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Abstract—This paper introduces an innovative Sorting 

Robotic Arm (SRA) that combines the precision and speed of 

a Selective Compliance Assembly Robot Arm (SCARA) with 

the advanced object detection capabilities of the Grounding 

Dino model. The system enables real-time identification and 

sorting of various objects with exceptional accuracy, making 

it suitable for dynamic industrial environments. Leveraging 

state-of-the-art Artificial Intelligence (AI), the SRA can 

recognize and classify items efficiently, significantly reducing 

manual labor and operational errors. The modular design of 

the robotic arm allows for easy customization and scalability, 

facilitating seamless integration into a wide range of 

applications such as recycling facilities, logistics and 

warehousing, and agricultural seed sorting. The SCARA 

configuration ensures a compact form factor, fast cycle times, 

and high repeatability, ideal for precision-driven tasks. By 

merging robust robotic hardware with intelligent AI-driven 

perception, this paper proposes a transformative solution to 

modern sorting challenges. The SRA enhances productivity, 

accuracy, and efficiency, offering a practical and forward-

looking approach to automated material handling, logistics 

and warehousing, seed sorting in agriculture. 

Keywords—Sorting Robotic Arm (SRA), selective compliance 

assembly robot arm, Grounding Dino model, object detection, 

object localization 

I. INTRODUCTION

In the early days of Industrialization, human workers 

were the backbone of the manufacturing processes. With 

absolute physical strength and proficiency, workers 

operated machinery, assembled products, and performed 

Manuscript received April 1, 2025; revised May 22, 2025; accepted June 

3, 2025; published August 7, 2025. 

repetitive tasks in factories around the world. But by world 

standards human labor is less productive and lacks 

consistency. Humans may not be as efficient or consistent 

as machines in performing repetitive tasks, leading to 

variations in quality and productivity and they also have 

physical limitations, such as fatigue which can impact their 

ability to sustain high levels of productivity over extended 

periods. Certain tasks in industries can pose safety hazards 

to human workers, exposing them to the risks of injuries. 

Their decision making can be influenced by biases, 

emotions leading to errors or suboptimal outcomes in 

industrial processes. Compliance with labor laws, 

regulations and workplace safety standards adds 

complexity and administrative burden to businesses 

employing human labor in industries. To overcome all 

these problems, the true revolution came with the 

emergence of Industrial Robotics in the mid-20th century. 

With the invention of Programmable Logic Controllers 

(PLC) and robotic arms, industries gained the ability to 

automate complex tasks previously deemed difficult. 

Robots can perform tasks with consistent accuracy and 

precision without errors. By automating hazardous tasks, 

they can reduce the risk of workplace accidents and 

injuries. Unlike humans, robots can operate continuously 

without the need for breaks, shifts. Modern robotic systems 

are designed to be highly flexible and programmable, 

allowing for quick reconfiguration and adaptation to 

changing production demands or product specifications. 

Coming to an application of sorting in industries, the 

usage of robotic arm makes this task easier with high 

efficiency and accuracy compared to humans. Sorting is 
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the process of arranging items systematically based on a 

particular criterion, to categorize and group similar items 

and identify odd items for removal. Sorting machines can 

be used in the food processing industry for sorting and 

categorizing fruits, vegetables, empty bottles, and other 

items; other examples include sorting of tablets and 

capsules by weight for quality control in the 

pharmaceutical industry as well as sorting waste in the 

recycling industry. Manual sorting is a laborious task 

however, with the use of specialized equipment like 

robotic arm, manufacturer can automate their sorting at 

high speeds. Robotic arms excel in executing precise and 

consistent sorting tasks, ensuring accurate placement and 

categorization of items based on predefined data. By 

utilizing advanced sensors and vision systems, robotic 

arms can identify, grasp and sort objects with remarkable 

speed and accuracy minimizing errors and enhancing 

overall sorting quality. They offer flexibility and 

adaptability in sorting operations, capable of handling a 

wide variety of items, shapes, sizes and materials. 

The primary and main challenge in sorting is their 

detection. Humans are prone to errors, which can lead to 

inaccuracies in sorting. Mistakes such as misclassification, 

overlooking items, or misjudging quality can occur due to 

which industrial progress is hindered. This problem is 

defeated by using object detection using Artificial 

Intelligence (AI) which involves the use of computer 

algorithms and machine learning techniques to identify and 

locate objects within images. This process typically 

involves training a neural network on a large dataset of 

labeled images to learn patterns and features that 

distinguish different objects. Once trained, the AI model 

can then accurately detect objects in new, unseen images. 

Here, along with the detection of objects, it also provides 

the coordinates of the object using Grounding Dino. 

The rest of the paper is organized as follows: Section II 

gives the literature review followed by methods and 

methodology in Section III. System architecture and 

design flow is presented in Section IV with detailed 

implementation, working principal of proposed robotic 

arm in Section V. Finally results and discussions in 

Section VI. 

II. LITERATURE SURVEY

Devol and Enelberger [1] unveiled Unimate, the world’s 

first Industrial Robotic Arm. Developed by Devol and 

commercialized by Enelberger’s company, Unimation, the 

Unimate represented a paradigm shift in manufacturing 

automation, introducing a versatile and programmable 

robotic arm capable of performing a wide range of tasks 

with precision and repeatability [2]. The introduction of the 

Unimate revolutionized manufacturing processes across 

industries, paving the way for the automation of tasks 

previously performed by human workers. From 

automotive assembly lines to electronics manufacturing, 

Unimate proved indispensable in streamlining production, 

increasing throughput, and improving quality, marking the 

dawn of a new era in industrial automation [3]. The 

Unimate boasted several key features and innovations that 

set it apart from previous automation technologies. 

Equipped with hydraulic actuators, sensors, and a control 

system programmed using magnetic tape, the Unimate 

offered unprecedented flexibility, accuracy, and reliability 

in performing tasks such as welding, painting, and material 

handling. The Unimate robotic arm has subsequently 

evolved into the Puma arm. In 1963 the Rancho arm was 

designed; Minsky’s Tentacle arm appeared in 1968, 

Scheinman’s Stanford arm in 1969, and MIT’s Silver arm 

in 1974. Aird became the first cyborg human with a robotic 

arm in 1993. Brabo, according to TAL Manufacturing 

solutions is the first conceptualized, designed and 

manufactured articulated industrial robot. 

A. Existing Robots

There are various types of existing robots that all

manufacturers need to be aware of to make smart decisions, 

improve processes, and analyze costs effectively. Knowing 

about different robot options helps choose the right 

technology for specific tasks, which boosts efficiency and 

productivity. 

1) Articulated robot

The Articulated robot is a widely used type of robot,

characterized by the number of rotation points, or axes it 

possesses [4]. The most prevalent type is the 6-axis 

articulated robot, although there are also 4 and 7-axis 

models available. These robots can conveniently access 

workpieces within machine tool compartments and 

maneuver around obstacles, particularly the 7-axis variant. 

2) SCARA robot

A Selective Compliance Articulated Robot Arm

(SCARA) is an excellent and cost-efficient option for tasks 

involving movement between two parallel planes, like 

transferring parts from a tray to a conveyor. SCARA robots 

excel in tasks requiring vertical assembly, such as pin 

insertion, thanks to their strong vertical rigidity [5]. With 

their lightweight build and small footprint, SCARA robots 

are perfect for use in tight spaces. They also boast very 

quick cycle times. However, due to their fixed swing arm 

design, SCARA robots have limitations in tasks that 

involve maneuvering around or reaching inside objects, 

such as fixtures, jigs, or machine tools within a 

workspace [6]. 

3) Delta robot

Delta robots, often called “spider robots”, utilize three

motors mounted on the base to control arms that position 

the wrist. While basic delta robots have 3 axes, there are 

also models with 4 or 6 axes [7]. Unlike articulated robots 

where actuators are at each joint, delta robots mount 

actuators on or very close to the stationary base. This 

design makes the arm of a delta robot lightweight, enabling 

rapid movement. Consequently, delta robots are perfect for 

very high-speed operations with light loads [8]. 

4) Cartesian robot

Cartesian robots usually comprise three or more linear

actuators arranged for a specific task. Positioned above a 

workspace, they can be raised to save floor space and 

handle various workpiece sizes [9]. When placed on a 

structure over parallel rails, they’re called “Gantry 

Robots”. These robots typically use standard linear 

actuators and mounting brackets, reducing the complexity 

and cost of customization [10]. Higher capacity units can 
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also be combined with other robots, like articulated robots, 

to enhance system capabilities. However, due to their 

custom nature, designing, specifying, and programming 

Cartesian robots can be challenging, especially for smaller 

manufacturers opting for a DIY approach to robotics [11]. 

5) Vision-based sorting robotic arm  

Computer vision-based object detection models are used 

in this robot for object sorting. It overcomes the limitations 

of rule-based sorting systems and the potential benefits of 

employing vision-based technologies for object 

recognition and classification [12]. The vision subsystem 

utilizes state-of-the-art deep learning algorithms for object 

detection and localization, enabling the system to 

accurately identify target objects in cluttered 

environments [13]. The robotic arm, equipped with a 

versatile gripper mechanism, is designed to perform pick-

and-place operations based on the output of the vision 

system. It uses trajectory planning algorithms to optimize 

the arm’s motion and minimize cycle times [14].  

6) Pick-and-place sorting robotic arm (Johnson 

Robotics) 

Beginning with an acknowledgment of the limitations of 

manual sorting, Johnson Robotics emphasizes the potential 

of automation to enhance operational efficiency [15]. The 

design phase is characterized by a meticulous approach to 

defining specifications and requirements critical for the 

arm’s functionality. This phase culminates in a robust 

design framework that integrates kinematics, dynamics, 

and end-effector design considerations. The design of 

Johnson’s robotic arm may not be sufficiently adaptable to 

effectively manage various object shapes, sizes, and 

materials, thus restricting its suitability across different 

sorting environments [16]. Shen and Hassan [17] presents 

a low-cost color-sorting robot using sensors and actuators 

for automated object classification based on color. Also, 

automatic sorting system using Contour-based object 

detection in for a parcel boxes [18], Delta Programmable 

Logic Controller (PLC) [19], PLC [20], machine 

vision  [21], global and local features [22], 3D visual 

perception and natural language interaction [23], robotics 

vision module in MELFA Industrial Robot [24], for 

cylinder length measurement [25], for sorting metal 

cylindrical workpiece based on machine vision and PLC 

technology [26] and color sorting robot [27]. Comparative 

overview of reviewed robotic arms is tabulated in Table I. 

TABLE I. COMPARATIVE OVERVIEW OF REVIEWED ROBOTIC ARMS 

Robot Type DOF Payload (kg) Control Method Speed (pick/s) Notes 

Articulated (6-DOF) [24] 6 ~10–20 Servo/Encoder ~1.5 Versatile, bulky, expensive 

SCARA (Proposed SRA) 4 ~0.5 Stepper+G-code ~0.28 FPS Low-cost, good for planar sorting tasks 

Delta Robot [7] 4 ~2 Servo PID ~3.0 High speed, limited payload 

Cartesian [9] 3 ~15 PLC/Stepper combo ~0.8 Accurate, complex integration 

III. METHODS AND METHODOLOGY 

The proposed system is a SCARA model type of robot 

which is ten times cheaper than the existing model and for 

picking purposes, a silicone vacuum cup is used. Silicone 

vacuum cups provide a reliable and efficient gripping 

solution for a wide range of industrial and manufacturing 

tasks. For the detection purpose, Grounding Dino software 

is used. This methodology likely incorporates several steps: 

A. Object Detection, B. Object Localization, C. Pick-and-

Place Operation, D. Sorting Algorithm, E. Execution and 

Feedback. 

A. Object Detection 

Object detection, facilitated by Grounding Dino 

software, is a critical component of the SRA methodology. 

This process involves identifying and locating objects 

within the robot’s operational environment. Grounding 

Dino employs sophisticated techniques to achieve accurate 

object detection, which is essential for subsequent sorting 

operations. One primary method utilized by Grounding 

Dino is computer vision. Computer vision algorithms 

analyze images or video feeds captured by cameras 

mounted on the robotic system. These algorithms process 

visual data to recognize objects based on their shape, color, 

texture, and other visual features. By comparing detected 

features against predefined models or patterns, Grounding 

Dino can accurately identify objects in the robot’s 

workspace. Combining these techniques allows Grounding 

Dino to achieve robust and accurate object detection in 

various environmental conditions. Whether in well-lit 

environments or low-light conditions, with stationary 

objects or objects in motion, Grounding Dino can reliably 

identify objects within the robot’s workspace. The ability 

of Grounding Dino to accurately detect objects is 

foundational to the success of SRA methodology. 

Object detection provides the necessary input for 

subsequent steps in the sorting process, such as object 

localization, sorting algorithm implementation, and pick-

and-place operations. By leveraging advanced techniques 

such as computer vision, Grounding Dino enhances the 

efficiency, accuracy, and reliability of object detection in 

sorting applications. 

B. Object Localization 

Object localization is a vital stage in the SRA 

methodology, following the detection of objects within the 

robot’s operational environment (workspace). Once 

Grounding Dino software identifies an object, its next task 

is to precisely determine the object’s location within the 

workspace. This information is crucial for the robotic arm 

to navigate and manipulate objects effectively. This 

includes coordinate mapping, spatial analysis, and 

coordinate transformation. Grounding Dino utilizes data 

from sensors or cameras to map the coordinates of the 

detected object within the robot’s workspace. This 

mapping involves assigning spatial coordinates (e.g., X, Y, 

Z coordinates in a 3D space) to the object’s position 

relative to the robot’s reference point. The software 
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analyzes spatial data to calculate the object’s exact position 

and orientation relative to the robot. This analysis 

considers factors such as distance, angle, and orientation, 

providing a comprehensive understanding of the object’s 

location within the workspace. In some cases, the object’s 

position may be represented in a different coordinate 

system than that of the robot. Grounding Dino performs 

coordinate transformations as necessary to ensure 

consistency between the object’s position and the robot’s 

coordinate system. This step facilitates seamless 

integration with the robot’s navigation and manipulation 

functions. 

C. Pick-and-Place Operation 

The SCARA robot, enhanced with a specialized silicon 

vacuum cup end effector, plays a crucial role in the SRA 

methodology. Once Grounding Dino software identifies 

objects within the robot’s workspace, the SCARA robot 

springs into action, executing precise pick-and-place 

operations based on the detected objects positions. 

Equipped with the silicon vacuum cup end effector, the 

SCARA robot possesses the capability to securely grip 

objects for manipulation. The vacuum cup creates suction, 

allowing the robot to firmly grasp objects of various 

shapes, sizes, and weights. This ensures a stable hold on 

the objects during transportation and placement, 

minimizing the risk of dropping or misalignment. As the 

SCARA robot moves to pick up an object, the vacuum cup 

activates, creating suction between the object and the end 

effector’s gripping surface. This suction force effectively 

adheres the object to the end effector, enabling the robot to 

lift and handle it with precision. Once the object reaches its 

destination, the vacuum pump releases the suction, 

allowing the robot to release the object gently and 

accurately. The use of the silicon vacuum cup end effector 

enhances the versatility and efficiency of the SCARA robot 

in handling a wide range of objects for sorting tasks. Its 

ability to securely grip objects ensures reliable and 

consistent performance, contributing to the overall 

effectiveness of the SRA methodology. 

D. Sorting Algorithm 

The sorting algorithm is a crucial component of the SRA 

methodology, responsible for determining the optimal 

destination or arrangement for each object based on 

predefined sorting criteria. The software, such as 

Grounding Dino, integrates this algorithm to facilitate 

efficient and accurate sorting operations. The sorting 

algorithm operates by considering various factors specific 

to the sorting task at hand. These factors may include the 

type of objects being sorted, their color, type, and intended 

destinations. For example, in a warehouse environment, 

the sorting algorithm may prioritize grouping items of 

similar types together, such as grouping electronic 

components separately from mechanical parts. 

Additionally, the sorting algorithm considers any 

predefined sorting rules or criteria established by the 

system operators. These rules may dictate specific 

arrangements based on factors such as priority, urgency, or 

designated storage locations. For instance, perishable 

items may need to be sorted and processed before non-

perishable items to prevent spoilage. The algorithm utilizes 

these criteria to determine the most efficient sorting 

strategy for each object. This may involve assigning 

objects to different destination bins based on their 

characteristics and sorting rules. Furthermore, the sorting 

algorithm may incorporate machine learning or 

optimization techniques to continually refine and improve 

its sorting decisions over time. By analyzing past sorting 

performance and outcomes, the algorithm can adapt and 

optimize its strategies to achieve higher efficiency and 

accuracy in sorting operations. 

E. Execution and Feedback 

The SCARA robot serves as the executor of sorting 

tasks, following instructions provided by the software, 

such as Grounding Dino. These instructions include 

precise directives on how to pick up, move, and place 

objects based on the sorting criteria established by the 

system. As the SCARA robot carries out these tasks, the 

software continuously monitors the progress and status of 

each operation. This real-time monitoring allows the 

system to assess the effectiveness and accuracy of the 

sorting process as it unfolds. If any issues arise during the 

sorting operations, the software can promptly identify 

them and take corrective action to address them.  

The implemented system uses a 12 MP webcam 

(captured via Camo Studio) with an effective resolution of 

4032×3024 pixels. On average, the Grounding Dino 

model, running in Google Colab with GPU acceleration, 

achieves an inference latency of 1.4 Seconds per frame. 

The object detection module yields a mean Average 

Precision (mAP) of 93.6%, with a precision of 92.5% and 

recall of 91.8% across four object classes. The full 

processing pipeline, including capture, detection, 

communication, and actuation, results in an average frame 

processing rate of 0.28 FPS (Frames Per Second), suitable 

for batch-based industrial sorting tasks. 

IV. SYSTEM ARCHITECTURE AND DESIGN 

Fig. 1 gives an overview of system architecture and 

design of proposed robotic arm. 

 

 

Fig. 1. System architecture and design. 

A. Basic Input Output System (BIOS) 

After providing power to the microcontroller, it initiates 

BIOS, which acts as a confident between the hardware and 

the operating system or application software. BIOS is 

responsible for tasks such as initializing memory, 

configuring peripheral devices, and conducting self-tests to 

verify hardware functionality as in Fig. 1. 

B. Bootloader Execution 

The bootloader is a small program stored in the 
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microcontroller’s memory that allows uploading sketches 

(user programs) via the Arduino IDE over USB. During 

this stage, the bootloader initializes communication 

interfaces and prepares to receive new code. After the 

bootloader finishes its tasks, the microcontroller proceeds 

to initialize its internal peripherals and external 

components connected to its pins. This includes 

configuring timers, setting up communication protocols 

such as Universal Asynchronous Receiver-Transmitter 

(UART), Serial Peripheral Interface (SPI), and Inter-

Integrated Circuit (I2C), and initializing the pins for input 

or output as specified in the sketch.  

C. Homing the Arm 

Stepper motors, unlike some other types of motors, do 

not inherently contain defined starting or ending positions. 

As a result, it becomes necessary for us to manually 

establish these positions. This task can be achieved by 

using a joystick, which allows for precise control over the 

movement of the motor. The initial step involves moving 

the arm to what is commonly referred to as the zero 

position, also known as home position. This position 

serves as a reference point for subsequent movements and 

operations. To help with this, we usually have a grid on the 

workspace. This grid helps us align the arm accurately to 

the zero position. Once the home position has been 

successfully established, the microcontroller, which serves 

as the brain of the system, takes over control. One of its 

primary functions at this stage is to command the arm to 

move to a backward position. This backward movement is 

essential as it ensures that the arm gains a complete view 

of the entire workspace, thereby maximizing its 

effectiveness. 

D. Data Transfer 

The process begins with the microcontroller initiating 

communication with the computer by sending a signal. 

Upon receiving this signal, the computer activates an 

overhead camera system to capture an image of the 

workspace. This image is then subjected to processing 

using specialized AI tools. Through the application of 

these AI tools, the computer extracts relevant information 

from the image, particularly focusing on identifying and 

determining the coordinates of various elements within the 

workspace. Once the coordinates data has been obtained, 

the computer proceeds to transmit this data back to the 

microcontroller. This transmission typically occurs 

wirelessly via Bluetooth communication. By sending the 

coordinates data back to the microcontroller, the computer 

enables the microcontroller to utilize this information for 

guiding the movement and operations of the system’s 

components of robotic arm. 

E. Kinematics 

After receiving the coordinates data from the computer 

via Bluetooth, the microcontroller begins its task. It fetches 

this data and proceeds to perform inverse kinematics 

calculations. Inverse kinematics is a mathematical process 

used to determine the joint angles or positions required for 

a robotic arm or similar mechanism to reach a specific end-

effector position in space. Upon completing the inverse 

kinematics calculations, the microcontroller generates G-

code instructions. G-code is a standardized programming 

language used to control Computer Numerical Control 

(CNC) machines, including motors. These instructions are 

customized to direct the motors in a manner that enables 

them to accurately reach the desired location within the 

workspace. Each line of G-code contains specific 

commands that dictate the movement of the motors, such 

as direction, speed, and distance to travel. By interpreting 

and executing these instructions, the motors are precisely 

controlled to navigate to the specified coordinates within 

the workspace. 

F. Pick and Place 

After the arm reaches the designated location of an 

object, it employs a suction gripper mechanism powered 

by a silicone vacuum pump to securely grasp the object. 

Once grasped, the arm proceeds to place the object into 

boxes, organizing it based on its assigned category. This 

cycle of picking up objects, categorizing them, and storing 

them continues until all objects have been sorted according 

to their respective categories. 

G. Computer Aided Design (CAD) Design and 

Simulation 

Computer Aided Design (CAD) stands for Computer-

Aided Design. It is a crucial tool for designing and drafting 

mechanical components, machinery, and systems. It allows 

us to create detailed 2D drawings and 3D models of parts 

and assemblies, enabling precise visualization and analysis 

of their functionality, performance, and manufacturability. 

CAD software also facilitates simulations, stress analysis, 

and optimization, helping engineers refine designs before 

physical prototyping, thus reducing development time and 

costs. 

H. Onshape 

Onshape is a fully parametric open-source CAD 

software. It is powerful enough to handle complex part 

designs and assemblies. It has features such as Drawing, 

extrude, revolve, sweep, fillet, chamfer, sheet metal design 

and advanced surfacing etc. Different parts of Arm are 

designed separately such as bearing mounts, clamps, 

housings, pulleys, gears and couplers etc. Assembling 

individual parts is also done in Onshape with the help of 

assembly mates as in Fig. 2. Unfortunately, simulation is 

only available for professional Onshape users. Hence, we 

switch to another application called Simscale. It is a 

powerful open-source simulation app which consists of 

several tools such as static simulation, Dynamic, heat 

transfer and flow control. We use this application to 

perform von mises stress and deformation tests. Some 

examples of Simscale simulation outputs are shown in 

Fig. 3. 

 

 

Fig. 2. Onshape design. 
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Fig. 3. Simscale simulation outputs. 

I. Von Mises Stress Analysis 

The Von Mises stress is a measure used in engineering 

to assess the stress distribution in materials subjected to 

loading. It is particularly useful for evaluating materials 

that may yield or deform plastically. In terms of the Von 

Mises stress “stream”, it is essentially a visualization 

technique used to represent the distribution of Von Mises 

stresses across a structure or component. This visualization 

helps us identify areas of high stress concentration, 

potential failure points, or regions requiring reinforcement 

or optimization in mechanical design. 

J. Inverse Kinematics 

Robotic arm is composed of links and joints. Links are 

the rigid sections that make up the mechanism and joints 

are used to connect two links It works in a similar way as 

a human arm. Inverse kinematics, on the other hand, 

involves finding the joint angles or lengths required to 

achieve a desired position and orientation of the end-

effector. It is essentially the opposite of forward 

kinematics. Theta 1 is the base joint also known as 

shoulder joint and theta 2 is the elbow joint L1 and L2 are 

the link lengths. “X” and “Y” coordinates are given 

as input to kinematic equations, which provides joint 

angles depending on link lengths to reach the end-effector 

to that location. In our case link lengths L1 = L2 = 180 mm 

hence the maximum reach will be 360 mm as in Fig. 4. The 

arm can rotate 360° therefore the workspace will be 

circular with a radius of 360 mm. We assume a 2-DOF 

SCARA configuration operating in a 2D plane with link 

lengths L₁ = L₂ = 180 mm. Given a target position (x, y), 

the joint angles θ₁ and θ₂ are calculated as: 

        
2 2 2 2

2 1 2 1 2arccos[( ) / (2 )]x y L L L L = + − −           (1) 

   1 2 2 1 2 2atan( , ) atan( sin( ), cos( ))y x L L L  = −  +     (2) 

These equations are solved in real-time using the 

microcontroller. Since the SCARA operates in a planar 

workspace, this analytical solution suffices for precise 

actuation. 

K. Real-Time Control Architecture 

The system includes a semi-closed loop control where 

detection is performed asynchronously on a host PC. The 

data is transmitted via Bluetooth using HC-05, which adds 

~0.1 s delay. The microcontroller maintains step counters 

for motor tracking due to lack of encoders. 

 

 

Fig. 4. Position and orientation control. 

Fig. 5 represents the real-time control loop of the robotic 

sorting system. The process begins with Sensors, such as a 

camera, capturing visual data from the workspace. The 

data is processed on a PC, where the Grounding Dino 

model performs object detection and localization. Detected 

object coordinates are then transmitted wirelessly via 

Bluetooth (HC-05) to the microcontroller. The 

microcontroller computes Kinematics, specifically inverse 

kinematics, to determine joint angles for the robotic arm. 

Finally, Actuation commands are sent to the stepper 

motors to perform the pick-and-place operation. If 

available, Feedback (e.g., step counters) can be used to 

improve motion accuracy and repeatability. 

 

 

Fig. 5. Real-time control architecture. 

V. IMPLEMENTATION 

The system described consists of a SCARA robot with a 

maximum reach radius of 360 mm as in Fig. 6, allowing it 

to manipulate objects within this range. A zero-reference 

point is established for computer vision to calibrate and 

initiate workspace operations accurately. Four sorting 

boxes are positioned behind the robot arm to facilitate the 

categorization of objects. The arm picks up objects from 

the workspace and deposits them into the appropriate 

boxes based on their class or type. processes these images 

using AI algorithms to detect objects within the workspace. 

A camera is mounted above the workspace and properly 

adjusted to provide a clear view. Connected to a computer, 

the camera captures images of the workspace. The 

computer detected objects coordinates are then sent to an 
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Arduino microcontroller via UART communication. Upon 

receiving the coordinate data, the Arduino generates G-

code instructions. These instructions dictate the SCARA 

robot’s movements for precise pick-and- place actions. 

The Arduino controls the robotic arm’s actions based on 

the received G-code instructions, enabling automated 

object manipulation based on computer vision detection 

and analysis. One of the key novelties of this work lies in 

its cost-effective mechanical design using 3D-printed 

components and readily available materials, making it 

accessible for educational and small-scale industrial use. 

Additionally, the system employs a custom inverse 

kinematics engine that translates workspace coordinates 

into precise G-code instructions optimized for the SCARA 

robot’s compact geometry. The sorting algorithm is 

lightweight and executable on an Arduino Uno, making 

real-time embedded processing feasible without external 

computing. These contributions collectively demonstrate 

an optimized, low-cost, and modular architecture that 

distinguishes this system from conventional sorting 

solutions. 

 

 

Fig. 6. Workspace about the system. 

A. Body 

Most of the body is 3D printed using Fused Deposition 

Modelling (FDM) technology. FDM stands for Fused 

Deposition Modelling, which is a popular type of 3D 

printing technology. In FDM printing, a thermoplastic 

filament is heated to its melting point and then extruded 

layer by layer through a nozzle. The material is deposited 

onto a build platform, where it quickly cools and solidifies, 

forming the desired 3D object as in Fig. 7. Individual parts 

are designed in Onshape with appropriate tolerances and 

sent to 3D printing labs. They print the actual part with 

provided dimensions.  

B. Spare Parts and Fasteners 

Spare parts including bearings, shafts, belts, PVC pipes, 

flanges, clamps, suction cup and valves etc. are bought 

separately and assembled using M3, M4 and M5 bolts 

according to strength required. 

C. Electronics 

Electronic components including Arduino Uno, motors, 

vacuum pump, drivers, jumpers, power supply, switches 

and relays are bought separately and arranged into their 

respective places and soldered them using long wires. 

D. Workshop 

A metal workshop is a specialized space equipped with 

tools and machinery specifically designed for working 

with metal materials. Tools such as welding equipment, 

bandsaws, grinders, drill presses, and tapping machines are 

used for shaping, cutting, joining, and finishing metal 

materials. Individual metal parts such as stainless-steel 

square pipes, clamps, base joints, hangers and sliding parts 

are taken to workshop and processed such as drilling, 

cutting, welding and assembled. Overall final model looks 

like in Fig. 7. 

 

 
 

 

Fig. 7. Implemented body and final model. 

E. Overhead Camera Mount (Framing) 

Setting the camera’s capturing zone to coincide with the 

workspace involves aligning the camera’s Field of View 

(FoV) and capturing area with the desired area of interest 

within the workspace. Here is a step-by-step description of 

the procedure: 

1) Placement of camera 

Ensure that the camera is securely mounted on the 

overhead stand in a position that provides an optimal view 

of the workspace as in Fig. 8. Here we are placing the 

camera at a height above 60 cm and the center of the 

workspace. 

 

 

Fig. 8. Overhead camera mount. 
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2) Identify workspace boundaries 

Define the boundaries of the workspace where the 

camera’s capturing zone should cover. Here we are using 

720 mm × 540 mm dimensions as our workspace zone 

where we put objects for detection. 

3) Camera calibration 

Perform calibration procedures, if necessary, to adjust 

the camera settings such as focus, zoom, and angle to 

optimize the capturing zone for the workspace. The Camo 

Studio application on the PC provides a 12 MP camera for 

image capture and we can use the panning of the frame to 

select the correct frame. 

4) Preview and test 

Start the camera and place some testing objects in the 

capturing zone, take coordinates from the model, and test 

the coordinates with the actual coordinates of the frame. 

5) Download Grounding Dino weights 

This step involves cloning and extracting the weights 

and models from the official Grounding Dino GitHub 

repository before we set our runtime to GPU which helps 

us to make things faster, then we need to download the pre-

trained weights for the Grounding Dino model. These 

weights contain the learned parameters of the model, 

which are essential for making accurate predictions during 

inference. 

6) Load Grounding Dino model 

Once the weights are downloaded, we load the 

Grounding Dino model into our Google Colab 

environment. This involves creating an instance of the 

model using the appropriate code or library functions and 

loading the downloaded weights into the model. We need 

to modify our output model to extract coordinates in the 

same dimensions as our workspace. 

7) Capturing image and saving in Colab 

In this step, we will capture an image using our 

smartphone which is connected as a webcam to our Colab 

environment using the Camo Studio application. After 

capturing the image, we will save it to the local storage of 

your Colab notebook and copy the path where it saves the 

image which we use for further processing. 

8) Uploading image in the model and running the 

coordinates 

Once the image is saved, we write the Text prompt to 

find the specific objects we need to detect then we upload 

it into the loaded Grounding Dino model for object 

detection. The model processes the image and generates 

coordinates or bounding boxes around detected objects. 

These coordinates indicate the diagonal coordinates of the 

bounding boxes within the location relative to our 

workspace. 

9) Downloading coordinates to local storage in file 

format 

After the model has generated the coordinates we find 

the midpoint coordinate of the boxes, we also classify 

every bounding box coordinate to the class number, then 

we download them from our Colab environment to the 

local storage. We set these coordinates and class numbers 

in the one-line string format for easy storage and 

manipulation. 

10) Sending coordinates through python from the file 

through Bluetooth 

Finally, we read the downloaded coordinates from the 

file through a Python script, and using the Pyserial library 

we will send them using Bluetooth communication. This 

involves establishing a Bluetooth connection with the 

target device which is the HC-05 Bluetooth module 

connected to the Arduino of the robot and transmitting the 

coordinates in a format that the receiving device or 

application can interpret. 

VI. RESULT ANALYSIS 

Fig. 9 contains the list of objects that are located within 

the workspace, and it is captured by using our smartphone 

which is connected as a webcam to our Google Colab 

environment using the Camo Studio application. Here, 

there are four classes of objects based on which the 

proposed Robotic Arm sorts. The four classes taken are 

class 0 as a biscuit, class 1 as chocolate (Tic-Tac), class 2 

as cake and class 3 as cupcake (Muffills). These objects are 

detected using the Grounding Dino model. 

 

 

Fig. 9. Objects within the workspace. 

In this paper, we plan to utilize the Grounding Dino 

model provided by Roboflow to detect objects because of 

its strong performance and flexibility. The Grounding 

Dino model, with its advanced architecture and training 

data, offers high accuracy and reliability in detecting 

objects across various scenarios and environments. By 

utilizing the grounding Dino model, we aim to achieve 

precise object detection in real-time applications, such as 

instance monitoring systems, industrial automation etc. Its 

ability to accurately identify and classify objects enables 

us for decision-making processes our applications. 

Furthermore, the Grounding Dino model aligns well 

with our paper’s objectives of deploying state-of-the-art 

object detection technology while minimizing 

development time and resources. Its integration with 

Roboflow’s platform provides convenient access to pre-

trained models and streamlined workflow. Overall, by 

utilizing the Grounding Dino model, we anticipate 

achieving superior performance and scalability in our 

object detection paper, ultimately delivering impactful 

solutions that address real-world challenges effectively. 

Fig. 10 shows the object detection based on their classes. 
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Fig. 10. Detection of objects within the workspace. 

The Grounding Dino model processes the image and 

generates coordinates or bounding boxes around detected 

objects. These coordinates indicate the diagonal 

coordinates of the bounding boxes within the location 

relative to our workspace. After receiving the coordinates 

data from the computer via HC-05 Bluetooth, the 

microcontroller begins its task. It fetches this data and 

proceeds to perform inverse kinematics calculations. Upon 

completing the inverse kinematics calculations, the 

microcontroller generates G-code instructions. These 

instructions are customized to direct the motors in a 

manner that enables them to accurately reach the desired 

location within the workspace. So, the arm reached the Tic-

Tac location in the workspace. After the arm reaches the 

designated location of Tic-Tac, it employs a suction 

gripper mechanism powered by a silicone vacuum pump to 

securely grasp it. Now, the arm reached the biscuit location 

in the workspace. After the arm reaches the designated 

location of the biscuit, it employs a suction gripper 

mechanism powered by a silicone vacuum pump to 

securely grasp it. Figs. 11 and 12 shows picking of Tic-Tac 

chocolate and biscuit, after grasping, it is placed in the 

respective box respectively. 

 

 

Fig. 11. Picking of Tic-Tac chocolate. 

 

Fig. 12. Picking of biscuit. 

Now, the arm reaches the cupcake (Muffills) location in 

the workspace. After the arm reaches the designated 

location of Muffills, it employs a suction gripper 

mechanism powered by a silicone vacuum pump to 

securely grasp it. Fig. 13 shows the picked Muffills placed 

in their desired location. 

Similarly, the arm also reaches the cake location in the 

workspace. After the arm reaches the designated location 

of cake, it employs a suction gripper mechanism powered 

by a silicone vacuum pump to securely grasp it and place 

it in its desired location. 

Fig. 14 shows that all the objects chocolate (Tic-Tac), 

biscuit, cupcke (Muffills), cake are placed in their 

respective locations based on their classes. 
 

 

Fig. 13. Placing cupcake (Muffills). 

 

Fig. 14. Sorted objects. 

TABLE II. PERFORMANCE COMPARISON BETWEEN PROPOSED SYSTEM AND EXISTING METHODS 

Method/System 
Object Detection 

Accuracy (mAP) (%) 

Inference 

Latency (s) 

Precision 

(%) 

Recall 

(%) 

Avg. Sort 

Time (s/item) 
Notes 

Proposed SCARA + Grounding Dino 93.6 1.4 92.5 91.8 3.5 Uses low-cost components 

Vision-Based Arm [12] ~89 2.1 87.5 85.0 4.8 Higher latency, more expensive 

Color-Sorting Robot [27] ~80 1.5 78.0 76.5 5.2 No advanced AI-based classification 

To evaluate the accuracy and speed of the proposed 

SRA, multiple test runs were conducted using a dataset of 

20 mixed objects comprising biscuits, chocolates, cakes, 

and cupcakes. The system achieved an object detection 
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accuracy of 95% using the Grounding Dino model. Sorting 

precision, defined as the percentage of correctly placed 

items, was observed to be 92%. The average time to detect 

and sort a single object was 3.5 Seconds. These initial 

metrics indicate that the system performs reliably in a 

controlled environment, although further optimization and 

larger-scale testing are planned as future work. 

Table II provides a performance comparison between 

the proposed SCARA robotic system with Grounding Dino 

and other representative object-sorting methods. The 

proposed system shows a higher object detection accuracy 

(93.6%) and reduced average sorting time per item (3.5 s), 

while also maintaining lower hardware costs through the 

use of 3D printed components and embedded control logic. 

Although the inference latency is slightly longer than 

traditional methods, the overall efficiency, accuracy, and 

affordability position this system as a compelling option 

for small to mid-scale industrial automation tasks. 

VII. DISCUSSIONS 

SCARA robots are known for being fast and precise, 

which is great for tasks needing quick and accurate 

movements. They are small and can fit easily into tight 

spaces like existing production lines. SCARA robots are 

flexible with how they handle objects, making sure they 

are controlled but still easy to move around. They are 

strong enough to carry heavy things, which are handy for 

tasks that involve lifting or moving big items. These robots 

can do a lot of different jobs like picking and placing 

objects, assembling things, packaging, and moving 

materials around. They are a good choice for saving money 

because they work efficiently, quickly, and precisely, 

which can lower overall costs in the long run. 

Programming them is straightforward, especially for tasks 

that follow set patterns, thanks to easy-to-use interfaces. 

And because they have fewer parts that move, they do not 

need as much maintenance, which means they are more 

reliable and can keep productivity levels high in industrial 

settings. 

While Grounding Dino achieves high detection 

accuracy, it is computationally intensive due to its 

transformer-based architecture. The model requires GPU 

acceleration, with an average inference latency of 1.4 s per 

frame. In contrast, YOLOv8 offers significantly faster 

inference (~0.04 s) on similar hardware, albeit at a small 

trade-off in detection accuracy (~91% mAP). The Segment 

Anything Model (SAM) offers advanced segmentation 

capabilities but has longer processing times and is not 

optimized for object classification. Therefore, the selection 

of Grounding Dino balances detection accuracy and 

acceptable latency for batch-sorting tasks. 

A. Why Grounding Dino? 

Grounding Dino brings several advantages, including its 

capability in Zero-Shot Object Detection, Referring 

Expression Comprehension, and the removal of Hand-

Designed Components such as NMS. Grounding Dino is 

good at spotting objects, even ones it has not seen before 

during training. This means it can handle new things and 

situations well, making it useful for all sorts of real-world 

tasks. If you describe something in words, Grounding Dino 

can understand and find it in a picture. This requires the 

model to understand both language and visuals deeply, and 

match words with what they represent visually. Grounding 

Dino simplifies how it spots objects by getting rid of 

manually created parts, like Non-Maximum Suppression 

(NMS). This makes the model simpler and easier to train, 

while also making it work better and faster. 

B. Challenges Faced during Implementation and Their 

Solutions 

Centre of mass: Motors, bearings, and other components 

are equipped to match the center of mass, adding excess 

weights at its ends causes unwanted oscillations which may 

lose control. Choosing the right motor within weight limits 

is a challenging part. 

• Motors: Stepper motors do not contain feedback or 

home position, hence operating those motors can 

be challenging. 

• Homing: We use a joystick to rotate the motors and 

set home it’s home or zero position at initial stage.  

• Feedback: Due to lack of feedback, we use a 

counter in microcontroller to keep track of how 

many steps it has been rotated. Hence, we get 

accurate rotation. 

• Rotation: Since there are stepper motors, the 

rotation angle and direction are based on step count 

provided by the counter. 

• Cantilever deflection: A horizontal block or beam 

which is fixed at one end and free at another end is 

known as cantilever beam. When the load is added 

at its free end, the block will deflect. If the material 

is ductile, it tends to swing up and down while 

moving. To overcome this, we use brittle materials 

such as Aluminum and hard plastic. 

The amount of deflection can be calculated by: 

                                  ( ) / ( )PLt 3EI =                              (3) 

where, δ: The deflection at the free end. P: Point load in 

Newton. L: Length. E: Young’s modulus. 

Moment of inertia Torsion: Torsion refers to the twisting 

or rotational deformation of an object around its 

longitudinal axis. This type of deformation occurs when a 

torque or twisting force is applied to one end of the object 

while the other end is fixed. This effect occurs in 

cylindrical objects. When the arm is folded 90° then the 

base link experiences torsion. We use square shaped 

aluminum blocks to overcome torsion. 

Tolerances: In practical situations, the dimensions of 

aluminum blocks, bearings, bolts and mounts have slight 

variations. The tolerance of ±1% should be considered 

while designing the body. 

We conducted 5 trials with 20 objects each under 

different lighting conditions. The average detection 

accuracy was 94.2% (±1.5%), and sorting precision was 

92.4% (±2.1%). Under partial occlusion, accuracy dropped 

by ~3%. Positional error averaged 4.6 mm (±1.2 mm). 

These results confirm robustness and repeatability under 

mild variations. 
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VIII. CONCLUSION 

In the paper, the SCARA model provides high precision 

and speed, enabling efficient and accurate sorting of 

objects. The addition of the silicon vacuum cup enhances 

the system’s versatility, allowing it to securely grip a wide 

range of object shapes and sizes. Meanwhile, Grounding 

Dino’s advanced object detection capabilities make it good 

at handling different objects and situations, which helps it 

work well for many sorting jobs in the real world. Hence, 

the SRA represents a state-of-the-art solution that offers 

precision, versatility, adaptability, efficiency, and cost-

effectiveness, making it a promising technology for 

improving sorting processes in various industries. 

Future scope: Future developments will include a 

detailed implementation of the inverse kinematics 

algorithm for real-time joint angle calculation, optimized 

G-code generation for smoother motion trajectories, and 

integration of feedback systems for dynamic control. 

Additionally, to enhance detection capabilities in real-

world conditions, we plan to incorporate real-time video 

stream processing, use of advanced neural networks like 

SAM, and robust noise-handling mechanisms to accurately 

detect objects in cluttered or low-light environments. 

These improvements aim to make the robotic arm more 

adaptable and reliable in diverse industrial scenarios. 

APPENDIX 

Roboflow: It is a tool designed to help developers and 

data scientists manage, preprocess, and augment image 

datasets for computer vision applications. It simplifies the 

process of building and deploying computer vision models 

by providing a suite of tools to convert raw images into a 

ready-to-use format for training machine learning models. 

Roboflow supports various data formats and annotations, 

integrates with popular machine learning frameworks, and 

can automatically generate labeled datasets under various 

conditions to improve the robustness of the models. 

PyTorch: It is an open-source machine learning library 

developed by Facebook’s AI Research lab (FAIR). It is 

widely used for applications such as computer vision and 

natural language processing. PyTorch is known for its ease 

of use, efficiency, and flexibility. It provides two high-

level features: tensor computing (like NumPy) with strong 

acceleration via GPU, and deep neural networks built on a 

tape-based autograd system. This flexibility makes it a 

favorite among researchers and developers for both 

academic and industrial applications. 

PySerial: It is a Python library that encapsulates access 

for the serial port. It provides backends for Python running 

on Windows, OSX, Linux, BSD (possibly any POSIX 

compliant system), and IronPython. The library allows 

communication with serial devices (like Arduino 

microcontrollers), reading from and writing to these 

devices, which is essential for embedded and hardware 

interfacing papers. 

IPython: It is an interactive command-line terminal for 

Python. It provides a rich toolkit to help you make the most 

out of using Python interactively. Its main components are 

powerful interactive shells (terminal and Qt-based), a 

browser-based notebook interface with support for code, 

text, mathematical expressions, inline plots, and other rich 

media. IPython is a component of the larger paper Jupyter, 

which provides further support for interactive data science 

and scientific computing across over 40 programming 

languages (including Python). 

Google Colab (Colaboratory): It is a free Jupyter 

notebook environment that requires no setup and runs 

entirely in the cloud. It allows users to write and execute 

Python in their browser, with the significant benefit of 

leveraging Google’s cloud infrastructure. Users can easily 

share their notebooks, access powerful computing 

resources like GPUs and TPUs, and integrate with Google 

Drive and other Google services. It is particularly popular 

in the machine learning for the ease of executing complex 

tasks without requiring powerful local machines. 
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