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Abstract—Malaria has been recorded as one of the deadliest 
diseases globally. Accurate diagnosis is essential for suitable 
treatment, and the traditional practice of malarial diagnosis 
has proved inefficient as results depend on the skills of the 
health personnel. Deep learning models have recently 
proven helpful in the rapid detection of malaria parasites. 
This research focused on developing a classification model 
of Convolutional Neural Networks (CNN) architectures and 
comparing these models to identify the most effective one 
for automatic malaria parasite detection on thin blood 
smear images. A dataset of 27,558 digital blood images was 
collected from the National Institutes of Health (NIH) 
database in Bangkok, Thailand. The dataset was 
categorized into parasitized and uninfected cells and was 
fragmented into training (80%) and validation (20%) sets. 
Performance metrics for measuring the model’s 
performance include sensitivity, specificity, precision, and 
F1−Score. The model predicted and classified thin blood 
smear digital images as either parasitized or uninfected 
with custom InceptionV3 outperforming the VGG19 and 
custom CNN with an accuracy of 89.85%. The result shows 
that malaria diagnosis on microscopic thin blood images 
using deep learning can potentially improve early detection 
of malaria parasites, which could prevent deaths, reduce the 
workload of Parasitologists, and eliminate other limitations 
of the traditional malaria diagnostic approaches. 

Keywords—convolutional neural network, malarial parasite 
detection, classification model, Diagnosis, Digital blood 
images 

I. INTRODUCTION

Malaria is a life-threatening disease caused by 
plasmodium parasites transmitted to humans through the 
bites of infected female Anopheles mosquitoes in the 
form of sporozoites [1]. Malaria can be spread to other 
people from mosquitoes that bite malaria patients, blood 
transfusions, sharing syringes and can be transmitted 
from mother to fetus [2]. Malaria symptoms are similar 
to that of flu and can include high fever, chills, 
septicaemia, pneumonia, gastritis, enteritis, nausea, 
vomiting, abnormal liver function, kidney failure, 
anaemia, and death [2, 3]. Doctors usually treat malaria 
patients using antimalarial agents, such as Chloroquine, 
Doxycycline, Quinine Sulfate, Hydroxychloroquine, and 
Mefloquine [2]. Five species of plasmodium parasites 
can infect humans, including Plasmodium falciparum, P. 
Vivax, P. Ovale, P. Malariae, and P. Knowlesi [4]. 
Infection with P. falciparum accounts for more than 90% 
of the world’s malaria mortality and therefore remains an 
important threat to public health on a global scale [5]. 
According to the World Health Organization (WHO) 
2022 malaria report, 249 million people were infected 
with 608,000 deaths globally. The emergence and spread 
of the Plasmodium falciparum multidrug-resistant 1 
(Pfmdr1) allele pose a significant setback to global 
efforts to control and eradicate malaria infection by 
diminishing the efficacy of commonly prescribed 
antimalarial drugs, particularly in Sub-Saharan Africa, 
where malaria remains endemic. The Pfmdr1 D1246Y 
mutation is of specific importance due to its potential 
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role in modulating parasite susceptibility to antimalarial 
medicines and treatment outcomes [6]. Most of both 
morbidity and mortality occur in sub-Saharan Africa, 
accounting for over 90% of both cases [7, 8]. Children 
under 5 years of age are observed to be regular victims of 
the disease, with half the world’s population being also at 
risk [3, 9]. 

The standard practice for malaria diagnosis involves 
the collection of human blood samples, making blood 
smears, staining them, and examining the stained slides 
under the microscope for the presence of malaria 
parasites in the red blood cells. The traditional approach 
is time-consuming, tedious, and expensive, and the 
accuracy of the result depends on the skills and expertise 
of the Microscopist. Other methods of malaria diagnosis 
aside from microscopy include Rapid Diagnostic Test 
(RDT), Polymerase Chain Reaction (PCR), and Loop-
Mediated Isothermal Amplification (LAMP). Each 
method has its own merits and demerits focusing on the 
accuracy, cost availability of trained personnel, and 
infrastructure [10, 11]. PCR and LAMP are very 
expensive and require especially skilled laboratory 
personnel. RDT, though it is cheap and needs no special 
skill to perform it, has many limitations which include 
the inability to determine the parasite density and is 
usually specifically made based on a particular antigen of 
a Plasmodium specie. Additionally, RDT sometimes 
gives false-negative results due to poor storage, 
operational errors, very low parasite density, antigenic 
variation, and gene deletion (since it is based on a 
specific Plasmodium gene) [12, 13]. 

Studies have shown that most reported deaths in 
tropical zones are due to misdiagnosis giving rise to 
wrong results and improper medication and treatment [14, 
15], thereby threatening patients’ safety [16]. Hence, 
there is a need for a more reliable automated method 
devoid of human intervention. 

Technology innovation has made Deep Learning (DL) 
a popular and efficient approach for a quick, cheap, and 
more reliable malaria test by training computers to learn 
and compute distinctive features from data and make 
decisions without human intervention [3]. The 
Convolutional Neural Network (CNN) is a class of deep 
neural networks that is characterized by shared-weights 
architecture used to solve problems in Machine learning 
(ML) and computer vision. Deep Learning (DL) Is a 
variant of ML techniques that uses multiple layers to 
gradually extract higher-level features from the raw 
data [17], therefore, this is mostly a mathematical 
distribution for complex behaviour than traditional ML. 
CNN requires a large amount of data and processing 
power to learn patterns of features to produce a 
predictive model [3, 18]. ML is an Artificial Intelligence 
(AI) technique that automatically learns using learning 
algorithms and improves from experience [19]. This 
research focuses on developing classification models of 
CNN architectures, comparing them to identify the most 
effective model for malaria parasite detection on thin 
blood smear images using a public dataset from the 

National Institutes of Health (NIH) database, in Bangkok, 
Thailand.  

Machine Learning is currently used to revolutionize 
clinical parasitology laboratories, where the blood 
sample is converted to a digital image dataset used to 
train the DL models and test for the presence of malaria 
parasites in the red blood cells. 

The proposed model provides a quick diagnosis of the 
malaria parasite which has the potential to eliminate the 
limitations of traditional approaches, reduce the medical 
professional’s burden on screening malaria patients, and 
improve patient survival rate. This also provides people 
in rural areas with access to malaria diagnostic tools, 
where a lack of competent malaria microscopists is 
prevalent. 

A. Comparison of CNN-based Diagnosis with 
Traditional Methods: Manual Microscopy and Rapid 
Diagnostic Tests 

CNN-based malaria diagnosis offers several 
advantages over traditional methods like manual 
microscopy and Rapid Diagnostic Tests (RDT). While 
manual microscopy relies on the skill of the Microscopist 
and is time-consuming, CNN-based models can process 
blood smear images rapidly and consistently, reducing 
human error and increasing throughput. Unlike RDTs, 
which can be inaccurate under certain conditions (e.g., 
low parasite density or antigenic variation), CNN models 
provide objective and reliable results based on the 
analysis of cell features. Additionally, CNNs can handle 
large volumes of data with higher precision, enabling 
faster diagnosis in remote areas where healthcare 
resources are limited. While manual microscopy and 
RDTs are still widely used due to their low cost and 
simplicity, CNN-based methods represent a significant 
step towards automating and improving malaria 
diagnosis, especially in high-burden regions. 

B. Advancement beyond Existing Solutions 

This study presents a novel approach to malaria 
detection by leveraging CNN-based architectures such as 
Custom CNN, VGG19, and InceptionV3, which have 
shown substantial improvements in classifying malaria-
infected red blood cells from thin blood smear images. 
While previous studies have explored models like GRU, 
LSTM, and hybrid approaches that integrate Recurrent 
Neural Networks (RNNs) with CNNs, our work uniquely 
focuses on the comparison of traditional CNN 
architectures with transfer learning techniques. The use 
of InceptionV3 as a pre-trained model with fine-tuning is 
particularly innovative, as it allows us to benefit from a 
robust feature-extraction architecture that adapts well to 
the specificity of malaria image datasets. 

Unlike GRU and LSTM models, which excel in 
sequential data processing but are less effective at 
capturing spatial features in image data, CNNs are 
naturally designed for image classification tasks. This 
paper demonstrates the effectiveness of CNNs in 
addressing the challenges of feature extraction from 
microscopic blood images. Additionally, the comparison 
with hybrid models, which often combine CNNs with 
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RNNs to capture both spatial and temporal features, 
highlights the advantages of purely CNN-based 
approaches in terms of computational efficiency and 
accuracy when working with static images like blood 
smears. 

Furthermore, our study adds value by directly 
comparing Custom CNN, VGG19, and InceptionV3, 
which is a fresh contribution to the malaria diagnosis 
literature. By focusing on transfer learning and fine-
tuning techniques, we provide an effective method for 
adapting pre-trained models to medical image analysis, 
enhancing both performance and generalization. This 
approach advances the field by offering a more efficient, 
scalable, and interpretable solution compared to previous 
hybrid models or traditional deep learning architectures. 

II.  REVIEW OF RELATED WORK 

Machine Learning (ML) models have emerged as a 
potentially fitting tool for data-driven predictions in 
various fields of research; hence, the drug discovery area 
is undoubtedly one of the sectors that can profit 
significantly from the success of ML [20]. ML as a 
subset of AI has proved helpful in the rapid diagnosis 
and detection of many diseases including malaria, 
diabetes, and cancer, [21, 22]. Sumi et al. [23] reviewed 
studies on the detection of plasmodium using ML. The 
authors were able to evaluate 45 articles from five 
different databases and the ML techniques used achieved 
between 60%–95% accuracy. 

Irmak [24] designed a CNN-based malaria detection 
model consisting of 20 weighted layers to classify 
parasitized and unparasitized blood cell images. The 
model was trained with a dataset of 27,558 blood images 
with 95.28% accuracy. Similarly, Gezahegn et al. [25] 
developed an SVM model for blood image classification 
with 78.89% accuracy. Khalid et al. [26] reviewed 
studies that adopted different ML algorithms and 
methodologies on microscopic thick blood smear images 
to automate plasmodium detection. Similarly, Poostchi et 
al. [27] and Rosado et al. [28] developed an SVM 
classification model with 2000 Red-Green-Blue (RGB) 
on thin blood smear images achieving an accuracy of 
97.05%.   

A dual deep learning architecture, named the RBCNet 
algorithm, was used for red blood cell detection and 
counting in thin blood smear microscopic images. The 
two deep learning networks (U-Net and Faster R-CNN) 
were combined to detect highly overlapped RBCs in 
blood smear images. A dataset of 200,000 labelled cells 
across 965 images from 193 patients, in Bangladesh was 
used. The RBCNet architecture outperformed the 
traditional and other deep learning methods with 97% 
accuracy [3]. Sriporn et al. [2] used 7000 images of 
Xception, Inception-V3, ResNet-50, NasNetMobile, 
VGG-16, and AlexNet models to detect malaria parasites 
and classify thin smear images as infected or uninfected 
cells and use a rotational method to improve the 
performance of validation and the training dataset with 
CNN models. Xception outperformed other models with 
an accuracy of 98.86%.  

Furthermore, Rajendran et al. [29] focused on recent 
techniques and developments in the application of mobile 
devices and deep learning for plasmodium detection on 
both thick and thin film images. Other studies by Das et 
al. [30] and Hegde et al. [31] discussed the advancement 
of ML techniques for discriminating five different stages 
of infected erythrocytes (three P. vivax and two P. 
falciparum) due to malaria infection and non-infected 
cells using morphological information, texture, and 
colour. Results showed that 94 features were statistically 
significant in discriminating 6 classes.  

Prakash et al. [32] developed a CNN classification 
model to predict the presence of two Plasmodium species 
(P. vivax and P. falciparum) on a dataset available in the 
National Library of Medicine. The result shows an F1– 
Score of over 94%. Another study by Piccialli et al. [33] 
focused on the use of CNN to predict and classify 
parasitized cells in thin blood smears on a dataset of 27, 
558 cell images. Somasekar and Reddy [34] presented a 
broad and in-depth study on DL methodologies and 
applications in healthcare comprising the analysis of 
thick blood smears to diagnose malaria. Likewise, Bibin 
et al. [35] adopted DL and developed an edge-based 
segmentation of erythrocytes infected with plasmodium 
using microscopic cell images. 

Delahunt et al. [36] focused on Deep Belief Networks 
(DBN) on peripheral blood smear images as another 
approach to malaria diagnosis. Neural network, 
MATLAB (R2016a), Statistical Pattern Recognition 
Toolbox, and image processing were used in the study. 
This method proved more efficient than the state-of-the-
art methods. The Refs. [37–39] developed an automated 
framework for thin blood film malaria diagnosis using 
CNN, trained on a large and diverse dataset of field-
prepared thin blood films. Their result showed that 
quantitation and species identification results from field-
prepared samples are near to being accurate enough for 
drug resistance monitoring and clinical use cases.  

Other studies propose the use of Evolutionary 
Convolutional Deep Networks (ECDN) to diagnose 
malaria parasites, which can use evolutionary algorithms 
to automatically generate deep neural networks to 
optimize their network topology structure during the 
evolution process. ECDN has the advantage of being able 
to automatically generate an optimal network structure 
without the need for any prior knowledge of constructing 
a neural network, as compared to a traditional artificial 
convolution network [40].  

Fuhad et al. [41] adopted CNNs and SVMs models 
and recommend a low-cost automatic digital microscope 
(Autoscope) coupled with a set of computer vision and 
classification techniques, which can accurately diagnose 
a variety of infectious diseases- targeting the developing 
world. Furthermore, MacNeil and Eliasmith [42] 
developed an automatic CNN model for the detection of 
malaria from microscopic blood smear images. A variety 
of techniques comprising, data augmentation, 
Autoencoder, knowledge distillation, feature extraction 
by a CNN model, and classification through K-Nearest 
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Neighbours (KNN) and SVM were applied. The result 
achieved an accuracy of 99.23%.   

Beibei et al. [43] studied provides medical imaging 
evidence to interpret the CNN classification for subsolid 
nodules, which helps to strengthen the application of 
deep learning in the diagnosis of subsolid nodules and 
can be seen as an example of CNN interpretability 
research for other imaging applications. 

These studies have shown that research on detecting 
and predicting malaria is possible and has been done by 
some researchers. However, there is still room for 
improvement since the size of the dataset and approach 
to model development are always significant factors that 
contribute to the model outcome. The present study 
combined both traditional and customized CNN 
approaches to classify each candidate as either 
parasitized or uninfected. Additionally, it explored three 

CNN architectures (custom CNN, VGG19, and 
InceptionV3) to identify the most efficient algorithm for 
detecting malaria parasites.  

III.  METHODOLOGY 

A. Light Microscopy (LM) with Stained Blood Smears  

Light microscopy with stained blood smears is one of 
the available traditional diagnostic methods. The WHO 
recommended method for diagnosing malaria accurately 
is the parasite identification through light microscopy 
inspection of blood smears consisting of the steps as 
shown in Fig. 1 [44]: 

Blood, preparation of the blood film (Thin or Thick), 
Staining (Giemsa stain), Data analysis, Examination with 
LM, and Data Interpretation. 

 
Fig. 1. Malaria diagnosis using light microscopy with stained blood smears. 

Fig. 1 summarizes the steps for the LM malaria 
Diagnosis; a sample of the patient’s peripheral blood is 
acquired. The blood is applied to a microscopic slide, and 
a thick or thin film is prepared. To allow for the 
distinction of the blood cells and parasites, the dried 
blood film is stained. Microscopic slides are most 
commonly stained with a Giemsa stain, but other 
Romanowsky stains such as Field’s and Leishman stains 
can also be used [34, 45]. Then, the microscopic slides 
are examined with a 100× oil immersion lens of a light 
microscope. Finally, in thick smears data interpretation, 
the parasite density is determined per μL of blood, by 
determining the number of parasites ×8000, divided by 
the number of white blood cells. In thin smears, the 
number of infected and non-infected red blood cells are 

tallied, and parasitaemia is expressed as a percentage of 
total cells infected. The species and stage of the parasites 
are also identified.  

B. Process Flow and the System Algorithm 

The methodology of diagnosing malaria from blood 
smear images utilizing deep learning techniques is 
encapsulated in the research flow diagram (Fig. 2). This 
diagram methodically outlines the stages and techniques 
implemented in the study; it is a detailed representation 
of the entire workflow. It shows the pivotal steps from 
data acquisition and preprocessing to the evaluation of 
CNN models, highlighting the systematic progression of 
this study. 

 
Fig. 2. Flow diagram of the research methodology. 

Blood  Preparation of the 
blood film (thin or 
thick)  

Staining (Giemsa 
colour)  

Data Interpretation  

Examination with 
light Microscope 

 Dataset for 
Analysis  
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The first step in Fig. 2 is to get a public dataset 
available in the National Institutes of Health (NIH) 
database. The second step is to prepare the dataset in the 
form it should be used to train CNN architectures. Next is 
to train the model for the classification of infected and 
uninfected thin optical microscopic blood films as shown 
in Fig. 3, and finally the performance of the models was 
evaluated.  

 

 
(a)                                 (b) 

Fig. 3. Blood films (a) uninfected red blood cells (b), malaria-infected 
red blood cells [3]. 

C. Dataset Description 

The study utilized the NIH Malaria dataset, comprising 
27,558 Segmented red Blood Cell (RBCs) images, 
equally distributed (balanced) between the Plasmodium 
falciparum-infected and uninfected cells as shown in 
Table I. The dataset is publicly made available at the 
Lister Hill National Center for Biomedical 
Communications (LHNCBC) of the National Library of 
Medicine (https://lhncbc.nlm.nih.gov/LHC-
research/LHC-projects/image-processing/malaria-
datasheet.html) established by the United States Congress 
in 1968. The images are dye-stained thin blood smears of 
50 healthy and 150 P. falciparum-infected patients 
collected from a Bangladeshi at 1000× magnification. 
The images were acquired using two different light 
microscopes, an Olympus and a Motiff, and were 
manually annotated by an expert slide reader at the 
Research Unit of Mahidol-Oxford Tropical Medicine in 
Bangkok, Thailand. Given the resolution of the dataset as 
1000x magnification, it provides an ideal test bed for our 
chosen models: custom CNN, VGG19, and InceptionV3; 
known for their efficacy in analysing modestly-resolved 
images. Such a resolution, while lower than some high-
end microscopy techniques, is reflective of real-world 
diagnostic environments, particularly in resource-limited 
settings where malaria is most prevalent. Inception v3 is a 
combination of many ideas developed by several 
researchers. The computational cost and memory 
consumption are much smaller [42]. The selected models 
were strategic, and aimed at harnessing their proven 
strengths in feature extraction and pattern recognition at 
lower resolutions. This approach provided a comparative 
framework to assess the performance of each model in a 
consistent setting.  

Although the dataset is balanced, potential biases 
include class imbalance and data collection bias from a 
specific geographic region (Bangkok), limiting its 
generalizability. Annotation bias may arise from manual 
labeling inconsistencies, and overfitting is a concern, 
especially for VGG19 and Custom CNN, due to the 

relatively smaller dataset and lack of sufficient variation 
in some cases. 

TABLE I. CLASSIFICATION OF THE DATASET 

Label Training set 
Validation 

set 
Total 

Parasitized 11,023 11,023 22,046 

Uninfected 2755 2755 5510 

Total 13,778 13,778 27,556 

 
1) Data preprocessing 
The project followed a vital data pre-processing.  
Data Augmentation techniques were applied to the 

dataset to adapt to the variability in blood smear images 
and enhance the robustness of the trained models. The 
techniques involved variants of the images generated 
through rescaling (0–1), rotation (range = 40), width shift 
(range = 0.2), height shift (range = 0.2), shear (range = 
0.2), zoom (range = 0.2), horizontal flip. The images 
were also modified to create a uniform look by filling 
with the nearest pixels thereby enriching the dataset and 
minimizing overfitting risks. The TensorFlow and Keras 
libraries were used to resize and normalize the images 
before introduction into the deep learning models. This 
process ensures effective and efficient model training. 

2) Training and testing dataset split 
In this study, the dataset was split into training and 

validation sets to evaluate the performance of the models. 
Specifically, 80% of the data was used for training, while 
the remaining 20% was reserved for validation. This split 
ensured that the models were trained on a large portion of 
the data while still having a separate set of unseen data to 
test their generalization capabilities. The validation set 
was used to monitor the models’ performance during 
training, providing an indication of how well the models 
would perform on new, unseen data. 

Cross-validation was not used in this study. Instead, 
the training and validation datasets were partitioned once, 
with the training data being used to fine-tune the models 
and the validation data used to assess performance after 
each epoch. While cross-validation could provide 
additional insights into the model’s robustness, the 
current study opted for a simpler split due to the size of 
the dataset and computational constraints. However, in 
future work, incorporating k-fold cross-validation could 
further validate the models’ performance and provide a 
more thorough evaluation. 

D. Convolutional Neural Network (CNN) Model 

CNN is the cornerstone of the field of deep learning, 
renowned for its efficient convolutional operation. It is an 
efficient recognition method which has been developed in 
recent years. The network avoids the complex pre-
processing of the image, and one can input the original 
image directly. It uses local receptive field, weights 
sharing, and pooling technology and makes the training 
parameters greatly reduced. It also has a certain degree of 
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translation, rotation, and distortion invariance of image 
and has made great progress in the field of image 
classification [41, 46, 47]. The CNN architectures were 
designed with a blend of convolutional, nonlinearity 
(activation), pooling, and fully connected layers. The 
architecture of the custom CNN model is made up of an 
input layer 66×66×3 in dimension, 2 convolution layers 
with a 3×3 kernel and 16 filters, 2×2 pooling layers, a 
dropout rate of 0.3, and relu activation. The fully 
connected layer is 1×1×14,400 dimensional. The final 
output is generated using the softmax function. The 
model has a total of 931,457 trainable parameters. 

Three distinct CNN models were explored in this 
research: the Custom-built CNN model and transfer 
learning-based VGG19 and InceptionV3 models. The 
transfer models were fine-tuned using the malaria smear 
images and by fine-tuning the backbone layers of the pre-
trained model.  The comparative analysis of these models 
on the same dataset provided insights into their relative 
strengths and efficiencies in malaria detection. 

1) CNN model training 
The dataset was split into training and validation sets, 

as detailed in Table I. The model training was performed 
with 80% of the training data, while the remaining 20% 
was used in validation and testing. The models were 
trained iteratively, fine-tuning neuron weights and biases 
to minimize the loss of function, thereby enhancing the 
model’s ability to classify blood smear images as 
parasitized or unparasitized. For each model, the Adam 
optimizer was used at a learning rate of 0.01. 

The model was evaluated using accuracy, sensitivity, 
specificity, precision, F1−Score, ROC-AUC, and 
confusion matrices. 

2) Transfer learning 
This study employed transfer learning; a technique 

where knowledge acquired from one domain is applied to 
a similar yet distinct domain. Specifically, the study 
adopted pre-trained CNN models, which were originally 
trained on the ImageNet dataset for the binary 
classification of blood smear images. This approach 
leverages the extensive feature-learning capabilities of 
these models, which are crucial for recognizing textures 
and shapes pertinent to parasitized and uninfected blood 
cells. Subsequently, the entire model was fine-tuned by 
unfreezing the backbone layers. The fine-tuning phase 
involved training both the new head and the backbone 
layers, allowing the model to adjust its learned features to 
better align with our specific classification task. 
Employing transfer learning with differential learning 
rates in fine-tuning exemplifies an advanced strategy in 
deep learning. It harnesses the robust pre-existing 
knowledge from large datasets while effectively adapting 
to new, specialized tasks, as demonstrated in the malaria 
detection study.  

3) Fine-tuning and unfreezing 
The study implements the techniques of fine-tuning 

and unfreezing in adapting pre-trained Convolutional 
Neural Networks (CNNs) for malaria detection, drawing 
upon contemporary research in the field. The process of 
fine-tuning, as detailed in [40] involves adjusting the 

connection weights of a neural network to enhance its 
stability and performance for specific tasks. This 
approach is crucial in tailoring the network to effectively 
classify blood smear images [48]. The fine-tuning of the 
models reported in this paper is in line with the 
methodology proposed by [49].  

4) Hyperparameter tuning 
In this study, hyperparameter tuning was performed to 

optimize the performance of the CNN models. The key 
hyperparameters, including the learning rate, batch size, 
and number of epochs, were selected based on empirical 
experimentation and prior knowledge of deep learning 
practices [50]. The initial learning rate was set to 0.001, 
and the batch size was set to 32 based on typical values 
for image classification tasks. Early stopping was 
implemented to prevent overfitting, ensuring that the 
models did not train for too long and started to memorize 
the training data. 

To fine-tune the models, we employed a grid search 
approach for selecting the optimal learning rate and batch 
size, testing various combinations, and evaluating their 
performance on the validation set. The hyperparameters 
were adjusted iteratively, with the model’s performance 
metrics (such as accuracy and loss) closely monitored at 
each step. Additionally, dropout rates and activation 
functions were optimized based on initial results, with 
ReLU being used for activation in all layers. 

For transfer learning, pre-trained models (VGG19 and 
InceptionV3) were initialized with weights from 
ImageNet, and the final dense layers were fine-tuned on 
the malaria dataset. The fine-tuning process involved 
unfreezing the last few layers of the network and 
adjusting their weights during training. The optimizer 
used was Adam, known for its adaptive learning rate, and 
the loss function was categorical cross-entropy for multi-
class classification. 

Future work could benefit from more advanced tuning 
techniques, such as random search or Bayesian 
optimization, which could potentially improve 
performance by exploring a larger hyperparameter space. 

IV.  RESULTS AND ANALYSIS 

Following the data augmentation process, the dataset 
was utilized to train the pre-trained Custom CNN, 
VGG19, and InceptionV3 models through a transfer 
learning approach. Initially, the layers of these models 
were frozen to leverage the pre-trained features, and 
subsequently, fine-tuning was applied to enhance model 
adaptability to the specific characteristics of our dataset. 
The accuracy of results both before and after the 
application of fine-tuning to assess the impact of this 
process on each model was recorded. 

To comprehensively evaluate the performance metrics 
of each model, confusion matrices were plotted. These 
matrices provided a detailed insight into the true positive, 
false positive, true negative, and false negative rates, 
which are crucial for understanding the models’ 
predictive capabilities in the context of malaria detection. 
The performance metrics, including sensitivity, 
specificity, precision, and F1−Scores, were calculated and 
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compared to offer a clear view of each model’s strengths 
and limitations in accurately identifying malarial 
parasites. 

This detailed analysis allowed the study to conclude 
the effectiveness of each deep learning model adopted in 
handling the task of malaria detection, considering the 
challenges posed by the varying qualities and 
characteristics of the dataset. The results from this 
analysis are crucial for guiding future improvements and 
adaptations in automated malaria detection methods. The 
model can be seamlessly integrated into real-world 
malaria diagnosis workflows by providing a rapid, 
automated tool for analyzing blood smear images. Instead 
of relying solely on skilled Microscopists, which can be a 
limiting factor in resource-limited settings, the model can 
be used to assist in the preliminary diagnosis of malaria. 
The deep learning model can quickly classify blood cells 
as parasitized or uninfected, reducing the time and 
workload for healthcare professionals. This system could 
be deployed as an application in both centralized and 
remote healthcare settings, where trained personnel may 
be scarce, ensuring timely and accurate diagnoses. 
Additionally, it could be integrated with existing 
laboratory infrastructures, allowing for easier scalability 
and widespread adoption in malaria-endemic regions, 
improving early detection and treatment outcomes. 

A. Model Performance 

The performances of the Custom CNN, VGG19, and 
InceptionV3 models, were compared, particularly in 
terms of accuracy. The results, as illustrated in Table II, 
reveal the variance in model performance: 

TABLE II. MODEL ACCURACY COMPARISON 

Model Accuracy 

Custom CNN 86.65% 

VGG19 89.80% 

InceptionV3 89.85% 

 

These results suggest that the InceptionV3 models 
outperformed the other two models. InceptionV3 
outperforms VGG19 and Custom CNN due to its efficient 
Inception modules, which use multiple convolution filter 
sizes in parallel, capturing more detailed features. 
Additionally, inceptionV3 has other features like 
factorized convolutions and auxiliary classifiers that 
enhance training efficiency and stability, while batch 
normalization ensures smoother training. These features 
allow InceptionV3 to achieve higher accuracy, as it 
extracts both low- and high-level features more 
effectively than the other models. 

 The finding is critical in the context of our research 
objectives, which aim to identify the most effective 
model for malaria detection. Fig. 4 complements these 
findings by graphically representing the accuracy of the 
models. The comparison of these models, based on 
accuracy, offers insightful revelations about their 

suitability for malaria detection. It underscores the 
potential of VGG19 and InceptionV3 models in achieving 
accurate results, making them preferable choices for 
implementation in real-world diagnostic settings. This 
improvement underlines the effectiveness of employing 
fine-tuning techniques on pre-trained networks, as it 
allows them to adapt and recognize specific classes that 
they were not initially trained to identify.  

 

 
Fig. 4. Accuracy Comparison across models. 

B. Performance Metrics 

This research employed a suite of performance metrics 
to evaluate and compare the effectiveness of different 
algorithms, namely Custom CNN, VGG19, and 
InceptionV3. Central to the evaluation methodology was 
the use of a confusion matrix, a crucial statistical tool that 
facilitates a clear understanding of the models’ 
performance. It categorizes the predictions into four 
distinct groups: True Positives (TP), True Negatives (TN), 
False Positives (FP), and False Negatives (FN), enabling 
a comprehensive assessment of each model’s diagnostic 
accuracy. 

One of the primary metrics we considered was 
accuracy; that is, the proportion of correctly predicted 
observations to the total number of observations: (TP 
+TN) / (TP + FP+ FN +TN). While accuracy offers an 
overall measure of a model’s performance across the 
dataset, it can sometimes be misleading, especially in 
cases of unbalanced datasets. Therefore, we used 
accuracy in conjunction with other metrics to gain a 
deeper understanding of each model’s capabilities. 

Precision, another critical metric, was calculated as TP 
/ (TP + FP). This metric measures the proportion of 
actual positives correctly identified, making it significant 
in the context of malaria detection, where the cost of false 
positives is high. High precision indicates a model’s 
effectiveness in correctly marking cells as parasitized, 
thus minimizing the chances of false alarms. 

Sensitivity, or recall, measured as TP / (TP + FN), 
gauges the model’s ability to correctly identify all 
positive cases. In medical diagnostics, where missing a 
disease case could have severe consequences, a model’s 
sensitivity is of paramount importance. It represents the 
model’s capability to detect all parasitized cells 
accurately, which is crucial for reliable malaria detection. 
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Specificity, computed as TN / (TN + FP), assesses the 
model’s accuracy in identifying true negatives. This 
metric is vital to confirm that the model is not falsely 
identifying healthy samples as parasitized, thus ensuring 
the model’s reliability in diagnosing uninfected cells. 

The F1–Score is a harmonic mean of precision and 
sensitivity, calculated as 2 × (sensitivity × precision) / 
(sensitivity + precision). The metric is particularly useful 
in unbalanced datasets as it provides a balance between 
precision and recall. The F1–Score is crucial in our study 
as it offers a more nuanced view of the model’s 
performance, especially when dealing with asymmetrical 
class distributions commonly seen in medical datasets. 

Through a detailed comparative analysis using these 
metrics, we assessed the Custom CNN, VGG19, and 
InceptionV3 models on their individual performance for 
malaria parasite detection. This comprehensive approach 
to performance evaluation guided our understanding of 
each model’s applicability in real-world diagnostic 
scenarios, especially in resource-limited settings where 
malaria is prevalent.  

C. Classification Report 

This study involved a detailed examination of training 
and validation accuracy and loss across batches for each 
model, offering insights into their learning patterns and 
generalization capabilities. This assessment, illustrated in 
Figs. 5–7 and encapsulated in Table III, provides a 
comprehensive understanding of each model’s 
performance. 

 
(a) 

 
(b) 

Fig. 5. Custom CNN model: (a) Training and validation accuracy, (b) 
loss function. 

TABLE III. CLASSIFICATION REPORT OF MODEL PERFORMANCE 

Model Accuracy Sensitivity Specificity Precision F1 −Score 

Custom CNN 86.65% 0.53 0.47 0.50 0.51 

VGG-19 89.80% 0.54 0.45 0.50 0.50 

InceptionV3 89.85% 0.53 0.47 0.50 0.51 

 
 

For the Custom CNN model, Fig. 5(a) and 5(b) 
illustrate noticeable fluctuations in training accuracy and 
loss across different batches, indicating that the model’s 
learning process varied in effectiveness during training. 
These ups and downs suggest that the model was 
adjusting its parameters dynamically as it encountered 
diverse examples, possibly reflecting challenges in fully 
stabilizing the learning early on. Despite this variability 
in training performance, the validation accuracy remained 
fairly steady throughout the training period. This stable 
validation accuracy implies that although the model’s 
performance on the training data varied, it consistently 
generalized well to unseen data. In other words, the 
Custom CNN managed to avoid overfitting despite the 
irregular training behavior, maintaining reliable 
predictive power when evaluated on new samples outside 
the training set. This balance between adaptability during 
training and stable generalization is a positive indicator of 
the model’s robustness. 

For the VGG19 model, Fig. 6(a) and 6(b) show that 
training accuracy and loss fluctuate across batches, 
indicating that the model’s learning process experienced 
variable progress during training. However, unlike the 
training metrics, the validation accuracy and loss remain 
almost flat and unchanged throughout the entire training 
period. This persistent lack of improvement or variation 
in the validation metrics suggests that the model may be 
overfitting to the training data—it learns specific patterns 
in the training set without effectively generalizing to new, 
unseen data. The steadiness of validation performance, 
despite changes in training accuracy, indicates that the 
model is not making meaningful gains in its ability to 
correctly classify parasitized versus uninfected cells when 
tested on validation samples. This stagnation in validation 
results points to a limitation in VGG19’s capacity to 
distinguish these two classes reliably, which is critical for 
accurate malaria diagnosis. The model’s balanced but 
comparatively lower validation performance highlights a 
challenge: while it memorizes training examples, it 
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struggles to capture generalized features that would 
improve detection accuracy on unseen blood smear 
images.  

 

 
(a)  

 
(b) 

Fig. 6. VGG 19 Model: (a) Training and Validation Loss function, (b) 
Accuracy. 

The InceptionV3 model, as shown in Fig. 7(a) and 7(b), 
demonstrates noticeable fluctuations in training accuracy 
and loss, reflecting the dynamic adjustments the model 
makes as it learns from the training data. Despite these 
variations during training, the validation accuracy 
remains consistently stable throughout the process. This 
steady validation performance suggests that InceptionV3 
is effectively generalizing its learned features to unseen 
data, maintaining reliable predictive capability. The 
model’s architecture, which includes sophisticated 
inception modules designed to capture multi-scale 
features, enables it to extract and analyze intricate 
patterns within microscopic blood smear images more 
efficiently than the other models evaluated. This ability to 
balance learning complexity with stable validation results 
highlights InceptionV3 as a particularly strong and 
promising candidate for accurate malaria parasite 
detection in this application.  

 

 
(a) 

 
(b) 

Fig. 7. Inceptionv3 model: (a) Training and validation accuracy, (b) 
Loss function. 

Table III and Fig. 7 present the classification 
performance metrics for the three models. Notably, 
InceptionV3 achieved the highest overall accuracy of 
89.85%. Despite this edge in accuracy, all three models—
Custom CNN, VGG19, and InceptionV3—exhibited very 
similar results in other key metrics such as sensitivity, 
specificity, precision, and F1−Score. The differences in 
these measures were minimal and statistically 
insignificant, indicating that while InceptionV3 
performed slightly better overall, the models were 
comparably effective in correctly identifying both 
parasitized and uninfected cells. This similarity suggests 
that accuracy alone does not fully capture the models’ 
diagnostic capabilities, and a comprehensive evaluation 
across multiple metrics is essential to assess their true 
performance in malaria detection. 
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Fig. 8. Classification graph of model performance. 

This analysis highlights the importance of not only 
accuracy but also the specific capabilities and design 
considerations of machine learning models when applied 
to medical diagnostics (see Fig. 8).  

Other useful metrics used to evaluate the models were 
ROC-AUC and confusion matrices shown as follows: 

 

 
Fig. 9. CNN confusion matrix. 

The CNN confusion matrix and ROC curve shown in 
Figs. 9 and 10 demonstrate the model’s strong overall 
ability to distinguish between parasitized and uninfected 
blood cells, with an AUC of 0.87 indicating high 
discriminative power. The confusion matrix reveals 
perfect specificity (100%) and precision (100%), meaning 
the model correctly identifies all uninfected cells and its 
positive parasitized predictions are always accurate. 
However, the model suffers from very low sensitivity 
(0.8%), indicating it misses the vast majority of infected 
cells by misclassifying many parasitized samples as 
uninfected. This imbalance highlights that while the 
model is precise in its positive identifications and reliable 
in ruling out healthy cells, it requires significant 

improvement in detecting all malaria cases to avoid 
dangerous false negatives in diagnosis. 

 

 
Fig. 10. CNN ROC curve. 

The VGG19 confusion matrix and ROC curve results 
shown in Figs. 11 and 12 highlight the model’s strong 
performance, with an AUC of 0.93 reflecting excellent 
ability to differentiate between parasitized and uninfected 
blood cells. This high AUC indicates that VGG19 
performs significantly better than random chance, making 
it a reliable tool for malaria detection. The confusion 
matrix reveals that the model correctly identifies most 
uninfected cells with 96.4% specificity and achieves high 
precision of 93.4% when predicting parasitized cells. 
However, its sensitivity is relatively low at 55.1%, 
meaning the model fails to detect a substantial portion of 
infected cells. While VGG19 excels at confirming 
healthy samples, this limited sensitivity points to a crucial 
need to improve its detection of parasitized cells for more 
accurate malaria diagnosis. 

 

 
Fig. 11. VGG19 confusion matrix. 
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Fig. 12. VGG19 ROC curve. 

 
Fig. 13. Inceptionv3 confusion matrix. 

 
Fig. 14. InceptionV3 ROC curve. 

The InceptionV3 confusion matrix and ROC curve 
results, displayed in Figs. 13 and 14, demonstrate that the 
model performs well in distinguishing parasitized from 
uninfected blood cells, achieving an AUC of 0.87. This 
indicates strong overall discriminative ability, although it 
falls slightly short of VGG19’s higher AUC of 0.93. The 

confusion matrix reveals that InceptionV3 attains perfect 
specificity (100%), meaning it correctly identifies every 
uninfected cell without falsely labeling any as infected. It 
also achieves perfect precision (100%) for parasitized 
predictions, ensuring that every cell it classifies as 
infected is truly parasitized. Despite these strengths, the 
model’s sensitivity is notably low at 0.8%, signifying that 
it fails to detect the vast majority of infected cells, 
incorrectly classifying many parasitized cells as 
uninfected (false negatives). This low sensitivity is a 
serious concern in medical diagnosis, as missing infected 
cases can lead to delayed treatment and adverse patient 
outcomes. In summary, while InceptionV3 excels at 
ruling out healthy cells and makes highly accurate 
positive identifications, its limited ability to detect all 
infected cells highlights a critical need for further model 
optimization to reduce false negatives and improve its 
practical utility in malaria diagnosis. 

D. Limitations of the Model 

While the proposed CNN-based models show 
promising results in malaria detection, several limitations 
must be considered. One key limitation is the 
generalizability of the model, as the dataset used in this 
study was sourced from a specific geographic region 
(Bangkok, Thailand). This limits the model’s 
applicability to other regions where malaria parasite 
strains, environmental factors, or image quality may 
differ. Future work should aim to include more diverse 
datasets from various malaria-endemic areas to improve 
the model’s robustness. 

Another limitation is the potential for false positives 
and false negatives. Despite the relatively high accuracy 
of the models, misclassifications can still occur, 
especially in cases where the parasite density is low or 
the image quality is suboptimal. This can lead to incorrect 
diagnoses, which may impact clinical decisions. 
Techniques such as data augmentation, ensemble 
methods, or active learning could be explored to further 
reduce misclassification rates. 

The computational complexity of models like 
InceptionV3 is another challenge. Although these models 
perform well, they require substantial computational 
resources for training and inference, making them less 
suitable for deployment in resource-constrained settings, 
particularly in rural or underserved areas. Optimizing 
these models for edge devices or mobile platforms would 
be necessary for real-world deployment. 

Finally, while the models perform well on the given 
dataset, they may struggle with class imbalance or cases 
with unclear parasite identification, such as overlapping 
or damaged cells. Future work should focus on improving 
the model’s ability to handle such edge cases, perhaps 
through more advanced image preprocessing or the use of 
specialized techniques like attention mechanisms. 

E. Limitations and Future Work 

While this study demonstrates the potential of CNN-
based models for malaria detection, several limitations 
must be acknowledged. Dataset biases could affect model 
performance, as the dataset was collected from a specific 
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geographical region, potentially limiting its 
generalizability to other malaria-endemic areas with 
different parasite strains or microscopy conditions. 
Additionally, although the dataset is well-balanced, subtle 
class imbalances or variations in parasite density may still 
lead to false positives or negatives, particularly with the 
Custom CNN and VGG19 models, which were more 
susceptible to overfitting than InceptionV3. 

Furthermore, false positives and false negatives remain 
significant challenges in medical image classification, as 
misclassification can result in misdiagnosis or delayed 
treatment. For example, the relatively low sensitivity of 
InceptionV3 raises concerns about false negatives, which 
in clinical practice could be mitigated by implementing 
complementary diagnostic procedures such as follow-up 
testing, clinician review, or combining AI predictions 
with other screening methods. Future work should 
investigate techniques like data augmentation, cross-
validation, and ensemble learning to further reduce these 
errors. Additionally, computational constraints—
including training time, hardware requirements, and 
memory usage—may limit the deployment of these 
models in resource-limited settings. Although 
InceptionV3 is more efficient than some deep 
architectures, it still demands substantial computational 
resources compared to traditional approaches like manual 
microscopy or Rapid Diagnostic Tests (RDTs). 
Subsequent research could focus on optimizing these 
models for deployment on edge devices or mobile 
platforms, thereby enhancing accessibility in rural or 
underserved regions. 

As for future work, it is crucial to expand the dataset to 
include more diverse samples from various geographical 
regions to improve the model’s robustness. Additionally, 
addressing the model’s potential biases through fairness 
testing and implementing techniques for explainable AI 
could improve trust and adoption among healthcare 
professionals. 

V.  CONCLUSION 

This study focused on malaria detection using blood 
smear images by leveraging the advanced capabilities of 
end-to-end deep learning neural networks. A key 
methodological highlight was the application of transfer 
learning—a strategy that adapts knowledge acquired from 
one domain to a related but distinct task. Utilizing 
TensorFlow and Keras with their layered Application 
Programming Interfaces (APIs) facilitated efficient model 
development and experimentation. 

We conducted a comparative analysis of predefined 
architectures—Custom CNN, VGG19, and 
InceptionV3—versus building models from scratch. Our 
findings indicate that these well-established architectures, 
with their refined configurations, provide a more 
effective and reliable framework for medical image 
classification. The deep learning models demonstrated 
remarkable accuracy in identifying malaria-infected 
blood smears, with InceptionV3 outperforming the others 
in overall classification accuracy. 

The superior performance of InceptionV3 can be 
attributed to its robust architectural design, efficient 
training framework, and ability to balance accuracy with 
computational efficiency. Its accuracy ranges between 
87.64% and 90% in various studies, sometimes reaching 
up to 91%, underscores its suitability for medical image 
analysis tasks requiring precision and scalability. 

Looking ahead, we plan to develop a user-friendly web 
interface aimed at medical professionals and field 
workers, enabling rapid and accurate classification of 
blood smear images. This tool is expected to reduce the 
diagnostic workload, accelerate malaria detection, and 
improve patient outcomes, particularly in resource-
limited settings. Recognizing the critical role of ethical 
AI deployment in healthcare, our approach emphasizes 
transparency, data privacy, and the necessity for human 
oversight. Ensuring safe and responsible use of 
automated diagnostic systems is paramount to 
maintaining trust among clinicians and patients. The 
integration of AI tools must include clear protocols for 
validation, explainability, and bias mitigation to prevent 
misdiagnosis and promote equitable access to diagnostic 
technologies. These considerations are essential for the 
practical adoption and long-term sustainability of AI-
assisted malaria diagnosis. 

Overall, this research advances both the technical and 
practical aspects of malaria diagnostics, contributing to 
improved healthcare accessibility and efficiency in 
diverse global environments. 
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