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Abstract—Alzheimer’s disease is a type of dementia that 
usually affects elderly people. It is a neurological disorder 
that causes a patient to lose memory gradually over time. The 
brain of an Alzheimer Disease (AD) patient shrinks due to 
the accumulation of amyloid plaques in the neurons. As a 
result, the neurons, which are the basic building blocks of the 
brain, lose connections and cannot communicate with each 
other. A person can be prevented from having AD if 
diagnosed at the right time. So, it’s very important to detect 
patients with mild symptoms of dementia to save them from 
getting AD. In this work, we have proposed a customized 
Convolutional Neural Network (CNN) model for classifying 
Alzheimer’s disease. The model has been evaluated with two 
benchmark datasets, the Kaggle Alzheimer’s dataset and the 
ADNI dataset. The two datasets differ in the number of 
images. The K-fold technique has been applied to overcome 
the problem of class imbalance. We have updated the model 
parameters using optimizers, namely Stochastic Gradient 
Descent (SGD), SGD with momentum, AdaGrad, AdaDelta, 
RMSprop, and Adam. Experimental results established that 
the proposed model outperforms many of the state-of-the-art 
models, considering the two benchmark datasets. In case of 
the Kaggle dataset, we have attained 99%accuracy using a 
customized CNN, outperforming other previous works that 
used a pre-trained model but still failed to produce 99% 
accuracy. Considering the number of images and class 
imbalance ADNI dataset also outperformed other previous 
models by achieving 90% accuracy. The main advantage of 
this work is that it studies the impact of all the state-of-the-
art optimizers with different epochs rather than 
experimenting with a particular optimizer and epoch. 
Optimizers have a huge impact on the performance of the 
model and also on the convergence time. It is an important 
hyperparameter that needs to be analysed further for better 
classification purposes. 

Keywords—Alzheimer disease, CNN, class imbalance, K fold, 
optimizer 

I. INTRODUCTION

Dementia is an umbrella term that is used to describe 
the abnormal changes in the brain that lead to impairment 
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of memory and cognitive function. Alzheimer’s Disease 
(AD) is one of the types of dementia. It is a neurological 
and irreversible brain disorder that usually occurs in 
elderly people and causes a gradual loss of memory. 
Initially, the affected person finds difficulties recalling 
events, and in due course of time, it gradually increases 
and makes him forget even his name. The brain cells called 
neurons in a person with AD get damaged due to the 
accumulation of the abnormal protein’s beta-amyloid and 
phosphorylated tau [1]. As the brain cells get damaged, 
they cannot communicate with each other, causing the 
brain’s inability to plan, recall and concentrate. This 
disease mainly affects the hippocampus area which is an 
integral part of the brain and is associated with memory, 
learning and cognitive skills. AD can be detected by 
performing a Computed Tomography (CT) scan, Positron 
Emission Tomography (PET) scan, or Magnetic 
Resonance Imaging (MRI), which provides the anatomical 
details of the brain. This mental disorder is increasing day 
by day, and till now there has been no cure for AD, but 
early detection of AD might be of great help to prevent the 
person from going to a difficult stage. A study using the 
latest data from the 2023 population projections from the 
U.S. Census Bureau and the Chicago Health and Ageing 
Project (CHAP), a population-based study of chronic 
health conditions of older people, shows that an estimated 
6.7 million Americans age 65 and older will be living with 
Alzheimer’s dementia in 2023 [2, 3]. In India, too, a lot of 
people are being affected by Alzheimer’s disease, and day 
by day the numbers are increasing. According to the 
Dementia India Report prepared for the Alzheimer’s and 
Related Disorders Society of India (ARDSI) [4], the 
number of people with dementia in younger age groups, 
60–75 years, is expected to increase steadily over time. It’s 
very important for the medical professionals as well as the 
researchers to detect the disease at the right time for proper 
treatment and also for further analysis to predict the stage 
for the patients. AD has the following three stages: 
Alzheimer’s Disease (AD), Cognitive Normal (CN), and 
Mild Cognitive Impairment (MCI). MCI is the initial stage 
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that might lead to AD in the future. The challenge is to 
detect whether a person with MCI can be prevented from 
going into the AD stage through early diagnosis. 
Researchers and medical professionals are working 
together to find solutions for AD. Classification of AD into 
those stages is a very challenging task, and it helps medical 
professionals gain insight into whether a person who is 
having mild symptoms of forgetfulness might develop AD 
in the future. Research in medical image analysis and 
classification has been gaining ground day by day with 
new inventions and methods. Earlier machine learning 
techniques, such as SVM, Random Forest, K-Nearest 
Neighbour, etc. were used in this AD classification. These 
methods have some drawbacks, such as being unable to 
handle huge amounts of data and feature extraction and 
selection. With the advent of GPUs and deep learning 
techniques, these obstacles have been overcome to a 
certain extent and are able to give promising results. The 
key medical imaging modalities are Computed 
Tomography (CT), Magnetic Resonance Imaging (MRI), 
Positron Emission Tomography (PET), Ultrasound, X-ray, 
and hybrid modalities. These modalities play a vital role 
in the detection of anatomical and functional information 
about the brain for diagnosis as well as research.  

In this work, we have taken two completely different 
datasets, ADNI and Kaggle and tried comparing their 
results by using different optimizers. We have introduced 
a customized CNN model for this work. The two datasets 
differ in the number of classes and the number of images. 
The images of the ADNI dataset have undergone a set of 
pre-processing, but the images of Kaggle have been taken 
as they are from the dataset without applying any 
preprocessing techniques. We have also resolved the issue 
of class imbalance by implementing the K fold validation 
method, as the number of images in each of the classes 
differs a lot. This work will help in analysing the effect of 
different optimizers performance as well as how the 
model’s performance is affected by the number of images. 
From the literature review, we can observe that very little 
research work has given importance and studied the effect 
of different optimizers on the model’s performance. Also, 
much of the work has been on binary classification, which 
is less challenging than multiclass classification. Another 
important factor is that most of the works have considered 
an equal number of images in all the multi-classes. But we 
have dealt with this issue, as the number of images in each 
of the classes was very different.  

The main contributions of the paper are listed below. 
 A 2D-CNN based architecture has been proposed,

considering both the ADNI and the Kaggle
datasets.

 The proposed architecture has been validated with
an unbalanced dataset that uses Batch
Normalization (BN) and dropout for
regularization and k-fold for validation.

 The proposed architecture achieved significantly
high accuracy with a fixed and limited number of
samples.

 Selection of the best state-of-the-art optimizer to
reduce convergence time with high accuracy.

 A new corpus has been built by downloading brain
images from the ADNI dataset comprising 1712
images.

 A thorough study has been done on all the
important optimizers and how it impacts the model
performance.

II. LITERATURE REVIEW

The ancient detection methods for AD classification 
include the use of machine learning techniques. According 
to a study [5] the most widely used machine learning 
techniques were decision trees (50%), neural networks 
(44%), regression (34%), SVM (34%), and Bayesian 
networks (20%). In [6], six different machine learning 
methods were applied such as decision tree, bagging, BF 
tree, Random Forest tree, RBF networks, and Multilayer 
Perceptron for the classification of Alzheimer’s and 
Parkinson’s disease. Neural network was also used along 
with these ML techniques. Random Forest performed best 
acquiring 85.17% accuracy. Comparisons of different ML 
techniques were conducted in [7] for detection of AD. The 
performances of K-Nearest Neighbors (KNN), decision 
trees, rule Induction, naïve bayes, random forest and 
Generalized Linear Model were evaluated. Generalized 
Linear Model (GLM) outperformed all the other classifiers 
with 88.4% accuracy. Extra tree classifier and decision 
trees are also used in the classification of AD [8]. A voting 
classifier was compared with the machine learning 
techniques Decision Tree, Random Forest, Support Vector 
Machine, and Gradient Boosting in [9]. Voting classifier 
is a method in which the probability vectors of multiple 
classifiers are examined and the classifier representing the 
highest value is chosen. In this experiment for AD 
detection random forest classifier performed best by 
achieving an accuracy of 86.92%.  

TABLE I. LABELS USED IN ALZHEIMER’S DISEASE 

Abbreviation Full name
AD Alzheimer’s Disease 
CN Cognitive Normal

MID/MD Mild Demented
VMD Very Mild Demented
EMCI Early MCI

NL Cognitive Healthy
MCI Mild Cognitive Impairment 
NC Normal Control

MOD Moderate Demented
ND Non-Demented

LMCI Late MCI
SMC Significant Memory Concern 

Recent years have witnessed that deep learning models 
are being widely used in image processing, and in 
particular, deep learning models utilizing convolutional 
neural networks are providing promising results in this 
field. The application area of CNN covers a major area of 
medical image analysis, including detection, segmentation, 
classification, and computer aided diagnosis from a wide 
spectrum of clinical imaging modalities. In the present 
study, we have surveyed some limited papers that have 
used CNN and its performance in the classification of AD. 
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The two classification types are binary and multiclass 
classification. In this survey, we have considered only the 
papers that have implemented multiclass classification. 
The different labels used for AD classification have been 
depicted in Table I. 

Preprocessing is a major step, as raw MRI images 
consist of a lot of noise and need to be processed before 
feeding them to the CNN model. R. Jain et al. [10] 
performed Alzheimer’s disease classification on 4800 
sMRI’s which were generated by using the image entropy 
of 150 subjects taken from ADNI. Both three way (AD vs 
CN vs MCI) and 2-way classification (AD vs CN, AD vs 
MCI and CN vs MCI) were conducted using VGG16 as 
the base model. The test accuracy of the three-way 
classification was 95.7% at 50 epochs with a batch size of 
40. Kaggle’s Alzheimer’s dataset has been used in by 
Yildrim et al. for 4-way classification [11]. A customized 
ResNet50 model was used by removing the last 5 layers 
and adding 10 more new layers. An accuracy of 90% was 
achieved without any data pre-processing. Fuadeh et al. 
[12] used AlexNet architecture for Alzheimer’s disease 
classification. A total of 664 images from Kaggle’s 
Alzheimer’s dataset were used that consisted of 200 
images for Non-Demented, Very Mild Demented and 
Mild Demented conditions respectively and 64 images of 
Moderate Demented conditions. AlexNet architecture was 
used with different learning rates. The best accuracy was 
found to be 95% with 0.0001 as the learning rate and 
Adam as optimizer. ResNet101 was used by 
Bhuvaneshwari et al. [13] for Alzheimer’s disease 
classification using the ADNI dataset consisting of 240 
images only. Each of the classes AD, CN and MCI 
consisted of 80 images. Image segmentation and skull 
stripping were used as part of image preprocessing. An 
accuracy of 96.3% was achieved in the three-way 
classification. Experiments were done using CNN and 
VGG16 for 4-way Alzheimer’s disease classification by 
Ajagbe et al. [14]. Kaggle’s Alzheimer’s dataset was 
utilized and it achieved an accuracy of only 0.71 in CNN 
and 0.77 in the VGG models. Murugan et al. [15] 
developed a model DEMNET which consisted of 
convolutional layers followed by max pooling, batch 
normalization and dropouts. Different dropout values 0.7, 
0.5 and 0.2 were used for the first, second and third dense 
layers respectively. The SMOTE technique was used for 
handling class imbalance. Kaggle’s Alzheimer’s dataset 
achieved an accuracy of 94% at 50 epochs with RMSprop 
as optimizer. Experiments on two Alzheimer’s datasets 
from Kaggle consisting of 6400 images and 6330 images 
was conducted by Sharma et al. [16]. The first dataset 
consisted of 4 labels and the second dataset consisted of 3 
labels. VGG 16 was used as the pre-trained model and 
Adam was used as the optimizer. An accuracy of 90% and 
71% was achieved on dataset1 and dataset2 respectively. 
Shanmugam et al. [17] experimented using 7800 images 
from the ADNI dataset consisting of 5 labels: AD, LMCI, 
MCI, EMCI, CN. Three pretrained models were used 
namely: GoogleNet, AlexNet and ResNet. SGD with 
momentum value of 0.9 and learning rate of 10−4 was 
applied to the transfer learning models. ResNet 

outperformed GoogleNet and AlexNet by acquiring an 
accuracy of 98.63% at 100 epochs.Classification of AD 
was conducted with different classifier models like 
LeNet, AlexNet, VGG-16, VGG-19, Inception-V1, 
Inception-V2, Inception-v3, ResNet-50, ResNet-101, 
ResNet50-V2, ResNet152-V2, InceptionResNet, 
MobileNet, MobileNet-V2, EfficientNet-B0, 
EfficientNet-B7, Xception, NasNet-A, NasNet-C, and 
DenseNet-121 by Hazarika et al. [18]. Both two way and 
three-way classification were done using the ADNI dataset 
with labels AD, CN and MCI. Improved DenseNet121, 
where all the convolutional layers of the architecture were 
replaced by depthwise convolutional layers, outperformed 
all the other models achieving 88%accuracy. 

Two experiments regarding Alzheimer’s disease 
classification were conducted by Marwa et al. [19]. The 
first experiment considered the classification of CN, AD 
and MCI and the second classification was considered as 
a local classification which considered classification of 
MCI into a Very Mild Dementia (VMD), Mild Dementia 
(MD), and Moderate Dementia (MoD). The OASIS 
dataset consisting of 6400 images was used. Image 
normalization as well as data augmentation was conducted 
on the images. A CNN model was used with Adam 
optimizer for 100 epochs. The accuracy of the CNN model 
was found to be 99.68% for the three-way classification. 

Dar et al. [20] conducted a 5-way classification 
consisting of the labels CN, MCI, EMCI, LMCI and AD 
with a total of 2900 images taken from the ADNI dataset. 
Data normalization and unit vector normalization was 
carried out as part of data pre-processing. MobileNet was 
used as a classifier with RMSprop as optimizer and 
learning rate of 0.00001. An accuracy of 96.22% was 
achieved. ADNI dataset was used by Raza et al. [21] for 
conducting a 5-way classification consisting of labels 
Alzheimer’s Disease (AD), Non-Cognitive (NC), Late 
Mild Cognitive Impairment (LMCI), and Mild Cognitive 
Impairment (MCI). A total of 5016 brain MRI images 
were considered from the ADNI dataset. DenseNet 169 
was used as the base model. A series of data pre-
processing was carried out including, skull stripping, Gray 
Matter (GM) segmentation, Montreal Neurological 
Institute (MNI) space normalization and smoothing. An 
accuracy of 93.11, 96.82 and 97.84 was achieved at 10, 25 
and 50 epochs respectively.Kaggle’s Alzheimer’s dataset 
was used both for binary and 4-way classification using a 
lightweight CNN by Latif et al. [22]. For the binary 
classification an accuracy of 99.2% was achieved at 80 
epochs and for the 4-way classification 95.93% was 
achieved at 90 epochs. Balasundaram et al. [23] used two 
datasets Kaggle’s Alzheimer dataset and OASIS 2 MRI 
for Alzheimer’s disease classification. Hippocampus 
Segmentation was carried out as part of data pre-
processing. Three models were experimented on the 
dataset namely, the simple multilayer model, CNN and 
ResNet50. It was observed that the performance of the 
models improved while using segmented images rather 
than whole brain images. CNN outperformed the other two 
models by achieving 94% accuracy. Ullah et al. [24] used 
Kaggle’s Alzheimer’s dataset of 6400 images for 
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Alzheimer’s disease stage detection. The dataset was 
increased to a size of 10,074 images through the technique 
of data augmentation. A CNN model was used for 100 
epochs with a batch size of 64. An accuracy of 99.38% was 
achieved for the four labels used. 

Alzheimer’s disease classification was carried out using 
the ADNI dataset considering 4482 images belonging to 
three classes AD, CN and MCI by Awarayi et al. [25]. 
Using data augmentation, the size of the dataset was 
increased to 26,892. They have used the Neural 
Architecture Search (NAS) framework for CNN 
architecture as it saves time required for model 
development as well as for parameter hypertuning. The 
model achieved an accuracy of 97.17%. 10-fold cross 
validation was used to improve the classifier’s 
performance. Assaduzzaman et al. [26] conducted 
Alzheimer’s disease classification on the Kaggle’s 
Alzheimer’s dataset. Seven data pre-processing 
techniques like Contrast Limited Adaptive Histogram 
Equalization (CLAHE), bilateral filter, and green fire blue 
filter, are applied to enhance image quality and eliminate 
artefacts. A customized CNN ALSA-3 was developed for 
the classification. They have analysed that batch size 
affects accuracy and so experimented with three batch 
sizes: 32, 64 and 128. The 7-fold cross validation 
technique was applied. The best accuracy was 99.50% 
when batch size 64 was considered with Adam as 
optimizer and a learning rate of 0.001. A Siamese 4D 
AlzNet comprising of four parallel convolutional neural 
networks and customized transfer learning models namely: 
Frozen VGG16, Frozen VGG19 and customized AlexNet 
was used for Alzheimer’s disease classification by 
Mehmood et al. [27]. Skull striping, image registration, 
image normalization and segmentation are the data 
processing techniques applied to the dataset. Although 
four labels NC, MCI, LMCI, AD and were considered but 
binary classification was performed between the labels. 
The Siamese 4D AlzNet outperformed the transfer 
learning models by achieving an accuracy of 95.07%, 
96.75%, 96.82%, 95.43 % in NC vs AD, NC vs LMCI, NC 
vs MCI and MCI vs AD respectively. Frozen VGG 19 
performed well in LMCI vs AD by acquiring 80.70% 
accuracy. Shastri [28] used three datasets namely, Kaggle 
comprising 6400 images across 3 classes, ADNI 
comprising 1296 images across 5 classes and a dataset 
containing 5154 images across three classes: AD, 

Confidence Interval (CI), and Cognitive Normal (CN). A 
customized CNN was used for classification. The model 
acquired accuracy of 96.02% in Kaggle, 71.03% in ADNI 
and 98.84% in the third dataset. The ADNI dataset with 6 
labels SMC, NC, LMCI, MCI, AD, and EMCI with a total 
of 1598 images were considered by Singh and Kumar in 
[29] for Alzheimer’s Disease classification. Data 
preprocessing techniques like reorientation, registration, 
brain extraction, shading correction, and segmentation 
were carried out for enhancing the quality and consistency 
of the images. Many CNN models like EfficientNet, 
MobileNet, DenseNet, Resnet, AlexNet, InceptionV2, and 
NASNet were used to classify the images. EfficientNet 
outperformed all the other models by achieving  
99.8% accuracy. Heurta et al. [30] used oversampling to 
balance the number of images in the class that contains 
fewer images thus making 3200 images in all the classes 
of the Kaggle’s Alzheimer’s dataset. Adam and SGD 
optimizers were used with learning rate value 0.001,0.002 
and 0.0005. Adam with learning rate 0.0005 performed 
best with99% accuracy. 26 Keras pretrained models were 
used by Srividhya et al. [31] for Alzheimer’s disease 
classification with four labels. A total of 1296 images were 
considered from the ADNI dataset. The SMOTE 
technique was used for handling class imbalance and the 
size of the dataset increased to 2900 images. ResNet-50v2 
performed best achieving 91.84% accuracy. Hussain et al. 
[32] conducted Alzheimer’s disease classification using 
different CNN architectures like AlexNet, GoogleNet and 
MobileNetV2 on two datasets Kaggle and OASIS. Data 
augmentation was applied on the dataset. The models were 
tested on three optimizers namely SGDM, Adam and 
RMSProp. AlexNet and GoogleNet performed well with 
Adam optimizer by acquiring an accuracy of 99.4% and 
98.0% respectively at 25 epochs. MobileNetV2 attained an 
accuracy of 96.5% using SGDM as an optimizer at 25 
epochs. Gondalia and Popat [33] conducted Alzheimer’s 
classification using Kaggle’s Alzheimer’s dataset. Data 
augmentation was conducted on the 6400 images to 
expose the classifier to variations of images so that it does 
not memorize anything and gives better accuracy results 
in the testing dataset. An accuracy of 93.82% was found. 
A summary of the previous works that have used MRI 
images and conducted multiclass classification is depicted 
in Table II. 

TABLE II. PREVIOUS WORKS 

Author Model Dataset Class Labels 
Number of 

Samples 
Accuracy 

R. Jain et al. [10] VGG16 ADNI AD, CN, MCI 4800 95.7% 

Muhammed Yildirim and 
Ahmet Cinar [11] 

ResNet50 Kaggle MD, MOD, VMD, ND 6400 90% 

Y.N. Fuadah et al. [12] AlexNet Kaggle MD, MOD, VMD, ND 664 95% 

P.R. Buvaneswariet al. 
[13] 

ResNet101 ADNI AD, CN, MCI 240 96% 

S.A. Ajagbe et al. [14] 
CNN 

VGG16 
VGG19 

Kaggle MD, MOD, VMD, ND 6400 
71 % for CNN 

77% for VGG16 
77.66% for VGG19 

S. Murugan et al. [15] CNN Kaggle MD, MOD, VMD, ND 6400 94% 
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S. Sharma et al. [16] VGG16 Kaggle MD, MOD, VMD, ND 
6391 for Dataset1 
6330 for Dataset2 

90% for Dataset1 
71% for Dataset2 

J.V. Shanmugam et al. 
[17] 

AlexNet, GoogleNet 
ResNet-18. 

ADNI AD, CN, MCI, EMCI, LMCI 7800 
96% in AlexNet 

94% in GoogleNet 
97.51% in ResNet-18 

R.A. Hazarika et al. [18] 

LeNet, 
AlexNet, VGG-16, VGG-

19, Inception-V1 
(Googlenet), Inception-

V2, Inception-v3, 
ResNet-50, ResNet-101, 

ResNet50-V2 
ResNet152-V2, 

InceptionResNet, 
MobileNet, MobileNet-

V2, EfficientNet-B0, 
EfficientNet-B7, 

Xception, NasNet-A, 
NasNet-C DenseNet-121. 

ADNI AD, CN, MCI, 15,120 

DenseNet-121 
outperformed other 

models achieving 88% 
accuracy 

Marwa El-Geneedy et al. 
[19] 

CNN OASIS ND, MOD, MD, VMD 6400 99.68% 

Mohiud din Dar et al. [20] MobileNet ADNI CN, MCI, EMCI, LMCI, AD 2900 96% 

Noman Raza et al. [21] Dense-Net169 ADNI AD, LMCI, MCI, NC 5016 97.84% 

AAA. El-Latif 
[22] 

DNN Kaggle AD, MOD, ND, VMD 6400 95.93% 

A. Balasundaram et al. 
[23] 

CNN Kaggle AD, MOD, ND, VMD 6400 94% 

Ullah and Jamjoom [24] CNN Kaggle MD, MOD, ND, VMD 10,074 99% 

N.S. Awarayi et al. [25] CNN ADNI AD, CN, MCI 26,892 97% 

Md Assaduzzaman et al. 
[26] 

CNN Kaggle AD, MOD, ND, VMD 6400 99% 

A. Mehmood et al. [27] CNN ADNI NC, MCI, LMCI, AD 11,465 

NC vs AD: 95.07% 
NC vs LMCI: 96.75% 

NC vs MCI: 96.02 
MCI vs AD: 95.43 

LMCI vs AD: 79.16 

K. Aditya Shastri [28] CNN 
Kaggle 
ADNI 

For Kaggle: AD, MOD, ND, VMD 
For ADNI: 

AD, CN, EMCI, LMCI, 

Kaggle:6400 
ADNI: 1296 

Kaggle: 96.02% 
ADNI: 71.02% 

Singh and Kumar [29] EfficientNet ADNI 
SMC, NC, LMCI, MCI, AD, and 

EMCI 
1548 EfficientNet: 99.8% 

Heurta et al. [30] CNN Kaggle MD, MOD, VMD, ND 12,800 99% 

Srividhya et al. [31] ResNet50V2 ADNI NM, EMCI, MCI, LMCI, AD 1296 91.84% 

M Z Hussain et al. [32] CNN 
Kaggle 
OASIS 

MD, MOD, VMD, ND 
Kaggle: 10,254 
OASIS: 2744 

Kaggle: 99% 
OASIS: 98% 

Gondalia et al. [33] CNN Kaggle MD, MOD, VMD, ND 6400 94% 

 

III. METHODOLOGY 

A. Dataset 
In the present study, both the ADNI [34] and the Kaggle 

Alzheimer’s disease dataset [35] have been considered for 
classification. 

 Kaggle Dataset:The Kaggle dataset consists of 
6400 images with a size of 176×208.The images 
demonstrated the axial view of the brain. The 
dataset has four classes of images: mild demented, 
moderately demented, non-demented and very 
mild demented. The images in the Kaggle dataset 
are in JPEG format. The detailed data statistics 

with class names and number of images for the 
Kaggle dataset are described in Table III. 

TABLE III. DATA STATISTICS OF KAGGLE DATASET 

Class Name Number of images 

Mild Dementia 896 

Moderate Dementia 64 

Non-Dementia 3200 

Very Mild Dementia 2240 

 

The sample images of all the classes present in the 
Kaggle dataset is shown in Fig. 1: 
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                      Mild-demented       Moderate-demented     Non-demented    Very mild demented 

Fig. 1. MRI samples of Kaggle dataset. 

 ADNI Dataset: ADNI is a huge dataset 
providing MRI images of the brain. We have 
downloaded a subset of the dataset consisting of 
1712 images. As the dataset provides different 
views of the brain, we have selected the coronal 
view of the brain. The images are typically of size 
256×256 matrices with a voxel size of 
approximately 1.33 mm×1 mm×1 mm. Initially 
the images were in Neuroimaging Informatics 
Technology Initiative (NIfTI) format but after 
data preprocessing they were converted to BMP 
format. The dataset consists of three classes of 
images: Alzheimer Disease (AD), Cognitive 

Normal (NC) and Mild Cognitive Impairment 
(MCI). The detailed data statistics with class 
names and number of images of the ADNI dataset 
are described in Table IV. 

TABLE IV. DATA STATISTICS OF ADNI DATASET 

Class Name Number of images 

AD 352 

CN 494 

MCI 866 

The sample images of all the classes of images present 
in the ADNI dataset is shown in Fig. 2: 

           
                                            Alzheimer’S Disease (AD)    Cognitive Normal (CN)    Mild Cognitive Normal (MCI) 

Fig. 2. MRI samples of ADNI dataset. 

From Tables III and IV it is obvious that both datasets 
have class imbalance issues. In the Kaggle dataset the 
biased class is Non-Dementia with 3200 images and in the 
ADNI dataset the biased class is the Mild Cognitive 
Impairment with 866 images. While training, the model 
might lead to overfitting. To handle the problem of 
overfitting, we have applied the stratified k-fold cross 
validation technique, which is discussed in the later 
section. 

B. Preprocessing Brain Images 

Preprocessing is an essential step as MRI images may 
contain noise due to the imaging procedure or the way in 
which the MRI images were acquired from different 
sources. Images should be clean enough for better 
classification results. The different image pre-processing 
techniques applied to both the Kaggle and the ADNI 
datasets are described below: 

1) Image resizing 
The image sizes in both datasets were resized to 

224×224, as the original sizes of both datasets, Kaggle and 
ADNI were different. This is the image size mostly 
accepted as input size in deep learning models, as a big 
image size requires more memory, as well as more time is 
consumed while training and testing. 

2) Normalization 

Normalization is very much essential because if we pass 
an image as it is to the classification model, the 
computation might become very complex due to the high 
numeric values. Normalization is the process of making 
the features of the image generated of uniform scale, 
which makes the classification model easy and suitable for 
further processing. As the pixel values of an image can 
range from 0 to 255, normalization scales it down in the 
range [0,1] or [−1,1]. Normalization is performed with the 
use of the following equation:  

Img = 1/255.0 

3) Zooming 
The zoom augmentation technique is magnifying the 

original image which may lead to adding new pixels 
around the image or interpolating the image. It usually 
accepts a float value and here in this study we have used a 
zoom range of 0.20. 

Besides this, the images in ADNI had to undergo 
another set of pre-processing before applying the above 
techniques. The MRI images in the ADNI dataset were 
initially in NIFTI format. Every human brain differs in 
volume, shape and size depending upon the different 
populations residing in different environments and having 
different genetic developments [36]. To provide finer 
details of the anatomy of the brain, it is necessary to have 
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population specific brain templates that capture, quantify, 
and visualize the brain anatomy that can be used later in 
many structural, functional, and physiological studies for 
better interpretation [37]. So, it is necessary to convert the 
images into a standard brain template. We have used the 
MNI-152 (Montreal Neurological Institute) template. The 
advantage of the MNI-152 brain template is that it 
provides full head coverage and also provides more 
detailed information from the top portion of the brain to 
the bottom portion of the cerebellum [38, 39]. The pre-
processing techniques that were applied only to the images 
in the ADNI dataset are described below. 

4) Image registration 
We have conducted the image registration using the 

FLIRT algorithm [40]. 
Step 1: Given a reference image i and a moving image J, 

the algorithm uses a multistart, multiresolution global 
optimization method to find the affine transformation that 
minimizes the disparity between the reference image and 
the moving image. 

Step 2: A standard way of formulating the above 
mathematical problem is to construct a cost function 
thatquantifies the dissimilarity between two images and 
then search for the transformation (T*) that gives the 
minimum cost. Mathematically, it can be written as: 

T* = arg min C(Y,T(X)), 

T∊ST 

where ST is the space of allowable transformations, C (I1, 
I2) is the cost function, and T(X) represents the image X 
after it has been transformed by the transformation T. Here, 
only linear transformation is considered. The most 
commonly used intensity-based cost functions are Least 
Squares (LS); Normalized Correlation (NC); Woods (W); 
Correlation Ratio (CR); Mutual Information (MI); and 
Normalized Mutual Information (NMI). 

Step 3: It divides the process of searching for the best 
transformation into four different resolution scales: 8, 4, 2 
and 1mm. 

Step 4: At each scale, the two images are resampled 
after initial pre-blurring so that they have isotropic voxels 
of size equal to the scale size. 

Step 5: Choose Powell’s method as the local 
optimization method. 

Step 6: To estimate the final transformation sufficiently 
accurately, a coarse search of the cost function at this 
resolution is used, as it avoids misregistration. The search 
can be divided into three stages. 

a) A coarse search over the rotation parameters with 
a full local optimization of translation and global 
scale for each rotation was tried. 

b) A finer search over rotation parameters, but with 
only a single cost function evaluation at each 
rotation. 

c) A full local optimization for each local minimum 
was detected in the previous stage. 

Step 7: It is unlikely that the first stage in this process 
will get very close to the correct rotation, but the second 
stage should get close enough for the local optimization in 
the last stage to give a good estimate. 

Step 8: Following the previous search stage (at 8 mm 
scale), there are usually several local minima selected as 
candidates for initialising more detailed searches for the 
global minimum. 

Step 9: This stage (at 4 mm) performs a local 
optimization for the best of these candidate 
transformations. 

Step 10: It takes several perturbations of the candidate 
transformations and performs local optimization of these 
perturbations. 

Step 11: The single best solution is selected from these 
optimization results. 

Step 12: Since the cost function evaluations take 8 times 
longer at the 1mm scale than at the 2 mm scale and 512 
times longer than at the 8 mm scale, only a single pass of 
the local optimization is done at the 1mm scale. 

Step 13: The registration solution represents the 
outcome of this single pass. 

5) Image segmentation 
After brain image registration, the actual part of the 

brain is extracted using the Brain Extraction Tool (BET) 
algorithm [41]. The algorithm works as follows: 

Step 1: The robust image intensity minimum t2 and 
intensity maximum t98 are estimated. 

Step 2: A brain/background threshold ‘t’ is estimated, 
which lies 10% on the way between t2 and t98. 

Step 3: This threshold ‘t’ is used to estimate the position 
of the Centre of Gravity (COG) of the brain. 

Step 4: The mean radius of the brain or head is 
estimated by counting all voxels with intensity greater 
than t, considering the voxel volume. 

Step 5: The median intensity tm of all points within a 
sphere of the estimated radius and centred on the estimated 
COG is found to initialize the brain surface model. 

Step 6: The brain surface is modelled by a surface 
tessellation using connected triangles. The initial model is 
a tessellated surface generated by starting with an 
icosahedron and iteratively subdividing each triangle into 
4 smaller triangles while adjusting each vertex’s distance 
from the centre to form as spherical a surface as possible. 

Step 7: Each vertex in the tessellated surface is updated 
by estimating where that vertex should move to improve 
the surface. 

Step 8: Repeat step 7 to get an optimum surface. 
Step 9: On the final tessellated surface, the brain gets 

extracted. 
The flowchart of the BET algorithm [41] is 

demonstrated in Fig. 3. 
The final brain image obtained after implementing both 

the FLIRT and the BET algorithm is depicted in Fig. 4. 

C.  Proposed Framework 

The proposed CNN model consists of five major steps: 
(i) Pre-processing, (ii) Data split, (iii) K-fold technique for 
handling data imbalance, (iv) Feature extraction and (v) 
Image classification. The framework of the CNN model is 
depicted in Fig. 5. 
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D. Network Structure of the Proposed Architecture 

The proposed model consists of five Conv2D layers of 
kernel size 3×3 each, followed by five MaxPooling layers 
of kernel size 2×2, and two FC layers with some other 
components like Batch Normalization (BN) and dropout 
layers, as shown in Fig. 6. Each of the CN layers follows 
a BN layer to make the training process of the model more 
efficient. The number of kernels used in the layers is 16, 
32, 32, 64 and 128 respectively. This is followed by a 

flattening layer and two dense layers, including an output 
layer. The diagrammatic representation of the CNN model 
is demonstrated in Fig. 6. Here we have shown the 
proposed architecture for the ADNI dataset. For the 
Kaggle dataset the setup of the model will be the same 
except for the output layer which will consist of 4 classes 
instead of 3. 

We have considered K = 5 in our experiment. The 
summary of the model has been depicted in Table V.

 
 

 

 

 

Fig. 3. Flowchart of BET algorithm. 
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Fig. 4. Image pre-processing was done using FLIRT and BET algorithms. 

 

 

Fig. 5. Proposed CNN framework. 
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Fig. 6. Diagrammatic representation of the proposed CNN model. 

TABLE V. NETWORK ARCHITECTURE OF THE PROPOSED CNN MODEL 

Layer (type) Output Shape Param # 
conv2d (None, 222, 222, 10) 448 

max_pooling2d_4 (MaxPooling2D) (None, 111, 111, 10) 0 
conv2d_1 (Conv2D) (None, 54, 54, 32) 4640 

max_pooling2d_1 (MaxPooling2D) (None, 54, 54, 32) 0 
conv2d_2 (Conv2D) (None, 52, 52, 32) 9248 

max_pooling2d_2 (MaxPooling2D) (None, 26, 26, 32) 0 
conv2d_3 (Conv2D) (None, 24, 24, 64) 18496 

max_pooling2d_3 (MaxPooling2D) (None, 12, 12, 64) 0 
conv2d_4 (Conv2D) (None, 10, 10, 128) 73856 

max_pooling2d_4 (MaxPooling2D) (None, 5, 5, 128) 0 
flatten (Flatten) (None, 3200) 0 
dense (Dense) (None, 64) 204864 

dropout (Dropout) (None, 64) 0 
batch_normalization (BatchNormalization) (None, 64) 256 

dense_1 (Dense) (None, 3) 195 

Notes: Total params:312003 (1.19 MB); Trainable params:311875 (1.19 MB); Non-trainable params:128 (512.00 Byte) 

E.  Parameter Setting for the Proposed Model 

The training process of the proposed model has been 
computed iteratively to update the different parameters. 
There are some important parameters, such as batch size, 
regularization parameter, number of epochs, and learning 
rate, that control the performance of the classification. In 
deep learning, batch size is a very important parameter that 
influences the system update phase. In the present study, 
different batch sizes have been considered to train the 
model, and finally, the optimum result is found when it is 
set to 32. A deep neural network tends to overfit during 
training when the number of tunable parameters is high 
compared to the number of samples in the training set. In 
such a situation, both Batch Normalization (BN) and 
dropout have been used for regularization during training 
[42]. In the present study, BN, along with a  
20% dropout rate, has been used for regularizing the 
training process. Another hyperparameter, ‘epoch’ refers 
to the number of iterations the model passes through the 
training samples. In each iteration, every training sample 
in the training dataset gets a chance to update the model 

parameter. It permits the learning algorithm to run until the 
optimal performance of the model is achieved. The 
number of epochs changes with different learning 
algorithms. A literature review reveals that there is no 
standard algorithm or mathematical model to set the value 
of the epoch. The best way to set the value of epochs is to 
gradually increase the value until the validation accuracy 
starts decreasing, even when the training accuracy 
increases. In the present study, we have tested both 
datasets using different values for epochs such as 5, 10, 20, 
35, 50, 80, and 100. The learning rate is another important 
hyperparameter that determines the value where the 
weights of the model are adjusted concerning the loss 
gradient. The smaller the learning rate, the slower the 
convergence, a higher learning rate may overshoot the 
solution region. Therefore, the selection of the optimum 
learning rate plays an important role in achieving a good 
result. In our study, we have not set any learning rate, and 
the default value of 0.001 is considered for all the 
optimizers.  

222×222×16 109×109×32 52×52×32 24×24×64 5×5×128 

Max Pooling Size = 2×2 

Kernel Size =3×3 

224×224 

Input 
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F. Optimizer Selection 

Optimization algorithms try to minimize the error 
function by updating the weight vectors in a deep neural 
network. The Gradient Descent algorithm faces some 
challenges, such as the vanishing gradient problem, slow 
learning rates, etc. To solve these challenges, different 
optimization techniques have been proposed. These 
optimization algorithms aim to make gradient descent 
more efficient and faster. The proposed CNN model has 
been compared with different optimization algorithms to 

minimize the error function by updating the weight vectors. 
The proposed model has been computed with Stochastic 
Gradient Descent (SGD), SGD with momentum, 
AdaptiveGradient (AdaGrad), Root Mean Square 
Propagation (RMSprop), AdaptiveDelta (Adadelta) and 
Adaptive Moment Estimation (Adam) [43–45]. 

1)Stochastic Gradient Descent (SGD) 
SGD is a type of gradient descent that updates the 

parameters one by one. This can make SGD faster than 
batch gradient descent because, in batch gradient descent, 
we need to have access to all training samples at once. 

 

Algorithm: Stochastic Gradient Descent XX 
Step 1: Randomly shuffle the data set of size m 
Step 2: Select a learning rate α. 
Step 3: Select initial parameter values Was the starting point. 
Step 4: Update all parameters from the gradient of a single training example X input vector i.e. compute  

   
 where α is the learning rate. 
Step 5: Repeat Step 4 until a local minimum is reached. 

 

The advantage of SGD is the frequent updates 
immediately give an insight into the performance of the 
model and the rate of improvement. 

2) SGD with momentum optimizer 
One of the approaches that can be used to make the 

gradient descent learning algorithm very efficient is the 
momentum optimizer. The number of epochs can be 
reduced, considering the concept of momentum. If we 
consider both the gradient force and the momentum force 
at a particular point, the net force will increase. As a result, 
the solution moves faster towards the minimum location. 

The gradient descent algorithm can be written as: ܵܦܩ → ௧ܹାଵ = ௧ܹ − ∇௪ܮ( ௧ܹ) 
By adding the momentum term, the weight updating 

rule will be: 

௧ܹାଵ = ௧ܹ ௧ିଵݒߛ	+ − ∇௪ܮ( ௧ܹ) 
Here, ݒߛ௧ିଵ	 is the momentum term and ߘ௪ܮ( ௧ܹ)  is 

gradient term. The gradient descent with momentum 
improves the rate of convergence. If we assume  ݒ௧ = ௧ିଵݒߛ− + ∇௪ܮ( ௧ܹ) 
then ௧ܹାଵ = ௧ܹ −  ௧ݒ

The main disadvantage of this algorithm is that it 
requires the hyperparameters to be set manually, which 
determines the learning rate. Moreover, the algorithm uses 
the same learning rate for all dimensions. It may require 
different learning rates in different dimensions. 

 
Algorithm: Adadelta 

Step1: Compute the gradient of the loss function at location t, taking X as the input vector w.r.t. weight 
vector g୲ = 1n ෍∀ଡ଼∊୑୧୬୧ୠୟ୲ୡ୦ ∇୵L(W୲, X) 

Here, n is the number of samples used for training the network model. ݃௧ is the gradient at instant t, ௧ܹ is a 
weight vector. 

Step2: Accumulate the Gradient over a window of size w: 
    r୲ = βr୩ିଵ + (1 − β)g୲°g୲  

Step3: Compute update: ∆W୲ = ሾ݃ሿ௧ܵܯሿ௧ିଵܴݎ∆ሾܵܯܴ− + g୲ 
Where, ܴܵܯሾ݃ሿ௧ = ඥ∈ I + r୲ 

Here I is the vector where all the components are 1 and rt is also a vector and is a very small value. 
Step 4: Apply update: ௧ܹାଵ = ௧ܹ +	∆ ௧ܹ 
where ∆W୲ = −  ሾ݃ሿ௧ܵܯܴߟ
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3) Adadelta 
AdaDelta is an improvement over Adagrad just like 

RMSProp. AdaDelta is a closely related algorithm to 
RMSProp. In the case of RMSProp, we take the 
exponentially decaying average of the squared gradient 
and discard history from the extreme past. In AdaDelta, 
instead of taking the exponentially decaying average of the 
squared gradient, it computes the moving window average 
of the gradient. The window is fixed in size, and it moves 
forward in every iteration. It computes the average over the 
samples in a window in each iteration. Both AdaDelta and 
RMSProp give almost similar performance. 

Adadelta’s main advantages over Adagrad are that it 
doesn’t need a default learning rate. Moreover, it doesn’t 

decrease the learning rate as aggressively and 
monotonically as Adagrad. 

4) Adaptive Gradients (Adagrad) 
The Adadelta algorithm tries to adaptively scale the 

learning rate in different dimensions. This problem has 
been solved in Adagrad by tuning the learning rate in all 
the dimensions of the weight vector. Moreover, the scale 
parameters of the scale factor to scale the learning rate in 
different dimensions are inversely proportional to the 
square root of the sum of the historical squared values of 
the gradient. As a result, the parameters that have the 
largest partial derivative of the loss will have a rapid 
decrease in their learning rate. Parameters with small 
partial derivatives will have a relatively small decrease in 
learning rate. 

 
Algorithm: Adaptive Gradients (Adagrad) 

Step 1: Compute the gradient of the loss function at location t, taking X as the input vector w.r.t. weight 
vector. ݃௧ = 1݊ ෍ ∇௪ܮ( ௧ܹ, ܺ)∀௑∊ெ௜௡௜௕௔௧௖௛  

Here n is a number of samples used for training the network model. ݃௧	is gradient at instant t, ௧ܹ 	is weight 
vector. 

Step 2: Compute the square of the different components of the gradient and then sum them up from 1 to t. ݎ௧ =෍݃τ°݃τ

௧
τୀଵ  

Here o is element wise product 
Step 3: Update	 ௧ܹ ௧ܹାଵ = ௧ܹ − ݊√∈ ܫ + ௧ݎ °݃௧ 
Here I is the vector where all the components are 1 and ݎ௧	is also a vector and ∊ is a very small value.  

The general form of the equation will be ௧ܹାଵ(௜) = ௧ܹ(௜) − ݊ට∈  ௧(௜)°݃௧(௜)ݎ+
 

Algorithm: Adaptive Moments (Adam) 
Step 1: Compute the gradient of the loss function at location t, taking X as the input vector w.r.t. weight 

vector. ݃௧ = 1݊ ෍ ∇௪ܮ( ௧ܹ, ܺ)∀௑∊ெ௜௡௜௕௔௧௖௛  

Here n is the number of samples used for training the network model. ݃௧	is gradient at instant t, ௧ܹ 	is weight 
vector. 

Step 2: Compute bias-corrected first and second moments ݏ௧ෝ = ௧1ݏ − ଵߚ ௧ෝݎ = ௧1ݎ −  ଶߚ

Here ݏ௧ෝ  is bias-corrected first moment and ݎ௧ෝ	is the bias-corrected second moment. 
Step 3: Update	 ௧ܹ ௧ܹାଵ = ௧ܹ − ߟ ∋௧ෝඥݏ ܫ + ௧ෝݎ  

 
Here I is the vector where all the components are 1  
and ݎ௧	is also a vector and ∊ is a very small value.  
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The advantage of Adagrad is that it adaptively scales the 
learning rate for different dimensions by normalizing with 
respect to the gradient magnitude in the corresponding 
dimension. Moreover, it converges rapidly when applied 
to convex functions. But the limitation is that if the 
function is non-convex, then it may find a locally convex 
region, and in such a case, the algorithm quickly converges 
at that minimum convex region. 

5) Adaptive Moments (Adam) 
It is a variant of the combination of RMSProp and 

momentum. Here, both first-order and second-order 
momentum have been considered. In addition, Adam 

incorporates one more term that tries to correct the bias by 
initializing to zero at time t = 0. 

6) RMSProp 
It tries to overcome the problem of the Adagrad 

algorithm, i.e., the vanishing learning rate. In the 
RMSProp algorithm, instead of taking the cumulative sum 
of squares of the gradients, it takes the exponentially 
decaying average of the squared gradient and discards 
history from the extreme past. As a result of this, the 
algorithm converges rapidly. Once it reaches the locally 
convex surface, the algorithm initializes at that point. So, 
RMSProp does not consider the accumulated sum of 
squares of the gradient from the beginning. 

 
Algorithm: RMSProp 

Step 1: Compute the gradient of the loss function at location t taking X as the input vector w.r.t. weight 
vector. ݃௧ = 1݊ ෍ ∇௪ܮ( ௧ܹ, ܺ)∀௑∊ெ௜௡௜௕௔௧௖௛  

Here n is a number of samples used for training the network model. ݃௧	is gradient at instant t, ௧ܹ	is weight 
vector. 

Step 2: Compute the exponentially decaying average square gradient. ݎ௧ = ௞ିଵݎߚ + (1 −  ௧°݃௧݃(ߚ
where ߚ is very small quantity 

Step 3: Update	 ௧ܹ ௧ܹାଵ = ௧ܹ − ݊√∈ ܫ + ௧ݎ °݃௧ 
Here I is the vector where all the components are 1  
and ݎ௧ also a vector and ∊ is a very small value.  

IV. RESULTS AND DISCUSSION 

The efficiency of the proposed model has been 
evaluated for six different optimizers, considering both the 
dataset ADNI and Kaggle, as depicted in Table VI. From 
Table VI, it is seen that in the ADNI dataset, the Adam 
optimizer gives a maximum accuracy of 90% at 20 epochs, 

whereas SGD gives a maximum accuracy of 90% at 80 
epochs. In the case of the Kaggle dataset, SGD with a 
momentum optimizer gives a maximum accuracy of 99% 
at 100 epochs. 

The diagrammatic representation of the accuracy results 
of both datasets, ADNI and Kaggle, is depicted in Fig. 7(a) 
and (b) respectively. 

TABLE VI. TEST ACCURACIES OF DIFFERENT OPTIMIZERS AT DIFFERENT EPOCHS 

Dataset Epochs 
SGD 
Train 

SGD 
Test 

SGD with 
momentum 
0.9 Train 

SGD with 
momentum 

0.9 Test 

Adadelta 
Train 

Adadelta 
Test 

Adagrad 
Train 

Adagrad 
Test 

Adam 
Train 

Adam 
Test 

RMSprop 
Train 

RMSprop 
Test 

ADNI 

5 0.32 0.30 0.63 0.58 0.40 0.38 0.59 0.53 0.69 0.61 0.78 0.74 

10 0.68 0.60 0.59 0.57 0.51 0.45 0.73 0.68 0.85 0.78 0.61 0.50 

20 0.84 0.84 0.74 0.68 0.52 0.49 0.81 0.69 0.97 0.90 0.98 0.89 

35 0.97 0.84 0.98 0.87 0.51 0.49 0.86 0.77 0.95 0.87 0.93 0.77 

50 0.97 0.89 0.95 0.86 0.60 0.52 0.85 0.76 0.97 0.89 0.97 0.83 

80 1.00 0.90 0.99 0.87 0.60 0.50 0.95 0.77 0.99 0.86 0.98 0.80 

100 0.99 0.86 0.97 0.89 0.61 0.56 0.89 0.79 0.99 0.78 0.97 0.87 

KAGGLE 

5 0.51 0.48 0.72 0.69 0.49 0.49 0.68 0.64 0.86 0.83 0.88 0.84 

10 0.84 0.81 0.95 0.93 0.54 0.54 0.64 0.63 0.95 0.93 0.93 0.91 

20 0.96 0.80 0.93 0.88 0.55 0.55 0.87 0.84 0.98 0.95 0.98 0.96 

35 0.99 0.97 0.50 0.50 0.60 0.60 0.87 0.85 0.99 0.97 0.99 0.98 

50 1.00 0.99 0.99 0.96 0.68 0.64 0.88 0.87 0.98 0.97 0.98 0.94 

80 0.99 0.98 1.00 0.98 0.64 0.63 0.91 0.90 0.96 0.95 0.97 0.96 

100 1.00 0.97 1.00 0.99 0.68 0.66 0.94 0.92 0.98 0.97 0.99 0.98 
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                                                             (a) ADNI dataset                                                                   b) Kaggle Dataset 

Fig. 7. Test Accuracy Vs Epoch using the various optimizers. 

The performance of the proposed model has been 
evaluated by computing the rate of accuracy, precision, 
and F1 score considering both the ADNI and Kaggle 
datasets using the formula stated below:  
  

Accuracy =
்௉ା்ே்௉ାி௉ାிேା்ே 

 Precision =
்௉்௉ାி௉ 

Recall =       
்௉்௉ାிே 

F1 Score =    
ଶ	ൈ	௉௥௘௖௜௦௜௢௡	ൈ	ோ௘௖௔௟௟௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟   

The four entries in the confusion matrix are: TP = 
number of true positives, TN = number of true negatives, 
FP = number of false positives, and FN = number of false 
negatives. The confusion matrix for three and four classes 
is depicted in Fig. 8 (a) and (b) respectively: 

Out of all optimizers, SGD performed the best. The 
classification results of both datasets using SGD as an 
optimizer are depicted in Table VII. 

 

    
     a) Confusion Matrix for 3 classes                                         b) Confusion Matrix for 4 classes 

Fig. 8. Confusion Matrix for 3 and 4 classes. 

TABLE VII. CLASSIFICATION RESULTS OF ADNI AND KAGGLE DATASET USING SGD AS OPTIMIZER 

Dataset Classes TP FN FP TN ACCURACY PRECISION RECALL F1 SCORE 

ADNI 

AD 53 7 2 232 0.97 0.96 0.88 0.92 

CN 78 7 17 192 0.92 0.82 0.92 0.86 

MCI 131 18 13 132 0.89 0.91 0.88 0.89 

Average 0.93 0.90 0.89 0.89 

KAGGLE 

MILD 153 0 1 0 1.00 0.99 1.00 0.99 

MODERATE 0 11 0 0 1.00 1.00 1.00 1.00 

NON-
DEMENTED 

0 0 550 1 0.99 1.00 0.99 0.99 

VERY MILD 
DEMENTED 

0 0 3 383 0.99 0.99 1.00 0.99 

Average 0.99 0.99 1.00 0.99 

 

We have also computed the execution time for training 
and testing for both datasets ADNI and Kaggle. From 
Table VIII, we can observe that the computation time of 
training for the ADNI dataset is highest for SGD with 
momentum optimizer and lowest for Adadelta. In case of 

computation time of the testing set, RMSprop took only 60 
seconds whereas SGD took 1200 seconds. On the other 
hand, for the Kaggle dataset, the computation time of the 
training set is highest when the SGD with momentum 
optimizer was considered and lowest for the Adadelta 
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optimizer. Similarly, for the testing set, Adagrad took only 
14 seconds to execute whereas Adam and RMSprop took 
120 seconds to execute, which is highest of all the 
optimizers. The experiments have been performed in 

Google Colab with a T4 graphical processing unit. All the 
optimizers used around 1180 MB of GPU memory from a 
total of 15,360 MB. 

TABLE VIII TRAINING AND TESTING TIME FOR THE DIFFERENT OPTIMIZERS FOR THE TWO DATASETS AT 100 EPOCHS 

Optimizers          Time                                   ADNI Kaggle 

SGD 
Training time (sec) 10,800 34,800 
Testing time(sec) 1200 60 

SGD with momentum 0.9 
Training time (sec) 25,200 62,400 
Testing time(sec) 1980 40 

Adagrad 
Training time(sec) 10,300 37,200 
Testing time(sec) 60 14 

Adadelta 
Training time(sec) 9720 24,000 
Testing time(sec) 1440 80 

Adam 
Training time(sec) 10,060 36,000 
Testing time(sec) 65 120 

RMSprop 
Training time (sec) 9980 34,800 
Testing time (sec) 49 120 

 

V. COMPARISON WITH OTHER MODELS 

We have compared our proposed model with other 
state-of-the- art models. In Table IX comparisons have 

been made on the ADNI dataset and in Table IX 
comparisons have been made on the Kaggle dataset. 

TABLE IX. COMPARISON OF PROPOSED MODEL WITH EARLIER MODELS 

Dataset Reference Year Model/Classifier Sample size Accuracy Merits Demerits 

ADNI 

R. A. Hazarika et al. 
[18] 

2022 
Improved 

DenseNet121 
15,120 88% 

Use of a set of different DL 
models with a very large 

dataset. 

None of the DL model 
could achieve a good 

result 

K. AdityaShastry 
[28] 

2024 CNN 1296 71.6% 
Used the concept of multi-
dataset as well as also multi 

classification 

Have the potential of 
overfitting as well as 

also cannot be applied 
in real life scenario 

Proposed Model 2025 CNN 1712 90% 

Used customized CNN 
taking into account the 
issues of overfitting and 

class imbalance. 

Experiment done on 
public dataset and the 
cost of computational 

resources may be 
expensive 

Kaggle 

S. Murugan et al. 
[15] 

2021 CNN 12,800 94% 
SMOTE technique used to 
tackle the class imbalance 

problem 

Considered uniform 
number of images in 

each of the directories 

S. Sharma et al. [16] 2022 VGG16 6400 90.4% 
Applied feature extraction 
through the use of VGG16 

model. 

The model may tend 
to have the problem of 

overfitting. 

A. Balasundaram et 
al. [23] 

2023 CNN 6400 94.45% 
Image segmentation 
performed to isolate 
hippocampus region. 

Image segmentation 
might lose some 

important information 
regarding the disease 

which might affect the 
accuracy of the model. 

K. AdityaShastry 
[28] 

2024 CNN 6400 96.02% 
Used the concept of multi-
dataset as well as also multi 

classification 

Have the potential of 
overfitting as well as 

also cannot be applied 
in real life scenario 

Proposed Model 2025 CNN 6400 99% 

99% accuracy achieved 
without using any data pre-

processing techniques. 
Class imbalance was 

tackled by using k-fold 
cross validation. 

The model may be 
expensive in case of 

computational 
resources. 

 

Merits: The merit of the following proposed model is 
that it can secure 90% as well as 99% in the datasets 
Kaggle and ADNI respectively without much data pre-
processing. For the Kaggle dataset, the proposed model 
worked really well as we can see from the previous works 
that even using pre-trained model and applying different 

data pre-processing techniques, the model fails to achieve 
99% accuracy. The proposed model doesn’t use any 
pretrained model. Most of the earlier works have 
conducted binary classification which is less challenging. 
We have not considered a uniform number of images in 
each of the classes of the brain images rather we have used 
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the concept of K-fold cross-validation to tackle the issue 
of class imbalance as well as overfitting. Another merit of 
this work is that it analyses all the state-of-the-art 
optimizers and it is being discussed in details with 
mathematical formulas. The performance of the ADNI 
dataset is 90%. It might not achieve accuracy above 90% 
like some previous works but one thing needs to be 
considered that every earlier work has used a subset of the 
ADNI dataset. As ADNI is a huge repository of brain MRI 
images, every researcher’s dataset might differ from the 
other leading to different accuracies. We can also see that 
the number of images in each of the earlier works is 
different and each work has performed different sets of 
data pre-processing techniques. So, to justify which model 
is best for the classification of AD in case of the ADNI 
dataset it needs to be analysed further. This study is unique 
as we have not only analysed the optimizers but also 
examined the classsifier’s performance at different epochs.  

Demerits: Both the datasets Kaggle and ADNI datasets 
are public repository. So, the need of local dataset is 
utmost necessary for this kind of research work. But this 
needs collaboration of researchers, medical professionals 
and radiologist. The collaboration with medical 
institutions would let the researchers access the medical 
images, which would help them to create a real life dataset 
of a particular region. Because the ADNI, OASIS and 
Kaggle dataset consists of the brain images belonging to 
people from different countries. According to studies 
Alzheimer’s disease is influenced by factors like lifestyle, 
food habits and genetics. So, these factors differ very 
much from region to region. Creating a real life dataset of 
the local region might benefit society in dealing with this 
disease and also help medical experts to diagnose it in 
proper time. The proposed model may be expensive in 
terms of computational resources. 

VI. CONCLUSION 

The challenges to achieving high classification 
accuracy with state-of-the-art CNN models require a 
critical update of parameters. In this paper, we have 
compared two datasets (ADNI and Kaggle) with different 
image formats (jpeg, bmp) and different numbers of 
images (6400 in Kaggle and 1700 in ADNI) with the same 
model. We have addressed the query that usually comes to 
mind that whether pre-processing is necessary when using 
deep learning. We have evaluated the proposed model, 
considering the ADNI dataset with pre-processing. 
Without pre-processing, it is observed that the results are 
inconsistent. After pre-processing using the FLIRT and 
BET algorithms, the model shows consistent results with 
high accuracy. In the case of the Kaggle dataset, no pre-
processing has been done. A literature review reveals that 
for high classification accuracy, an equal number of 
images are essential in each class. In the present study, the 
problem of class imbalance has been overcome using the 
stratified K-fold technique to minimize the overfitting 
problem. The proposed model has been implemented 
using six different optimizers to reduce the convergence 
time. Further analysis of these optimizers will allow to 

analyse the nature of the dataset. We have achieved high 
accuracy using SGD with momentum and Adam 
optimizers. Thus, SGD with momentum and the Adam 
optimizer following the proposed CNN model could be the 
best optimizer for Alzheimer disease classification in 
particular and for medical image processing in general. 
The present work may be extended using different 
advanced machine learning techniques such as transfer 
learning, vision transformers, LSTM, and GAN to reduce 
convergence time and improve accuracy. The concept of 
ensemble learning can also be used in multiclass 
classification. As research on Alzheimer’s disease heavily 
depends on the three public datasets ADNI, Kaggle, and 
OASIS, building a new real-life dataset can be challenging 
but would definitely benefit the community of researchers 
working on this domain. Super resolution techniques like 
SRCNN (Super Resolution Convolutional Neural 
Network, EDSR (Enhanced Deep Super-Resolution) and 
RCAN (Residual Channel Attention Network) can be used 
in the future for the enhancement of the classifier’s 
performance. 
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