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Abstract—Breast Cancer (BC) is the most frequent form of 
cancer, accounting for 24.5% of all cancer cases worldwide, 
with projections estimating 364,000 cases by 2040. Accurate 
diagnosis and effective categorization of BC are essential for 
proper treatment planning, patient management, and 
improved survival. Traditionally, pathologists examine 
histopathology specimens manually using a microscope to 
categorize the BC, which is labor-intensive, time-consuming, 
prone to subjectivity and constrained by experts’ availability. 
An automated approach can address these limitations; 
however, previous methods, particularly those based on 
Convolutional Neural Networks (CNNs), often struggle with 
data imbalance, poor accuracy and poor generalizability 
across datasets, especially in multiclass BC categorization. 
This study presents an automated BC categorization method 
leveraging whole slide histopathology images and a 
transformer-based deep learning model. The proposed 
method uses a cascade of transformers to classify BC using 
40× histopathology images, following the taxonomy defined 
by the BRACS dataset, distinguishing between benign, 
atypical, and malignant cases. First, it classifies BC into three 
primary categories—benign, atypical and malignant—and 
subsequently determines the specific sub-types within each 
category. The proposed method was validated using two 
widely recognized datasets: BRACS and BreakHis. On 
BRACS, it achieved 95.6% accuracy in classifying BC into 
benign, atypical, and malignant categories, with sub-type 
accuracies of 94.7% for benign, 98.6% for atypical, and 
99.1% for malignant cases. On the BreakHis dataset, the 
model achieved 93% accuracy for binary benign-malignant 
classification, with sub-type accuracies of 94% and 91% for 
benign and malignant cases, respectively. The proposed 
method outperformed existing methods in accuracy and 
robustness, making it a promising tool for automated BC 
diagnosis and classification. 

Keywords—breast cancer, whole slide image, vision 
transformer, histopathology image, cancer classification  

I. INTRODUCTION

Breast Cancer (BC) is one of the major causes of cancer 
related deaths among women worldwide. In 2022, 

Manuscript received February 12, 2025; revised April 21, 2025; accepted 
May 8, 2025; published August 7, 2025.  

approximately 2.3 million women were diagnosed with 
BC and 670,000 among them died worldwide [1]. It is 
estimated that 310,720 women in the United States alone 
will be diagnosed with Invasive Breast Cancer (IVC) in 
2024, while 56,500 women will be diagnosed with Ductal 
Carcinoma in Situ (DCIS). Approximately 42,250 of them 
are predicted to die from this cancer [2]. According to the 
American Cancer Society, one in every eight women in the 
United States is diagnosed with BC at some point in their 
lifetime [2]. Accurate BC diagnosis and categorization 
play a crucial role in reducing cancer deaths by enabling 
personalized treatment and effective patient management. 
Several countries reported that precise diagnosis and 
efficient categorization improves treatment planning and 
patient management, which could achieve an annual breast 
cancer mortality reduction of 2–4% per year [3–5]. 

Traditionally, the diagnosis and categorization of BC 
are performed based on the Hematoxylin and Eosin (H&E) 
histopathology images. At first, the biopsy is performed to 
collect tissue from the suspected region, which is then 
processed in multiple steps, which include embedding, 
sectioning, mounting and staining to prepare the specimen 
for microscopic observations. H&E is considered the gold 
standard staining for histopathology examination, which 
involves sequential tissue immersion in hematoxylin and 
eosin solutions. Hematoxylin is a basic dye that binds to 
the tissue’s deoxyribonucleic acid and stains cell nuclei 
blue-purple. On the other hand, eosin is an acidic dye 
which binds to the cytoplasmic and stromal tissue proteins, 
giving them a pink stain. This highlights cellular and tissue 
structures, allowing for visualization under a microscope. 
Pathologists manually examine the H&E-stained specimen 
to observe the tissue structure, cellular morphology, nuclei 
size and shape, stromal changes, mitotic activity and other 
pathological changes and abnormalities for the diagnosis 
and categorization of cancer. However, such manual 
examination requires experience and much time and effort. 
Moreover, such diagnosis often suffers from inter- 
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observer variability. 
With the recent advancements in Artificial Intelligence 

(AI) and computational techniques, along with the 
digitization of histopathology specimens, it is now 
possible to automatically analyze histopathology images 
for accurate cancer categorization and diagnosis without 
demanding pathologists’ direct supervision. The WSI 
scanner converts the entire histopathology specimen into 
high-resolution digital images, which can be observed on 
a computer screen and processed using computer 
algorithms, particularly AI methods. Several AI-based 
methods were proposed for the diagnosis and 
categorization of BC patients. These methods include 
traditional machine learning models, deep learning models 
and the combination of these models. Most of these 
methods were developed based on the publicly available 
BC dataset BreakHis [6] and BRACS [7]. Both datasets 
were prepared by breast pathologists and widely used for 
developing BC categorization. 

Traditional machine learning model, such as the 
Support Vector Machine (SVM) with empirically selected 
features, was also utilized for BC classification [8]. 
Although this type of network is suitable for binary 
classification with the limited dataset, they failed to 
achieve good accuracy for multi-class BC categorization. 
Convolutional Neural Networks (CNN) based architecture, 
a sub-group of deep learning that can learn spatial 
relationships in images, was found very effective for BC 
histopathology image analysis [6, 9]. Hybrid networks 
combining multiple deep learning and traditional  
machine learning models were also applied for BC 
classification [10, 11].  

Although CNNs have been widely used in 
histopathological image analysis, they exhibit several 
limitations that hinder their performance in categorizing 
BC. CNNs rely on fixed-size receptive fields, which 
restrict their ability to capture long-range spatial 
dependencies and global context which is crucial for 
interpreting complex tissue structures. Their performance 
depends heavily on extensive data augmentation and large, 
well-annotated datasets to generalize effectively. However, 
publicly available digital pathology datasets frequently 
suffer from class imbalance, particularly among rare BC 
sub-types, which impairs the learning of minority classes 
and reduces overall classification accuracy. Moreover, 
CNN-based models often demonstrate poor generalization 
across datasets obtained from different institutions or 
under varying staining conditions, limiting their 
robustness in real-world clinical settings. These challenges 
highlight the need for alternative deep learning 
architectures that are more context-aware and capable of 
modeling local and global features [12]. Transformers, 
particularly Vision Transformers (ViTs), address these 
limitations through self-attention mechanisms that enable 
the modeling of complex patterns and long-range 
dependencies [13]. ViTs have shown promising results in 
recent medical imaging studies but remain underexplored 
in BC categorization using Hematoxylin and Eosin (H&E) 
stained histopathology images. This capability is 
especially valuable for processing high-resolution Whole 

Slide Images (WSIs), which can reach dimensions of up to 
100,000×100,000 pixels [14].  

This paper presents a BC categorization method 
utilizing a ViT-based model. The proposed method first 
divided the BC patients into benign, atypical and 
malignant classes. Then, it determined the sub-categories 
of each class of patients. Benign BC was subdivided into 
normal, Pathological Benign (PB) and Usual Ductal 
Hyperplasia (UDH). Atypical cancers were divided into 
Flat Epithelial Atypia (FEA) and Atypical Ductal 
Hyperplasia (ADH). Finally, the malignant cancers were 
sub-typed as DCIS and IVC. Such a BC taxonomy is 
provided by the BRACS dataset, which is helpful in 
differentiating the atypical cancers from benign and 
malignant cases for appropriate clinical treatment and 
surgical planning [15, 16]. Identifying atypical cancers is 
essential as they pose a high possibility of developing 
future DCIS or IVC. More importantly, these lesions 
remain undetected in mammography and other imaging 
techniques, even if they cannot be identified in a physical 
breast examination. Therefore, in this study, we designed 
the method to categorize BC according to the taxonomy 
given by BRACS and trained the transformers using 
BRACS dataset. Further, we have demonstrated the 
efficacy of the proposed method for the BreakHis dataset, 
which classifies the BC into eight classes. According to the 
BreakHis, BC patients are divided into benign and 
malignant categories. Further, the benign patients are 
subdivided into adenosis, fibroadenoma, phyllodes tumor 
and tubular adenoma classes. The malignant patients are 
subdivided into ductal carcinoma, lobular carcinoma, 
mucinous carcinoma and papillary carcinoma. The 
proposed transformer-based BC categorization method 
achieved high accuracy in the BRACS and BreakHis 
datasets, outperforming the previously proposed methods. 
This ensures the robustness of the method. Moreover, this 
method utilized the 40× magnification WSI, which allows 
faster diagnosis than the methods that relied on 100×, 200× 
or 400× WSI. We used 40× magnification histopathology 
images for training and evaluation. Although prior studies 
often rely on higher magnifications such as 100×, 200×, or 
400× to capture detailed tissue structures, we chose 40× to 
balance computational efficiency and diagnostic precision. 
High-resolution images are essential for capturing cellular 
morphology, gland formation, nuclear features, and other 
histological patterns critical for cancer classification. In 
contrast, lower-resolution images (e.g., 5× or 10×) 
generally lack such fine details and are unsuitable for 
diagnostic purposes; instead, they serve to identify 
artifacts and pen marks or assess overall tissue coverage. 
Using 40× images allows our model to retain sufficient 
diagnostic information while ensuring practical 
computational requirements. 

Thus, the main contributions of the paper are 1) the 
development of an accurate BC classification method 
based on the H&E histopathology images, 2) the 
investigation of the performance of the transformer model 
for BC classification, 3) the demonstration of the method 
using two widely used BC classification dataset to ensure 
its robustness and generalized performance. 
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II. LITERATURE REVIEW 

Accurate diagnosis of BC and categorizing them into 
the appropriate sub-types enable to control the 
development of tumor cells into malignant cancers. 
However, the manual examination-based analysis of 
histopathology images for categorizing the BC into 
multiple classes and sub-classes is challenging due to the 
inter-observer variability, lack of experienced pathologists 
and tedious and lengthy process. Several automated 
methods were proposed to analyze histopathology images, 
mainly utilizing AI. These methods are capable of fixing 
the issues related to the manual examination. However, 
these methods require high-magnification images, lack 
accuracy and fail when implemented for images prepared 
in a different laboratory. 

AI-based automated BC categorization methods can be 
divided into three groups: traditional machine learning 
based methods, deep learning-based methods, and hybrid 
methods. Traditional machine learning-based methods 
include SVM, logistic regression, Linear Discriminant 
Analyzer (LDA), K-Nearest Neighbor (KNN), and random 
forest models. These models are suitable for training 
binary classifiers using comparatively smaller datasets; 
however, considering the complexity of a multiclass 
categorization problem, these methods are not suitable for 
producing high accuracy when trained with a limited 
dataset. 

In 2015, Spanhol et al. [6] published the BreakHis 
dataset. They investigated the performance of Random 
Forest (RF), KNN, LDA and SVM classifiers for eight 
class multiclass BC categorization based on the 
handcrafted features. The SVM produced the highest 
accuracy of 85.2 using 200× images. Singh et al. [17] 
proposed an SVM-based binary classifier for classifying 
BC patients into benign and malignant classes, which 
achieved 92.3%. Belsare et al. [18] proposed a LDA based 
binary classifier which utilized Gray Level Co-occurrence 
Matrix (GLCM) and Graph Run Length Matrix (GRLM) 
based features to detect the malignant cancer with 80% 
accuracy. Aswathy et al. [19] investigated the performance 
of SVM, KNN and RF methods for classifying the BC 
histopathology images as benign and malignant based on 
the handcrafted features. This method found SVM the 
most accurate, which yielded 89.1% accuracy for both 
BreakHis and the University of California Santa Barbara 
(UCSB) dataset. In a separate study, Chan et al. [8] applied 
SVM to classify the BreakHis dataset into eight classes, 
which produced only 55.5% accuracy. These studies 
express that SVM is mostly used among the traditional 
classifiers for BC categorization. The studies also indicate 
the limitation of traditional classifiers for multiclass BC 
classification. 

Deep learning-based methods, particularly CNN, have 
been deployed by many researchers and reported to 
achieve higher accuracy than traditional classifiers. The 
publisher of the BreakHis dataset also investigated the 
performance of CNN models on their dataset [20]. They 
implemented a pre-trained CNN model, CaffeNet, on 200× 
images to improve the classification accuracy to 88.7%. In 
a separate study, they implemented a pretrained AlexNet 

model, which yielded 82.7% accuracy for 200× 
images [21]. Han et al. [22] proposed a class structure-
based CNN classifier, a modified version of GoogLeNet 
architecture. They tested the performance of this model for 
binary and multiclass BC categorization using the 
BreakHis dataset. The accuracy was 96.9 and 93.9 using 
100× images for binary and multiclass classification, 
respectively. Motlagh et al. [23] proposed a ResNetbased 
CNN model using 40× images, which achieved 98.7% 
accuracy in benign and malignant binary classification. 
This method achieved 94.8% and 96.4% accuracy for 
further classifying benign and malignant cases into sub-
classes. Golatkar et al. [24] also proposed a multiclass BC 
categorization method utilizing the inception-based CNN 
model. This method was trained using 20× images of 
Breast Cancer Histology images Challenge dataset 
(BACH) [25]. The model produced 93% accuracy for 
benign-malignant binary classification. This is significant 
considering the magnification of the image. However, the 
accuracy of the model dropped to 85% for normal, benign, 
DCIS and IVC multiclass classification. Jiang et al. [9] 
proposed another ResNet-based model for the BreakHis 
dataset. They integrated squeeze and excitation block with 
the ResNet architecture, unlike the [24]. However, it 
produced little improvement in accuracy. Gour et al. [26] 
also utilized residual block but increased the number of 
layers by 152. The accuracy of this ResNet model was 
lower (84.3%) compared to the squeeze and excitation-
based ResNet model for benign-malignant binary 
classification (98.8%). Another ResNet-based model was 
proposed by Zewdie et al. [27]. Their model achieved 
approximately 96% accuracy in benign malignant binary 
classification and in sub-typing the benign and malignant 
classes. 

Brancati et al. [7] developed a custom CNN-based 
model, which was trained and tested using the BRACS 
dataset. They categorized the BC patients in two steps: 
firstly, the patients were divided into benign, atypical and 
malignant classes with 70.3% accuracy and then, each 
class was categorized into appropriate sub-classes with a 
maximum accuracy of 69.6%. Although this method 
utilized two-stage classification, which is suitable for 
achieving higher accuracy in this type of multi-class 
problem, they failed to achieve sufficient accuracy. This 
method used 40× images. Another ResNet-based method 
was proposed by Fahad et al. [28] utilizing the BRACS 
dataset. Unlike Brancati’s method, they classified the BC 
into seven classes rather than implementing a two-stage 
classification. However, the accuracy was 96.2%, which is 
significantly better. This method also used 40× images. 
Chu et al. [29] proposed a multiple instance learning based 
method for the same purpose with achieved 87.6% 
accuracy. These studies demonstrate the superiority of 
deep learning-based methods, particularly CNN models, 
over traditional machine learning models for BC 
categorization. Although the CNN-based methods 
achieved higher accuracy, they required more extensive 
training data and computational power. Alternatively, the 
traditional models can be trained using features derived 
from limited data and computational resources, but they  
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lack accuracy. 
Therefore, some researchers proposed hybrid networks 

combining multiple CNN models or traditional classifiers 
with CNN models. Deniz et al. [30] combined the feature 
extraction capability of CNN models with low 
computation classification of traditional models. In their 
work, they utilized AlexNet and VGG16 models for 
extracting features from histopathology images, which 
were then used by an SVM classifier to predict the class of 
BC. This approach produced 89.0% accuracy for the 
binary classification of the BreakHis dataset using 100× 
images. Another issue of training the CNN models was 
over-fitting. Bardou et al. [10] combined multiple CNN 
models to create an ensemble of models suitable for 
handling over-fitting problems. This ensemble model 
achieved a significantly high accuracy of 97.8% for the 
binary classification of the BreakHis dataset. Other hybrid 
networks were proposed by Nahid et al. [11] and Tasleem 
et al. [31]. They also did not achieve significant 
improvement compared to the CNN-based models. 

III. MATERIALS AND METHODOLOGY 

A. Ethics Statement 

In this study, we used anonymized human biopsy data. 
We obtained Institutional Review (IRB) approval from the 
Independent University Bangladesh Research Ethics 

Committee and conducted the research following the IRB 
(IRB-2022-SETS-06) guidelines. 

B. Dataset 

In this study, we have utilized the two most commonly 
used and publicly available histopathology image datasets 
of breast cancer, which are BRACS [7] and BreakHis [6]. 

In this study, we followed the BC taxonomy provided 
by the BRACS dataset and primarily trained and validated 
the proposed method using the BRACS dataset. Then, the 
method was tested on the BreakHis dataset to evaluate the 
robustness and generalization ability. We also trained and 
tested the model using BreakHis to ensure the efficacy of 
the transformer-based model regardless of the dataset.  

The BRACS dataset contains 4539 labelled image 
patches extracted from 547 whole slide images belonging 
to 189 breast cancer patients. The WSIs were scanned 
using an Aperio AT2 scanner at 40× magnification to 
provide a 0.25 µm/pixel resolution. The 4539 images 
included 1837 benign, 1263 atypical and 1439 malignant 
images. The benign class included 484 healthy or normal, 
836 PB and 517 UDH images. The atypical class included 
756 FEA and 507 ADH images. The malignant class 
included 790 DCIS and 649 IVC images. The distribution 
of images in each class and the distribution of images for 
training, validating and testing each classifier is given in 
Fig. 1. 

 
Fig. 1. Distribution of BRACS images for training, validating and testing the classifiers. 
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The BRACS-trained transformer model was tested on 
545 images of the BreakHis dataset, which included 176 
benign and 369 malignant images. Later, the model was 
trained, validated, and tested using 2113 images of the 
BreakHis dataset. Among these images, 1148 images were 
used for training, validating, and testing the benign-
malignant classifier, 468 images for the benign sub-type 
classifier, and 500 images for the malignant sub-type 
classifier. These images were selected randomly from the 
BreakHis dataset. 

C. Architecture of the Proposed System 

The proposed system trained four ViT models 
independently to accomplish benign-atypical-malignant 
classification, benign sub-type, atypical sub-type and ma- 
lignant sub-type classification. Firstly, we plotted the 
BRACS dataset using t-distributed Stochastic Neighbor 
Embedding, an unsupervised non-linear dimensionality 
reduction technique for visualizing high-dimensional data. 
This was done separately for seven classes and three 
classes (benign, atypical and malignant), as shown in 
Fig. 2 using the same parameters. Fig. 2 shows the two-
dimensional projection of seven-class and three-class data 
distribution. The three-class projection shows better 

separable clusters than the seven-class one. This indicates 
that classifying the BRACS dataset into benign, atypical 
and malignant classes is less complex than directly 
applying seven class classifications. Therefore, we 
implemented the classifiers in two stages to create a 
cascade of transformers, as illustrated in Fig. 3. The 
proposed system starts by evaluating the sharpness of the 
image. WSI images often suffer from out-of-focus 
problems due to the stage alignment problem or other 
related hardware issues [32]. Therefore, the sharpness of 
the images was estimated to determine the focus quality of 
the image. The sharpness was calculated based on the 
average width of edges in the image according to Eq. (1). 
Sharp edges have abrupt intensity changes over a small 
spatial region, resulting in lower edge width. In constant, 
blurred edges have gradual intensity transitions over a 
larger spatial region, leading to higher edge width. 
Therefore, a sharp image results in a lower average edge 
width according to Eq. (1). 
 

Average edge width = 
ଵே ∑ ே௜ୀଵ(݅)ݓ               (1) 

 

In Eq. (1) N is the number of detected edges in the image, 
w(i) is the width of edge i. 

 
Fig. 2. Visualization of BRACS dataset by t-distributed Stochastic Neighbor Embedding: seven class (left) and three class data distribution which 

included benign, atypical and malignant classes (right). 

Our experiment found that an image having an out of-
focus issue typically results in an average width higher 
than 6. Consequently, such images were rejected for 
analysis. After sharpness evaluation, the proposed method 
normalized the RGB color values of the image.  

Color variation is a common issue in pathology image 
analysis. It often impacts the effectiveness of AI models, 
particularly when the models are used on images scanned 
with a different WSI scanner than the one they were 
trained on. Therefore, this method transforms the RGB 
color values to the sRGB color space to compensate for the 
color variation caused by different WSI scanners. 
Sharpness evaluation and color normalization comprise 
the system’s pre-processing steps, which allow the method 
to handle images scanned by various scanners and 

prepared in various laboratories. These steps are related to 
the system’s generalization ability.  

After color normalization, the stage one classifier 
classifies the image into one of three categories: benign, 
atypical and malignant. If the image is classified as benign 
in the first stage, then it is processed using only a benign 
sub-typing classifier in the second stage. Similarly, in the 
second stage, atypical sub-typing and malignant sub-
typing classifiers are selected in the input image and 
classified as atypical and malignant cancer by the stage one 
classifier. The selection of a second stage classifier for an 
image is dependent on the result of the stage one classifier. 
Thus, the stage one classifier plays a crucial role in the 
proposed system. 
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Fig. 3. Flowchart of the proposed method for BC categorization. 

D. Model Training and Evaluation 

The proposed method was designed to categorize BC 
according to the BRACS taxonomy. Therefore, the method 
was mainly trained, validated, and tested using the BRACS 
dataset. Then, the BRACS-trained model was also tested 
on the BreakHis dataset. Although the classes of the 
BreakHis and BRACS datasets do not align completely, 
we applied the BRACS-trained stage one benign atypical-
malignant classifier on the benign and malignant class 
images of the BreakHis dataset. This evaluated the 
robustness of the proposed transformer-based method. 
After that, we also trained and tested the transformers 
using the BreakHis dataset to show the effectiveness of the 
proposed transformer-based method. The proposed 
method independently trained four transformer models 
using the BRACS dataset for benign atypical-malignant, 
benign sub-type, atypical sub-type and malignant sub-type 
classification. We utilized the ViT models and then fine-
tuned them by optimizing their hyperparameters to select 
the best transformer network for each classifier.  

Transformer architecture is popular in processing 
natural languages; recently, it has been structured to 
process images. ViT is one of the very first transformer 
architectures applied on the images [14]. The core concept 
of transformer architecture is to apply self-attention to 
understand the relationships between different parts or 
patches of the input sequence. In the case of image-based 
transformers, the input image is divided into a sequence of 
patches, and then the attention is applied to the patches to 
capture the significance of each patch of the image for 
predicting the output. This patch-wise attention enables the 
capture of both local and global spatial information from 

the image. In ViT, the input image is divided into fixed-
size patches, which are then flattened and linearly 
embedded to obtain token representations. The 
transformer encoder processes these token representations. 
The encoder consists of multiple Multi-Head Self-
Attention (MHSA) layers and Feedforward Neural 
Networks (FFN). FFN layers have two times more weight 
than the MSHA layers. Fine-tuning the FFN layers is, 
therefore, time-consuming. Limiting the fine-tuning to the 
MHSA layer allows modifying only a relatively small 
number of parameters. Thus, the training time becomes 
short. Fine-tuning FFN is time consuming and is 
recommended when achieving high accuracy, which is 
challenging. Finally, a linear classifier is used at the top 
layer to predict the class labels of the input. The 
classification head is basically a two-layer multi-layer 
perception network.  

The ViT model comes in three variants: base model 
(ViT-B), large model (ViT-L) and huge (ViT-H) model. 
The base model has 12 layers, 12 heads and 86M 
parameters. The large and huge models have more 
parameters and require much training time. This study 
aims to evaluate the suitability of transformer models for 
histopathology image-based BC categorization; therefore, 
in this study, we utilized the base model, finetuned only 
the MSHA layers of the model and experimented with the 
commonly used hyperparameters to keep the network 
simple. This allowed us to achieve adequate accuracy 
without long training and high computational resources. 
Table I shows the hyperparameter optimization space of 
the transformer models. This network optimization 
approach was followed to develop each type of classifier 
by training the transformers independently. Then, the 

Journal of Image and Graphics, Vol. 13, No. 4, 2025

385



network that produced the highest test accuracy for each 
type of classification was selected. After that, we plotted 
the Receiver Operating Characteristic (ROC) curves for 
the classifiers and performed a 5-fold cross-validation 
experiment. Finally, the BC categorization results 
produced by the selected transformer-based classifier were 
compared with the previously proposed methods. 

TABLE I. LIST OF HYPERPARAMETERS AND THEIR VALUES EXPLORED 

TO FINE-TUNE THE CNN AND TRANSFORMER NETWORKS 

Criteria Search space 
Models [ViT-B/16, ViT-B/32] 

Pre-training datasets [ImageNet-1K] 
Epochs [50, 75, 100] 

Batch sizes [16, 32] 
Patch sizes [16, 32] 
Optimizers [AdamW, SGD] 

Loss functions [Categorical Cross Entropy] 
Learning rates [0.03, 0.01, 0.001] 
Weight decay [0.001, 0.0001] 

Transformer layers [8, 16, 32, 64] 
MLP head units [1024, 2048] 

IV. RESULTS 

A.  Suitability of Transformers 

Our study aimed to develop a comprehensive set of 
classifiers using the ViT-based image transformer for BC 
categorization. We experimented with various 
hyperparameters, creating multiple versions of the base 
model. These networks were then trained on the BRACS 
dataset, which aligns with the BC taxonomy we adopted. 
This resulted in four distinct classifiers: benign-atypical-
malignant, benign sub-type, atypical sub-type, and 
malignant subtype classifiers, each serving a unique 
purpose in the proposed system. The best transformer 
networks were selected based on their test accuracy, 5-fold 

cross-validation accuracy, and Area Under the Curve 
(AUC) value for each classifier. 

At first, the appropriate images for training specific 
classifiers were pre-processed. Then, the networks were 
trained, validated and tested using these images to select 
the best-fine-tuned network through the holdout validation. 
For example, in the case of a holdout validation 
experiment for selecting the benign-atypical malignant 
classifier, 1728, 432 and 540 pre-processed images were 
used for training, validating and testing the networks, 
shown in Fig. 1. The 1728 training images included 582 
benign, 580 malignant and 566 atypical images. The 432 
validation images include 146 benign, 144 malignant and 
142 atypical images. Lastly, the 540 test images included 
172 benign, 176 malignant and 192 atypical images. The 
test images were unseen to the networks during training 
and validation. This holdout validation was done 
independently to select the benign-atypical-malignant, 
benign sub-type, atypical sub-type, and malignant sub-
type classifier.   

The dataset distribution for the holdout validation 
experiment is given in Fig. 1. Table II shows the 
performance evaluation of the four ViT-based classifiers. 
It shows that the benign-atypical-malignant, stage-one 
classifier achieved approximately 95% test accuracy. The 
accuracy of the stage one classifier is significant as it is 
related to the performance of all the stage two classifiers. 
The test accuracy of the second-stage benign sub-type 
classifier (94.7%) was slightly lower than the stage one 
classifier. However, the test accuracy of other second-
stage classifiers was significantly better, higher than 98%. 
The loss values were low in the training and validation, 
which indicated that the classifiers did not fit the criteria. 
Table II also indicates that benign subtype classification is 
more challenging than other BC categorizations. 

TABLE II. PERFORMANCE EVALUATION OF THE VIT MODEL FOR BC CLASSIFICATION AND SUBTYPING USING BRACS DATASET 

Metrics 
Benign-Atypical-

Malignant Classifier 
Benign-Subtyping 

Classifier 
Atypical-Subtyping 

Classifier 
Malignant-Subtyping 

Classifier 
Training accuracy 0.967 0.948 0.980 0.991 

Training loss 0.093 0.164 0.057 0.028 
Validation accuracy 0.951 0.936 0.975 0.989 

Validation loss 0.153 0.194 0.099 0.029 
Average test accuracy 0.956 0.947 0.986 0.991 
Average test precision 0.955 0.947 0.977 0.989 

Average test recall 0.955 0.946 0.994 0.994 
Average 5-fold cross validation accuracy 0.928 0.923 0.951 0.961 

Macro average AUC 0.990 0.980 1.00 1.00 
Micro average AUC 0.990 0.980 1.00 1.00 

 

After that, we performed the 5-fold cross-validation 
experiment for each classifier. For this purpose, we 
divided the images into five different groups. For example, 
in the 5-fold cross-validation of the benign-atypical 
malignant classifier, we split the 2700 images into five 
groups. Each group contained 540 images, which included 
180 images for each class. The images were assigned 
randomly to each group to contain 180 benign, 180 
atypical and 180 malignant images. Then, the classifier 
was trained using four groups of images and tested using 
the images of the remaining group, termed as a fold. This 

was done to ensure that each group is used once for testing 
the network, resulting in a 5-fold training and test of the 
classifier. We calculated the accuracy for each fold and 
derived the average accuracy, which is crucial to 
evaluating the classifiers’ effectiveness. Table III shows 
the 5-fold cross-validation accuracies for the classifiers. 
The accuracies were higher than 92% with a minimal 
standard deviation, indicating the classifiers’ stability. In 
5-fold cross-validation, the malignant sub-type classifier 
achieved the highest accuracy and the benign sub-type 
classifier the lowest, similar to the holdout validation. 
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TABLE III. FIVE-FOLD CROSS VALIDATION ACCURACY FOR BRACS DATASET 

Metrics 
Benign-Atypical-

Malignant Classifier 
Benign-Subtyping 

Classifier 
Atypical-Subtyping 

Classifier 
Malignant-Subtyping 

Classifier 
Fold 1 0.924 0.920 0.938 0.963 
Fold 2 0.946 0.937 0.950 0.916 
Fold 3 0.916 0.905 0.983 0.994 
Fold 4 0.901 0.922 0.963 0.966 
Fold 5 0.951 0.930 0.922 0.963 

Average  standard deviation 0.928  0.018 0.923  0.010 0.951  0.020 0.961  0.025 
 

Fig. 4 shows the classifiers’ accuracy and loss curves 
during holdout training validation. Fig. 4 indicates that the 
accuracies increased and losses decreased with the epochs 
for all. Meaning the networks were well-trained without 
over-fitting. Figs. 5 and 6 show the confusion matrices and 
ROC curves of the classifiers. The AUC values were 
higher than 0.98 for all the classifiers. The confusion 
matrices reveal that the number of false positives and false 
negatives was very low for the classifiers, particularly 
atypical and malignant sub-type classifiers. Consequently, 

the precision and recall values were significantly high. The 
precision was 97% and 99% for atypical and malignant 
sub-type classifiers. The recall was 99% for both. The 
findings from our holdout and 5-fold cross-validation 
experiment are presented in Tables II and III, Figs. 4–6 
which clearly indicate that the transformer-based networks 
achieve sufficient accuracy for BC categorization when 
trained using BRACS dataset which is one of the most 
widely used and accepted BC categorization dataset. 

 
Fig. 4. Training and validation curves of holdout validation using BRACS dataset. 

 
Fig. 5. Confusion matrices for the test images of BRACS dataset. 
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Fig. 6. ROC curves of the proposed method for BRACS dataset. 

Finally, we compared the proposed transformer-based 
BC categorization method with the existing methods 
proposed previously for this purpose. Table IV shows the 
comparison. This Table shows that the transformer-based 
method outperformed the existing methods even when 

trained using a comparatively low magnification images of 
40×. Moreover, the proposed method was tested using 
heterogeneous dataset to confirm it robustness and 
generalized performance.

TABLE IV. COMPARISON BETWEEN THE EXISTING METHODS AND PROPOSED METHOD 

Methods Technology Data description Classification accuracy % 

Spanhol et al. [6] (2015) SVM 
Dataset: BreakHis [6]; 

Image Mag: 200× 
Benign-Malignant eight 

sub-classes: 85.2 

Chan et al. [8] (2016) SVM 
Dataset: BreakHis [6]; 

Image Mag: 40× 
Benign-Malignant eight 

sub-classes: 55.6 

Singh et al. [16] (2020) SVM 
Dataset: BreakHis [6]; 

Image Mag: 40× Benign/Malignant: 92.3 

Aswathy et al. [18] (2021) SVM 
Dataset: BreakHis [6]; 

Image Mag: 40× Benign/Malignant: 89.1 

Spanhol et al. [19] (2017) CaffeNet CNN 
Dataset: BreakHis [6]; 

Image Mag: 200× 
Benign-Malignant eight 

sub-classes: 88.7 

Spanhol et al. [20] (2017) AlexNet CNN 
Dataset: BreakHis [6]; 

Image Mag: 200× 
Benign-Malignant eight 

sub-classes: 82.7 

Han et al. [21] (2017) Class structure-based 
deep CNN 

Dataset: BreakHis [6];  
Image Mag: 100× 

Benign/Malignant: 96.9, 
Benign-Malignant eight sub-

classes: 93.9 

Motlagh et al. [22] (2018) ResNet-based CNN 
Dataset: BreakHis [6];  

Image Mag: 40× 

Benign/Malignant: 98.7, 
Benign sub-classes: 94.8, 

Malignant sub-classes: 96.4 

Golatkar et al. [23] (2018) Inception-based CNN 
Dataset: BACH [24];  

Image Mag: 20× 

Benign/Malignant: 93, 
Normal/Benign/In-situ 

Carcinoma/Invasive Carcinoma: 85 

Jiang et al. [9] (2019) 
Squeeze-Excitation 
block-based ResNet 

CNN 

Dataset: BreakHis [6];  
Image Mag: 40× 

Benign/Malignant: 98.8, 
Benign-Malignant eight sub-classes: 

94.4 
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B. Robustness and Generalized Performance 

Evaluating the robustness and generalized performance 
of machine learning models is important to estimate its 
performance under various conditions to ensure that it 
maintains its accuracy and reliability across different 
scenarios. Therefore, we evaluated the robustness of the 
method to ensure two things: 1) the method works 
efficiently when the histopathology image profile changes 
and 2) when the BC taxonomy changes. The profile of 
histopathology images changes when the tissue specimens 
are prepared in a different lab and when the specimens are 
scanned by a different WSI scanner. Therefore, in this 
study, we tested the robustness of the method firstly, by 
testing the BRACS-trained classifier using BreakHis 
images. Secondly, we trained the same classifiers using the 
BreakHis images instead of BRACS and then tested them 
using BreakHis images. We applied the stage one benign-
atypical-malignant classifier on the BreakHis dataset to 
evaluate it effectiveness on the histopathology image 
prepared in different lab and scanned using a different WSI 
scanner. The images were scanned at 40× magnifications; 
however, they were labeled as either benign or malignant. 
The benign-atypical-malignant classifier was applied on 
randomly selected 545 images of BreakHis which included 
176 benign and 369 malignant labelled images. The 
BRACS-trained benign-atypical-malignant classifier 
correctly identified 147 benign and 257 malignant images, 
shown in Fig. 7. It wrongly classified 30 malignant images 
as benign (30/369) and 7 benign images as malignant 
(7/176) which is not so high. The benign atypical-
malignant classifier also identified 22 benign and 82 
malignant images as atypical. It was difficult to consider 

them false negatives as some of these images may include 
atypical images. BreakHis dataset did not consider atypical 
class and labeled them either benign or malignant. 
Therefore, we ignored them in the true positive rate 
estimation. The true positive rates were 95.5% and 89.5% 
for detecting the benign and malignant cancers. This 
indicates the robustness of the transformer-based classifier. 
For the stage two sub-type classifiers such robustness 
evaluation using heterogeneous dataset was not performed 
as the sub-type class labels of BRACS and BreakHis 
dataset do not matches. Then, we trained the networks 
selected as the benign-atypical-malignant, benign sub-type 
and malignant subtype classifiers using the BreakHis 
dataset to perform benign-malignant, benign sub-type and 
malignant subtype classification respectively according to 
the BreakHis BC taxonomy. We selected a subset of 2113 
images from the BreakHis dataset randomly for this 
experiment. The benign-malignant classifier was trained, 
validated and tested using 688, 230 and 230 image 
respectively. The benign sub-type classifier was trained, 
validated and tested using 284, 92 and 92 images 
respectively. The malignant sub-type classifier was trained, 
validated and tested using 300, 100 and 100 images 
respectively. The distribution of image per class was 
uniform in the training, validation and test datasets for 
each classifier. For example, 284 training images of 
malignant sub-type classifier included 71 adenosis, 71 
fibroadenoma, phyllodes tumor and 71 tubular adenoma 
class images. Table V shows the performance of BreakHis 
trained classifiers’ performance. It shows that the 
classifiers yielded test accuracies higher than 90% 
indicating the adaptability of transformer models when the 

Gour et al. [25] (2020) 
Residual learning-based 

152-layered CNN 

Dataset: BreakHis [6]; 
Image Mag: 40× Benign/Malignant: 84.3 

Zewdie et al. [26] (2021) ResNet50 CNN 
Dataset: BreakHis [6] and 

Private dataset; Image Mag: 40× 

Benign/Malignant: 96.7, 
Benign sub-classes: 96.7, 

Malignant sub-classes: 95.7 

Brancati et al. [7] (2022) 
Custom CNN with 
resid- ual structure 

Dataset: BRACS [7]; 
 Image Mag: 40× 

Benign/Atypical/ 
Malignant: 70.3, 

Benign sub-classes: 50.9, 
Atypical sub-classes: 44.0, 
Malignant sub-classes: 69.6 

Fahad et al. [27] (2023) ResNet50-based CNN 
Dataset: BRACS [7]; 

Image Mag: 40× 
Benign-Atypical-Malignant 

seven sub-classes: 96.2 

Chu et al. [28] (2024) 
Retentive Multiple In- 

stance Learning 

Dataset: BRACS [7]; 
Image Mag: 40× 

Benign-Atypical-Malignant 
seven sub-classes: 87.6 

Deniz et al. [29] (2018) 
AlexNet-VGG16 

features with SVM 

Dataset: BreakHis [6]; 
Image Mag: 100× Benign/Malignant: 86.0 

Bardou et al. [10] (2018) 
Ensemble CNN Model 

Dataset: BreakHis [6]; 
Image Mag: 40×, 100×,  

200× and 400× 

Benign/Malignant: 97.8, 
Benign-Malignant eight sub-classes: 

88.2 

Nahid et al. [11] (2018) 

Combination of 
Kmeans, CNN and 

LSTM Models 

Dataset: BreakHis [6];  
Image Mag: 40× 

Benign/Malignant: 94.4, 
Benign-Malignant eight sub-classes: 

91.0 

Tasleem et al. [30] (2023) 
CNN with Wavelet 

trans- formation 

Dataset: BRACS [7]; 
Image Mag: 40× 

Benign-Atypical-Malignant 
seven sub-classes: 72.2 

Proposed method ViT 
Dataset: BRACS [7] and 
BreakHis[6]; Image Mag: 

40× 

Benign/Atypical/ 
Malignant: 95.6, 

Benign sub-classes: 94.7, 
Atypical sub-classes: 98.6, 
Malignant sub-classes: 99.1 
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BC taxonomy is changed. The BreakHis-trained benign-
malignant classifier had lower test accuracy (92.5%) than 
the BRACS trained benign-atypical-malignant classifier 
(95.5%). The benign sub-type classification test accuracy 
was 94% for both cases. The malignant sub-type classifier 
achieved only 91% test accuracy using BreakHis; however, 
it was 99% for BRACS. The accuracy of transformed 
based classifiers dropped slightly for BreakHis; however, 
it could have been caused by the small training data. Fig. 8 
shows the accuracy and loss curves for training and 
validation. Although the losses for the classifiers were 
higher than the BRACS trained classifiers but they 
indicated no over-fitting. 

 
Fig. 7. BRACS-image trained Benign-Atypical-Malignant Classifier 

tested on BreakHis images. 

TABLE V. PERFORMANCE EVALUATION OF THE VIT MODEL FOR BC CLASSIFICATION AND SUBTYPING USING BREAKHIS DATASET 

Metrics 
Benign-Malignant 

Classifier 
Benign-Subtyping 

Classifier 
Malignant-Subtyping 

Classifier 
Training accuracy 0.951 0.958 0.988 

Training loss 0.129 0.1034 0.034 
Validation accuracy 0.956 0.973 0.975 

Validation loss 0.183 0.161 0.206 
Average test accuracy 0.930 0.940 0.910 
Average test precision 0.925 0.945 0.907 

Average test recall 0.905 0.945 0.907 
Average 5-fold cross validation accuracy 0.896 0.901 0.902 

Macro average AUC 0.960 0.990 0.990 
Micro average AUC 0.960 0.990 0.990 

 
Fig. 8. Training, validation and ROC curves of the ViT model for BreakHis dataset. 

After that, 5-fold cross validation experiments were also 
conducted for the classifiers using the BreakHis dataset. 
Table VI shows the 5-fold cross validation accuracy of the 
networks trained using BreakHis dataset. It indicated the 
5-fold cross validation accuracies was also lower for the 
BreakHis trained classifiers. Further, we estimated the 
AUC values for the classifiers, shown in Fig. 8. Finally, 
we compared the accuracies of the classifier for both 

datasets. Fig. 9 shows the comparison of the classifiers. It 
reveals that the transformer-based networks tend to 
achieve better accuracy when trained using BRACS 
dataset. However, the test accuracies, cross validation 
accuracies and average AUC values indicate that the 
transformer model yielded comparatively good 
performances considering the number of images used for 
trained the models. These tests, expressed the transformers 
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adaptability when the data domain is drifted and output 
classes are shifted. It also identified that transformer 

models can lack in accuracy when trained using a limited 
dataset, specially when the number of classes are high. 

TABLE VI. FIVE-FOLD CROSS VALIDATION ACCURACY FOR BREAKHIS DATASET 

Metrics 
Benign-Malignant 

Classifier 
Benign-Subtyping 

Classifier 
Malignant-Subtyping 

Classifier 
Fold 1 0.886 0.905 0.872 
Fold 2 0.901 0.881 0.905 
Fold 3 0.873 0.884 0.939 
Fold 4 0.899 0.929 0.910 
Fold 5 0.921 0.906 0.883 

Average  standard deviation 0.896  0.016 0.901  0.017 0.902  0.023 

 
Fig. 9. Boxplot of accuracy of the classifiers for both BRACS and BreakHis datasets. 

V. DISCUSSION 

In this study, we proposed an automated BC 
categorization method utilizing transformer based deep 
learning technique. This method adopted the BC taxonomy 
provided by the BRACS dataset, as differentiating atypical 
cancers from the benign and malignant classes improves 
the BC treatment planning and patient management. We 
designed a two-stage classification in which four 
transformer-based classifiers were organized to firstly 
categorize the BC patients into benign, atypical and 
malignant classes using the stage one classifier. Then in 
the second stage another three transformer-based 
classifiers were used to sub-categorize the benign, atypical 
or malignant cases, depending on the result of the first 
stage classifier. This architecture reduced the complexity 
for the multi-class classification of BC.  

The proposed method was primarily trained and tested 
using the BRACS dataset in which it achieved 95.6% test 
accuracy for benign-atypical-malignant classification, 
94.7% accuracy for benign sub-type classification, 98.6% 
accuracy for atypical sub-type and 99.1% for malignant 
sub-type classification, outperforming the previously 
proposed methods. This ensured the effectiveness of 
transformer models for BC classification. After that, this 
method was tested on BreakHis dataset without being 
trained on BreakHis to assess its robustness in which it 
achieved a true positive rate of 95.5% for benign class and 
89.5% for malignant class. This ensured the robustness of 

the method. Further, to evaluate how the well this method 
adapts to concept drift when the BC taxonomy changes, 
we trained the method following the BreakHis taxonomy 
and tested it using BreahHis dataset. The proposed method 
achieved 92.5%, 94.0% and 91.0% accuracy respectively 
for benign malignant, benign sub-type and malignant sub-
type classification. This ensured the generalization 
capability of the method. 

In this research, we have utilized base ViT model with 
pre-trained weights derived from ImageNet-1k dataset. In 
the future, it necessary to evaluate the performance of the 
model for advanced ViT models or ViT models pre-trained 
on ImageNet-21K dataset. Recently some customized 
models of ViT were proposed such as Data efficient image 
transformer (DeiT), Pyramid Vision Transformer (PVT) 
for medical image classification with limited dataset. 
Efficacy of such models can be evaluated for BC 
classification. Another limitation of this study is that we 
only experimented with 40× magnification images to 
balance computational efficiency and classification 
accuracy, in contrast to prior methods that used higher 
magnifications, such as 100× or more. In future work, we 
plan to investigate how model performance varies across 
different magnification levels, ranging from 20× to 200×, 
to optimize diagnostic accuracy and computational 
feasibility for real-world deployment. 

In addition to its high classification accuracy, the 
proposed transformer-based model offers practical 
computational advantages, particularly due to its use of 
40× resolution images. Compared to existing methods that 

Journal of Image and Graphics, Vol. 13, No. 4, 2025

391



rely on higher magnifications, such as 100× or above, 
using lower-resolution images reduces data size and 
computational burden, resulting in faster inference times. 
For practical implementation, the system will be 
implemented using standard GPU (e.g., NVIDIA RTX 
2080 Ti), enabling real-time or near real-time diagnosis 
workflows. Furthermore, the architecture’s modular nature 
allows future enhancements such as pruning, quantization, 
or knowledge distillation to improve deployment 
performance on resource-constrained systems. These 
characteristics make the method accurate and feasible for 
real-world integration into clinical workflows. However, 
this study does not include a detailed time complexity or 
computational cost analysis. We plan to comprehensively 
evaluate the model’s inference time and resource 
requirements in future work to better understand its 
scalability and feasibility for clinical use. Another 
potential future work is using nature-inspired algorithms 
for feature optimization and efficient implementation, as 
they have shown effectiveness in enhancing deep learning 
models in healthcare [33].  

VI. CONCLUSION 

This study aims to evaluate the performance of image-
based transformer models for BC categorization, which 
remained unexplored in the previous studies. Therefore, in 
this study, we utilized the base ViT model which contained 
the minimum number of the parameters and then it by 
modifying the values of standard hyperparameters to keep 
the model simple. This is helpful to understand the 
performance of transformer-based networks for BC 
categorization. However, in the future, we intend to 
explore the different customization approaches of ViT to 
further improve the accuracy of BC categorization. The 
results of this study showed that ViT, a transformer-based 
network achieved better accuracy and robustness than the 
existing deep learning and traditional machine learning 
models.  
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