patterns, 
the model developed in this study has not yet been able to 
recognize diagonal head movements.  

From real-world testing, it was observed that response 
times varied among participants, with an average latency 
of 401 ms. These results confirm the hypothesis that real-
time performance can be achieved, but optimization is still 
needed to reduce variability between different users. 
Although the system shows an average navigation 
accuracy of 86.67%, further improvements in model 
adjustments and dataset expansion are needed to enhance 
the system’s reliability. 

V. CONCLUSION 

The smart wheelchair is built using the YOLO model, a 
deep learning model based on Convolutional Neural 

Network (CNN). The model used to detect head movement 
direction, which will navigate the wheelchair’s movement. 
There are four classes of head movements that can be 
detected: front, right, left and down. The front class is 
when the head is facing straight forward. While the left and 
right class, is when the head is tilted to left or right. Lastly, 
the down class is detected when the head is facing down. 

After the model trained, it then tested and evaluated to 
see how well it is in detecting objects in images. From 
every variation of the three YOLO generations, 
YOLOv6N has the fastest inference time, that is 2.54 ms. 
For the NMS time, YOLOv7 has the fastest speed, that is 
1.6 ms. For the evaluation result, there’s no huge 
difference between each variation. All of the precision, 
recall and mAP@.5 of each variation are above 0.9. Yet, 
the difference can be seen for the mAP@.5:.95 where the 
highest score is 0.808 from YOLOv6L and the lowest is 
0.703 from YOLOv5N.  

Based on this study, real-world application was carried 
out using YOLOv6N, which has the fastest inference time, 
and this was also proven by testing in the real world where 
stable results were obtained. For further development and 
to provide more effective wheel function performance, a 
qualitative evaluation of the model needs to be conducted 
in more varied environmental conditions such as low-light 
conditions and occlusions. To overcome low-light issues, 
we acknowledge the potential benefits of multimodal 
sensor integration, such as adding infrared (IR) sensors to 
the vision-based YOLO model. Additionally, future 
improvement could focus on movement filtering 
techniques and adaptive thresholding to enhance stability 
in more dynamic environments. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

F.U. supervised the project, provided guidance, and 
reviewed the manuscript and provided feedback. E.B. 
handled the electrical components, integrated the system, 
and contributed to writing and editing. R.N.F. managed 
requirements engineering and contributed to writing and 
editing. Y.C.A. worked on deep learning programming 
and contributed to writing and editing. A.Q. coordinated 
the ethics testing and contributed to the writing and editing 
of the manuscript. All authors have read and approved the 
final version of the manuscript. 

ACKNOWLEDGMENT 

The authors would like to express their gratitude to 
Universitas Brawijaya for their support and resources 
throughout this research grand Professor No. 
02243/UN10.F1501/B/PT.01.05.1/ 2024.  

REFERENCES 

[1] Badan Pusat Statistik Kabupaten Kepulauan Talaud. (Desember 
2021). Hari Disabilitas Nasional. [Online]. Available: 
https://talaudkab.bps.go.id/news/2021/12/03/74/hari-disabilitas-
internasional.html    

Journal of Image and Graphics, Vol. 13, No. 4, 2025

334



[2] C. Riyanti and N. C. Apsari, “Description of the self-actualization 
needs of people with physical disabilities through work,” Jurnal 
Pekerjaan Sosial, vol. 3, no. 1, pp. 40–52, July 2020. (in Indonesia) 

[3] GeeksforGeeks. (January, 2023). Advantages and disadvantages of 
deep learning. [Online]. Available: https://www.geeksforgeeks. 
org/advantages-and-disadvantages-of-deep-learning/  

[4] N. Barazida. (July, 2022). YOLOv6: Next-generation object 
detection—Review and comparison. [Online]. Available: 
https://towardsdatascience.com/yolov6-next-generation-object-
detection-review-and-comparison-c02e515dc45f 

[5] L. Jiang et al., “SmartRolling: A human–machine interface for 
wheelchair control using EEG and smart sensing techniques,” 
Information Processing & Management, vol. 60, no. 3, 103262, 
May 2023. doi: 10.1016/j.ipm.2022.103262 

[6] C. Bouyam and Y. Punsawad, “Human–machine interface-based 
wheelchair control using piezoelectric sensors based on face and 
tongue movements,” Heliyon, vol. 8, no. 11, p. e11679, November 
2022. doi: 10.1016/j.heliyon.2022.e11679 

[7] Ultralytics. (November, 2023). Comprehensive guide to ultralytics 
YOLOv5. [Online]. Available: https://docs.ultralytics.com/yolov5/  

[8] Y. Wang and L. Pan, “YOLOV5s-Face face detection algorithm,” 
2022 China Automation Congress (CAC), pp. 1107–1112, 
November 2022. doi: 10.1109/cac57257.2022.10054674 

[9] K. Sudars et al., “YOLOv5 deep neural network for quince and 
raspberry detection on RGB images,” in Proc. 2022 Workshop on 
Microwave Theory and Techniques in Wireless Communications 
(MTTW), October 2022, pp. 19–22. doi: https://doi.org/10.1109/ 
mttw56973.2022.9942550 

[10] M. Bie, Y. Liu, G. Li, J. Hong, and J. Li, “Real-time vehicle 
detection algorithm based on a lightweight You-Only-Look-Once 
(YOLOv5n-L) approach,” Expert Systems with Applications, vol. 
213, 119108, March 2023. doi: 10.1016/j.eswa.2022.119108 

[11] S. Tan, G. Lu, Z. Jiang, and L. Huang, “Improved YOLOv5 
network model and application in safety helmet detection,” in Proc. 
2021 IEEE International Conference on Intelligence and Safety for 
Robotics (ISR), March 2021. 

[12] G. Liu, Y. Hu, Z. Chen, J. Guo, and P. Ni, “Lightweight object 
detection algorithm for robots with improved YOLOv5,” 
Engineering Applications of Artificial Intelligence, vol. 123, pp. 
106217–106217, August 2023. doi: 10.1016/j.engappai.2023. 
106217 

[13] S. Luo and J. Liu, “Research on car license plate recognition based 
on improved YOLOv5m and LPRNet,” IEEE Access, vol. 10, pp. 
93692–93700, January 2022. doi: https://doi.org/10.1109/ 
access.2022.3203388 

[14] N. Singh, P. Saini, O. Shubham, R. Awasthi, A. Bharti, and N. 
Kumar, “Improved YOLOv5l for vehicle detection: An application 
to estimating traffic density and identifying over speeding vehicles 
on highway scenes,” Multimedia Tools and Applications, vol. 83, 
pp. 5277–5307, May 2023. doi: 10.1007/s11042-023-15520-9 

[15] T. Davies. (Juny, 2022). MT-YOLOv6: A YOLO-inspired object 
detection model released. [Online]. Available: 
https://wandb.ai/telidavies/ml-news/reports/MT-YOLOv6-A-
YOLO-Inspired-Object-Detection-Model-Released--
VmlldzoyMjMzMzI5   

[16] A. Nazir and M. A. Wani, “You Only Look Once—Object detection 
models: A review,” in Proc. 2023 10th International Conference on 
Computing for Sustainable Global Development (INDIACom), 
New Delhi, India, 2023, pp. 1088–1095.  

[17] C. Li et al., “YOLOv6: A single-stage object detection framework 
for industrial applications,” arXiv preprint, arXiv:2209.02976, 
2022. doi: 10.48550/arxiv.2209.02976 

[18] Meituan. (September, 2023). YOLOv6. [Online]. Available: 
https://github.com/meituan/YOLOv6  

[19] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: 
Trainable bag-of-freebies sets new state-of-the-art for real-time 
object detectors,” in Proc. of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 2023, pp. 7464–7475. 
doi: 10.48550/arxiv.2207.02696 

[20] Ultralytics. (November, 2023). YOLOv7: Trainable bag-of-freebies. 
[Online]. Available: https://docs.ultralytics.com/models/yolov7/ 

[21] M. Kachurova, M. Porjazoski, P. Latkoski, B. Popovski, and G. 
Stevanoski, “Comparative analysis of YOLOv7 models for use in 
perimeter protection of military areas,” in Proc. 2023 30th 
International Conference on Systems, Signals and Image 
Processing (IWSSIP), Ohrid, North Macedonia, 2023, pp. 1–5. doi: 
https://doi.org/10.1109/iwssip58668.2023.10180260 

[22] Z. E. Baiat and Ş. Baydere, “Smart city traffic monitoring: YOLOv7 
transfer learning approach for real-time vehicle detection,” in Proc. 
2023 International Conference on Smart Applications, 
Communications and Networking (SmartNets), Istanbul, Turkiye, 
2023, pp 1–6. doi: 10.1109/smartnets58706.2023.10216009 

[23] X. Chen and Q. Xie, “Safety helmet-wearing detection system for 
manufacturing workshop based on improved YOLOv7,” Journal of 
Sensors, vol. 2023, pp. 1–14, May 2023. doi: 
10.1155/2023/7230463 

[24] Z. Lin, Y. Wang, J. Zhang, and X. Chu, “DynamicDet: A unified 
dynamic architecture for object detection,” in Proc. 2023 
IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR), Vancouver, BC, Canada, 2023, pp. 6282–
6291. doi: 10.1109/cvpr52729.2023.00608 

[25] K.-Y. Wong. (September, 2023). Official YOLOv7. [Online]. 
Available: https://github.com/WongKinYiu/yolov7  

[26] R. Chauhan, K. K. Ghanshala, and R. C. Joshi, “Convolutional 
Neural Network (CNN) for image detection and recognition,” in 
Proc. 2018 First International Conference on Secure Cyber 
Computing and Communication (ICSCCC), Jalandhar, India, 2018, 
pp. 278–282. doi: 10.1109/ICSCCC.2018.8703316 

[27] S. Ilahiyah and A. Nilogiri, “Implementation of Deep Learning in 
Identification of Plant Types Based on Leaf Images Using 
Convolutional Neural Network,” JUSTINDO (Jurnal Sistem dan 
Teknologi Informasi Indonesia), vol. 3, no. 2, pp. 49–56, August 
2018. doi: https://doi.org/10.32528/justindo.v3i2.2254 (in 
Indonesia) 

 
Copyright © 2025 by the authors. This is an open access article 
distributed under the Creative Commons Attribution License (CC-BY-
4.0), which permits use, distribution and reproduction in any medium, 
provided that the article is properly cited, the use is non-commercial and 
no modifications or adaptations are made. 

 

Journal of Image and Graphics, Vol. 13, No. 4, 2025

335




