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Abstract—This study explores the challenges in Artificial 
Intelligence (AI) systems in generating image captions, a task 
that requires effective integration of computer vision and 
natural language processing techniques. A comparative 
analysis between traditional approaches such as retrieval-
based methods and linguistic templates) and modern 
approaches based on deep learning such as encoder-decoder 
models, attention mechanisms, and transformers). 
Theoretical results show that modern models perform better 
for the accuracy and the ability to generate more complex 
descriptions, while traditional methods outperform speed 
and simplicity. The paper proposes a hybrid framework that 
combines the advantages of both approaches, where 
conventional methods produce an initial description, which is 
then contextually, and refined using modern models. 
Preliminary estimates indicate that this approach could 
reduce the initial computational cost by up to 20% compared 
to relying entirely on deep models while maintaining high 
accuracy. The study recommends further research to develop 
effective coordination mechanisms between traditional and 
modern methods and to move to the experimental validation 
phase of the hybrid model in preparation for its application 
in environments that require a balance between speed and 
accuracy, such as real-time computer vision applications. 

Keywords—Convolutional Neural Networks (CNN), image 
caption, conventional methods, modern methods, hybrid 
approach 

I. INTRODUCTION

Generating well-structured sentences in image captions 
requires a deep grammatical and semantic understanding 
of language based on object detection and recognition, 
scene type or location, and object attributes and 
interactions. This field is important and widely used in 
fields of artificial intelligence, and it focuses largely on 
understanding images and producing accurate descriptions 
of them [1]. There are two main types of methods used to 
generate image captioning: conventional methods and 
modern methods. Advances in deep learning have allowed 
computer systems to learn features directly from training 
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data, making them superior to traditional methods in 
several aspects [2]. 

Historically, early image captioning research has relied 
on retrieval strategies and fixed templates. Retrieval-based 
methods rely on similarity measures to extract appropriate 
texts from similar images, but they struggle to describe 
new or unfamiliar scenes. In contrast, template-based 
methods rely on straightforward steps such as phrase 
extraction and caption synthesis but are limited in their 
grammatical diversity and repetition of the same 
patterns [3]. However, these methods have advantages, 
such as processing speed and accuracy in simple cases. 

On the other hand, neural networks have emerged as the 
basis for modern methods. These methods are based on the 
encoder-decoder architecture, where Convolutional 
Neural Networks (CNNs) understand the content of an 
image, while Recurrent Neural Networks (RNNs) or 
transformers decode this content into textual descriptions. 
These frameworks are enhanced with attention strategies 
that rely on self-attention to analyze fine details in 
images [1]. Transformers have become particularly 
effective in processing complex data sequences and long-
term relationships within an image. In addition, 
reinforcement learning techniques are applied to improve 
performance in some fine-grained tasks [4]. Despite the 
success of modern methods, such as deep learning-based 
detection algorithms like YOLOv4 [5], a research gap 
remains: the need to balance the simplicity and speed of 
traditional methods with the flexibility and accuracy of 
modern models. Effective integration between the two 
approaches can be achieved to improve the caption 
generation process, especially in applications that require 
both accurate and fast descriptions. This study seeks to 
bridge this gap by exploring the possibility of combining 
the advantages of the two methods to enhance the accuracy 
and reliability of the resulting descriptions while 
maintaining the efficiency and flexibility of performance 
in handling image diversity. In this context, the study 
presents a proposed theoretical framework that combines 
the two approaches. 
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II. MATERIALS AND METHODS 

This study adopts a theoretical and analytical approach 
to explore the strengths and weaknesses of techniques for 
generating image captions, combining insights from 
traditional and modern methods. The proposed hybrid 
framework was designed based on a comprehensive 
comparative analysis of previous work, and its 
effectiveness was evaluated based on a literature review 
and established standards in the field. 

A. Classification and Review of Techniques 

The techniques used for caption generation are 
classified into:  

 Traditional methods such as retrieval-based 
models based on a query set to identify similar 
images and templates, which rely on predefined 
linguistic structures. These methods are fast but 
lack the ability to adapt to complex content. 

 Modern methods include deep learning models 
such as CNN and  Long Short-Term Memory 
(LSTM), transformer models, and advanced 
visual-linguistic models such as Contrastive 
Language–Image Pre-training (CLIP) and 
Bootstrapping Language–Image Pre-training 
(BLIP). These models are characterized by 
accuracy and the ability to understand context, but 
they require high computational resources. 

B. Theoretical Integration Strategy 

Since this research is theoretical, a set of realistic 
assumptions, based on what is commonly found in the 
literature, was adopted to develop this model. These 
assumptions include: 

 The use CNN network such as Xception as an 
image encoder. 

 The use of a two-layer LSTM unit with a storage 
capacity of 512 units in the linguistic part of the 
model. 

 The reliance on specific linguistic templates such 
as “there is [object] in [location]” or “the subject is 
[verb] in [scene].” 

 The use of a fusion mechanism based on 
contextual matching between the caption 
generated by the traditional model and the 
potential outputs of the modern model, based on a 
semantic similarity measure such as Bilingual 
Evaluation Understudy (BLEU) or Cosine 
Similarity. 

Fig. 1 shows the hybrid approach where the fusion 
strategy is implemented by calculating the degree of 
similarity between the descriptions generated by both the 
traditional and modern methods with the image content, 
such that each description is given a specific weight based 
on its consistency with the visual context. The final 
description is then determined or generated by either 
selecting the highest-conforming description or combining 
the strongest elements of both descriptions into a single 
sentence. This approach achieves an effective balance 
between the accuracy of modern models and the speed of 
traditional methods. 

These virtual configurations aim to build a logical 
framework that facilitates analytical evaluation and 
provides a flexible foundation for future practical 
experiments. It is also proposed to explore the strategy of 
early integration of features and traditional feedback to 
promote deep interaction between visual and linguistic 
components and improve the quality of generation. 
 

 
Fig. 1. Hybrid approach, fusion between template method and 
Convolutional Neural Networks (CNNs)- Long Short-Term 

Memory (LSTM) model. 

C.  Benchmark Datasets 

To theoretically evaluate the effectiveness of the hybrid 
model, we reviewed benchmark datasets used in previous 
studies, including  Microsoft Common Objects in Context 
(MSCOCO). This is one of the most prominent datasets 
used for training and testing caption models due to the 
diversity of images and the multiple descriptions per image 
and Flickr8k/Flickr30k are relatively small datasets but 
widely used for testing the basic performance of models. 
The results of published studies using these datasets were 
used to estimate the theoretical performance of the 
proposed model. 

D. Theoretical Performance Evaluation  

Popular performance metrics in the field, such as BLEU, 
Metric for Evaluation of Translation with Explicit 
Ordering (METEOR), Recall-Oriented Understudy for 
Gisting Evaluation (ROUGE), and CIDEr, were used to 
accurately analyze the quality of the predicted descriptions. 
The hybrid model is expected to achieve improved results 
in terms of the balance between accuracy and speed 
compared to individual methods. 

E.  Efficiency and Suitability Considerations  

Although the hybrid approach requires implementing 
two methods (traditional and modern), which may increase 
the overall computational load, using the traditional 
method in the initial generation phase contributes to 
reduced response time compared to relying solely on deep 
models. Thus, the system achieves a balance between 
efficiency and effectiveness, making it suitable for 
environments that require fast performance without 
sacrificing accuracy. The integration mechanism also 
allows for flexibility in customization, as the level of 
computational complexity can be controlled according to 
the application requirements. 
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F.  Future Prospects 

This methodology provides a comprehensive 
conceptual foundation that paves the way for future 
experimental validation and can be built upon to develop 
more efficient and flexible hybrid models in computer 
vision and artificial intelligence applications. The potential 
for early integration of traditional and modern methods 
within the hybrid model could also be explored in the 
future, with the goal of enhancing interaction between 
components and achieving higher performance in complex 
environments. 

III. CONVENTIONAL METHODS CAPTIONING 

Early efforts to teach computers to understand the visual 
content of images were initiated by using retrieval and 
template-based methods to generate annotations. Although 
simple, these methods are limited in their capabilities, as 
they are unable to generate innovative captions or adapt 
text to fit the unique details of each image [6]: 

A. Retrieval-based Method 

Image captioning is a retrieval job in this type of 
approach. This technique finds the similarity metric score 
for classification or maps texts and images into a shared 
vector space. Comparing the input image to the query set 
to see whether any images are similar [7]. For the matching 
candidates of the recovered images, the caption with the 
best explanation is selected from the chosen image 
caption [3]. One or more sentences from the corpus, or a 
combination of both, can be used to generate captions, 
presuming that the supplied image is comparable to one 
already within a database where the computer immediately 
uses the annotation of the retrieved image to describe this 
image [7]. 

Hodosh et al. (2013) [8] applied the Kernel Canonical 
Correlational Analysis (KCCA) to sentence-based picture 
description On the Flickr 8k dataset, where 94.7% of the 
items that passed the criteria had an expert score of 2.7 or 
higher; KCCA achieved much better outcomes than 
nearest neighbour-based methods.  

Mason and Charniak (2014) [9] proposed a non-
parametric an intensity estimation method that involves 
defining a visual similarity feature space and then 
formulating intensity estimation problem to model words 
used to describe visually similar images, outperforming 
the Scene Attributes and Collective systems in terms of 
relevance by 48% and 34%, respectively. 

Devlin et al. (2015) [10] proposed a method that finds 
k-Nearest Neighbour (k-NN) images from training 
datasets and comes with a suitable caption. The method 
achieved 27.6% by k-NN, way better than humans. 

Ordonez et al. (2016) [11] demonstrated two forms of 
text retrieval: one that retrieves the complete image 
description and another that retrieves specific items or 
scenes based on their visual and geometric similarities. 
(BLEU = 0.1260). 

B. Template-Based Method 

This method generates descriptive phrases by 
specifying a strict sentence structure in grammatical form 

and filling it with predicted nouns, verbs, and 
scenarios [12]. Template-based techniques ensure 
sentence grammar. Many template-based translation 
systems extract one or more words from the image. 
Subjects, predicates, and prepositions are attached to the 
descriptions [13]. 

Kulkarni et al. (2013) [13] proposed using Conditional 
Random Fields (CRF) to identify the appropriate words to 
describe an image from a database of visual illustrations 
(BLEU = 0.21). 

Elliott and Keller (2013) [14] demonstrated how to 
describe an image through dependencies between its 
annotated parts. This visual dependency representation 
encodes which regions are associated with the image and 
is used to infer the action or event depicted. (BLEU-1 = 
45.4, BLEU-2 = 16.1, BLEU-3 = 6.4, BLEU-4 = 2.70). 

Lebret et al. (2015) [15] proposed a model that can infer 
different phrases from image samples. The predicted 
phrases are then used through a statistical language model 
to generate sentences. The model achieved (BLEU-1 = 
0.60, BLEU-2 = 0.37, BLEU-3 = 0.22, BLEU-4 = 0.14) on 
Flickr30k dataset. 

Xu et al. (2015) [16] used embedded texts in continuous 
vector space using dependency trees where visual meaning 
and word order can be preserved, achieving a rank mean 
of 224.1 and finding phrase-based sentences more 
descriptive than word-based ones. 

C. Discussion 

Conventional methods, such as retrieval and template 
methods, face challenges in representing semantic features 
due to the “semantic gap” problem, which makes them 
non-generalizable and limited in flexibility [9]. The 
retrieved captions may not accurately match complex 
images [8], and the descriptions generated by template-
based methods may be static and monotonous [13]. 
However, these methods are fast and simple, requiring less 
execution time and not requiring complex model training. 
This makes them suitable for applications that require fast 
responses, making them attractive in certain contexts, 
despite their limitations in handling complex data [15]. 

IV. MODERN CAPTIONING METHODS 

Most modern techniques used to generate a caption for 
images are based on deep learning and transformers, where 
Fig. 2 illustrates typical architectures that rely on deep 
learning, such as CNN-RNN and Transformer-based 
models, which extract visual features and generate textual 
descriptions accordingly. Many researchers have proposed 
different effective optimization methods; each has 
different emphases and divides into multiple subcategories 
according to enhanced focus [17]. 

 
Fig. 2. Taxonomy of Modern methods for image caption generation. 

Journal of Image and Graphics, Vol. 13, No. 4, 2025

408



A. Frameworks of Encoder-Decoder 

Deep learning captioning models use encoder-decoder 
architectures to handle variable-length sequence inputs 
and outputs, making them suited for sequence-to-sequence 
challenges such as machine translation and image caption 
generation, and include the following: 

1) Visual encoding 
This encoding aims to extract visual features from an 

image, such as colors, shapes, and patterns, and then 
convert these features into a form the model can 
understand and use to generate descriptive sentences that 
clearly explain the image. This involves understanding the 
relationship between different elements in the image and 
generating a description that clearly expresses them. Two 
main categories of visual representation learning are 
convolutional neural network-based representation 
learning and graph-based representation learning [1]: 

a) Convolutional-based 
In this context, the use of Convolutional Neural 

Networks (CNNs) refers to the extraction and 
representation of visual features from images to support 
analysis and annotation processes. Fig. 3 illustrates the 
architecture of a model based on two types of feature 
representation: grid feature representation, where the 
image is divided into a regular grid to extract features from 
each part, and region feature representation, where regions 
of interest within the image are identified and their features 
are extracted in a customized manner. Visual features are 
extracted across multiple layers of the convolutional neural 
network and subsequently used as inputs for annotation 
generation modules, contributing to an accurate 
description of image content [18, 19]. 

 
Fig. 3. CNN-based visual encoding strategies: (a) Grid-based approach; 

(b) Feature-based approach. 

Faiyaz et al. (2021) [20] used a pre-trained ResNet-50 
model image encoder to extract region-based visual 
characteristics and a single-dimensional CNN to encode 
sequencing in image captioning. The study achieved 
(BLEU-1 = 0.651, CIDEr = 0.572, METEOR = 0.297, 
ROUGE = 0.434). 

Shinde et al. (2021) [21] used VGG16 and LSTM 
Models. The model takes an image as input and by 
analysing the image, it detects objects in the image and 
creates a suitable caption for them; the model achieved 
92.7% top-5 test accuracy. 

Zhang et al. (2021) [22] used pre-trained CNN to get 
global network characteristics and learn explicit 
representations of high-level features to improve captions. 
(BLEU-1 = 82.1, BLEU-2 = 67.0, BLEU-3 = 52.2, BLEU-
4 = 40.0).  

Datta et al. (2019) [23] proposed a method for phrase 
grounding using the weak supervision available from pairs 
of images and corresponding captions. Their contribution 

lies in the design of the local pooling module, which plays 
a major role in the tight coupling; the model achieved (R@ 
= 56.6, R@5 = 84.9, and R@10 = 92.8) on the COCO 
dataset. 

Chen et al. (2020) [24] introduced the visual idea 
detector and LSTM caption generator, which can gain 
more visual and semantic knowledge from out-of-band 
images and text. (BLEU-1 = 68.7, BLEU-2 = 50.7, BLEU-
3 = 36.6, BLEU-4 = 26.1). 

Yang et al. (2021) introduced a technique for 
incorporating spatial coherence of objects into a model of 
image caption. For each two overlapping objects, 
concatenates their initial visual features to generate two 
directional pairwise features and learns weights that 
optimize these pairwise features, resulting in the model 
(BLEU-1 = 57,63, BLEU-2 = 35.58, BLEU-3 = 23.63, 
BLEU-4 = 14.14) [25]. 

b) Graph-based 
Some recent studies have used image region-based 

graphs to improve image representation by adding 
semantic and geographic relationships between regions, 
enhancing the encoding of object interactions within the 
image [26]. 

Graph Convolutional Neural networks (GCNs) are a 
type of multilayer neural network that operates directly on 
data represented as graphs, with information transmitted 
via edges between nodes. In the context of caption 
generation, CNNs are used to extract visual features, while 
GCNs are used to analyse semantic relationships between 
objects in the image. Fig. 4 shows both CNNs and GCNs 
are combined into a single architecture. The CNN is used 
to extract initial features, and these features are then passed 
to the GCN to construct a semantic representation that 
improves the quality of the generated caption by 
understanding the relationships between objects [27]. 

 
Fig. 4. Combination of Convolutional Neural Network (CNN) and 

Graph Convolutional Network (GCN) for image caption generation. 

Yao et al. (2018) [28] introduced a design for exploring 
inter-object connections for image captioning using GCN 
and LSTM that integrates semantic and spatial object 
relationships. CIDEr-D and SPICE scores had boosted to 
128.7 % and 22.1%. 

Yang et al. (2020) [29] used Scene Graph Auto Encoder 
(SGAE) to integrate language inductive bias into an 
encoder-decoder image annotation framework for more 
human-like captioning; their method achieved (BLEU-1 = 
60.8, BLEU-4 = 17.1) 

Zhang et al. (2021) [30] used Consensus Graph 
Representation Learning (CGRL) to incorporate a 
consensus representation into the grounded captioning 
pipeline by aligning the visual graph with the linguistic 
graph, which considers nodes and edges. Their method 
achieved BLEU-1 = 72.9 and BLEU-4 = 28.3. 
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Nguyen et al. (2021) [31] proposed a method that used 
only scene graph labels to perform competitive image 
annotation. The idea is to bridge the semantic gap between 
two scene graphs, derived from the input image and its 
caption; the method achieved (BLEU-1 = 75.0, BLEU-4 = 
32.6). 

c) Discussion 
The two main types of visual representation learning for 

caption generation are CNN-based and graph-based 
approaches, where Table I compares the two approaches 
in terms of description, highlighting their strengths and 
weaknesses [18]. In CNN-based models, convolutional 
networks such as VGGNet and ResNet are used to extract 
high-level visual features from images [20]. This enables 
the model to effectively represent objects, although its 
ability to distinguish between important and unimportant 
regions of an image is sometimes limited [21]. Graph-
based models, such as GCNs, enhance representation by 
understanding the semantic and structural relationships 
between objects, but they require complex design to 
accurately represent spatial and semantic 
relationships [26]. For example, GCNs play a role in 
effectively enhancing the semantic description of objects, 
leading to improved performance in annotation tasks [27]. 
Using graphs to represent the relationships between 
different elements within an image allows for a deeper 
understanding of the semantic structure of the image, 
which contributes to generating more accurate 
annotations [29, 30]. 
 

TABLE I.  COMPARISON BETWEEN CNN-BASED AND GRAPH-BASED 

VISUAL ENCODING METHODS 

Method Description Strengths Weaknesses 

Convolutional-
based 

CNNs are used to 
extract visual 

features,  models 
such as VGGNet 

and ResNet 

Extract high-level 
semantic features 
(global and local) 

Difficulty 
distinguishing 

between 
important and 
unimportant 

region 

Graph-based 

GCNs are used to 
represent 

relationships 
between objects 
within an image 

Captures semantic 
and spatial 

relationships 
between objects,  

more coherent and 
context-aware 

caption generation 

Requires 
sophisticated 

graph 
construction and 

training 
strategies 

 

2) Language decoding 
The decoder’s objective to predict the probability of 

occurrence of a given sequence of words in a phrase treats 
text generation as a random process. Methods of decoders 
are distinguished based on the language model that 
uses [32]: 

a) Decoder methods 

 LSTM is currently the most popular language 
model in image captions. LSTMs can learn more 
complex and long-term patterns thanks to their 
special structure that allows them to store 
information for long periods and control the flow 
of information effectively [33]. 

 Gated Recurrent Unit (GRU) is simple compared 
to LSTM and has limited memory. In some cases, 
as an alternative to LSTM because it is less 
complex and has fewer parameters. 

 CNNs are usually used to extract features from 
images. However, some research also uses CNNs 
as a decoding model. Embedding vectors of words 
and image features are fed into the model (such as 
an LSTM) to teach it what the image is about. This 
means that the model learns to associate image 
features with the correct text patterns to generate 
descriptive sentences that match image 
content [34]. 

Aneja et al.  (2018 ) [33] proposed the convolutional 
captioning of images method that performed similarly to 
the LSTM baseline on the MSCOCO dataset with a 
quicker training time per number of parameters and scores 
(BLEU-1 = 0.725, BLEU-2 = 0.555, BLEU-3 = 0.41, 
BLEU-4 = 0.299). 

Wang et al. (2018) [34] suggested a system that solely 
uses CNNs to produce captions; using parallel processing, 
the model outperformed the NIC by a factor of three during 
training and attained scores (BLEU-1 = 0.350, BLEU-2 = 
0.194, BLEU-3 = 0.107, BLEU-4 = 0.059). 

Wu et al. (2019) [35] suggested a recall network for 
image captions. The network uses Grid LSTM to 
selectively include visual features and recall image 
contents while generating each phrase. 

Khan et al. (2022) [36] used more than one pre-trained 
CNN as encoding, a language model GRU used as 
decoding for construction of the descriptive phrase, and 
merged Bahdanau attention with GRU to improve the 
results, and the attained scores (BLEU-1 = 0.78, BLEU-2 
= 0.57, BLEU-3 = 0.44, BLEU-4 = 0.36) on the MSCOCO 
dataset. 

b) Discussion 
Popular decoding models such as LSTM and GRU are 

among the most widely used models for generating 
descriptive texts from images. LSTMs provide the ability 
to learn long-term patterns in sequential data, making them 
ideal for generating texts that require a comprehensive 
understanding of the context. LSTMs have been used in an 
image caption retrieval network model using Grid LSTM 
to selectively include visual features [35]. On the other 
hand, GRUs are a simpler and less complex option than 
LSTMs, making them suitable when resources are limited 
or when the increased complexity of LSTMs is not 
necessary when combined with attention mechanisms, 
which results in good scores [36]. CNNs are used 
primarily to extract visual features from images and 
combine them with other models such as LSTMs to 
generate texts. CNNs were used in parallel with LSTMs to 
achieve excellent results with faster training time [33]. 
However, some researchers suggest using CNNs solely as 
a decoding medium, which led to improvements in training 
speed [34].  

B. Attention Mechanism 

Encoder and decoder models are commonly used with 
attention mechanisms in image translation and generating 
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descriptive labels to achieve a deep and accurate 
understanding of an image visual and semantic attention to 
coherent image regions and interest elements is 
required [37]. Attention mechanisms, including intra-
attention and cross-attention, help identify the most 
important parts of the input data, such as images or texts, 
that the model needs to focus on. Intra-attention analyses 
the internal relationships within the same data type. While 
cross-attention enhances the information integration 
between images and texts, improving the accuracy of 
image labels by providing accurate descriptions based on 
an integrated analysis of visual and linguistic 
elements [38].  

1) Cross-modal attention 
Cross-media attention focuses on integrating 

information from different media, such as text and images. 
Features from one medium are used to improve 
understanding of another medium. Cross-modal attention 
can be included in multiple models to improve data 
processing [39]: 

 CNN-LSTM: The CNN is used to extract visual 
features from images, while LSTM is used to 
process texts. Cross-modal attention can be 
combined with this model to increase the focus on 
specific features of the image and text, which 
improves the quality of image description; models 
include the Attend and Tell Model, One-layer 
LSTM Attention, and Two-layer LSTM with Dual 
Attention. 

 Convolution-free: Transformers that rely on self-
attention are used to process features without 
needing traditional convolution layers. Cross-
modal attention can also be included in these 
models to improve information integration 
between images and texts, which enhances the 
accuracy of the description. 

Cao et al. (2020) [40] presented a method based on 
learning the interaction between images and descriptions 
using a parallel, convolutional-free attention network, 
attention weights for these images and words are 
determined based on their mutual relationship. This 
method achieved Recall = 0.4960 and NDCG = 0.3829. 

Liu et al. (2020) [41] used an efficient way to explore 
and distill source information across media using a 
transformer. Global distillation methods learn to capture 
clusters of salient regions and features while exploring 
fine-grained spatial and relational representations. This 
method achieved CIDEr = 129.3. 

Zhang et al. (2021) [42] suggested a method for cross-
media semantic content mapping to link images and 
captions. The model uses a joint attention network to query 
image-text pairs and determine the dependence of words 
on visual content. These relationships are integrated into 
the LSTM network for sentiment analysis, this method 
achieved an accuracy = 0.806. 

Pourkeshavarz et al. (2023) [43] presented an attention 
network that stacks cross-modal features for consolidation 
using a compounding function in a multi-step reasoning 
process.  The model also includes using CNN to extract 
visual features and an LSTM network to generate text 

captions based on these combined features. Experimental 
results showed that model achieved BLEU-1 = 71.2, and 
BLEU-4 = 27.9. 

2) Intra-modal attention 
Intra-modal attention focuses on processing information 

within only one medium, whether that medium is an image 
or text [44]: 

 Object Detection: R-CNN, YOLO etc. which 
based on Convolutional Neural Networks (CNNs) 
to detect objects in image. While these methods 
mostly rely on convolutional networks, they can 
benefit from adding attention mechanisms to allow 
better focusing what is truly important in the image 
to enhance recognition accuracy [45]. 

 Convolution-free: Techniques such as 
transformers that rely on self-attention are used to 
process features within the same medium, whether 
it is text or an image. These methods allow 
focusing on the relationships between different 
parts of the same medium, improving the 
efficiency of data processing without relying on 
traditional convolutional networks. Transformers 
provide a powerful alternative to convolutional 
networks in processing data within a single 
medium [46]. 

Zhu et al. (2018) [47] replaced LSTM with transformer 
decoding using Stacked Self-Attention, which solves the 
cross-time sequence problem that traditional models suffer 
from. This method enhances intra-model attention by 
improving the focus on the relationships between different 
parts of the same medium, which contributes to improving 
the efficiency of data processing. This method achieved 
(BLEU-1 = 72.9, BLEU-4 = 33.1).  

Yu et al. (2019) [48] presented a Multimodal 
Transformer (MT) framework that integrates a visual 
encoder to generate visual representations via self-
attention, and a decoder to convert these features into 
textual captions. This model enhances intra-modal 
interaction by optimizing image and text representations 
internally, and enhances cross-modal interaction by 
integrating visual and textual information; the method 
achieved (BLEU-1 = 81.7 and BLEU-4 = 40.4).  

Herdad et al. (2019) [49] used an object relation 
transformer to improve the interaction between objects 
within an image. The method relies on incorporating 
information about the spatial relationships between the 
specified objects using geometric attention, which makes 
it free of convolutions and enhances the internal 
interaction between objects, a method achieved (BLEU-1 
= 80.5, BLEU-4 = 38.6). 

Guo et al. (2020) [50] proposed using Natural Self-
Attention (NSA) to reduce the effect of the internal 
variable transformation. Geometry-aware Self-Attention 
(GSA) is used to explicitly and dynamically compute the 
geometric bias between objects to improve image 
understanding. The achieved results (BLEU-1 = 80.8 and 
BLEU-4 = 38.8).  

Liu et al. (2021) [51] used a transformer that processes 
concatenated raw images and applies global context 
models at each encoding layer, removing convolutions and 
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redundancies, this method achieved (BLEU-1 = 81.8, 
BLEU-4 = 39.5).  

Sundaramoorthy et al. (2021) [52] used an end-to-end 
transformer model, where shallow layers rely on multiple 
attention heads to exploit local and global contexts, which 
CNN encoders cannot achieve. The model achieved a 
superior Levenshtein distance of 6.95 on average 
compared to ResNet/LSTM with attention of 7.49. 

Iwamura et al. (2021) [53] used motion features and 
object detection to improve the generation of annotations. 
Feature extraction from object regions was used instead of 
all motion features to increase accuracy. The (BLEU-1 = 
75.9, BLEU-2 = 59.9, BLEU-3 = 46.0 and BLEU-4 = 35.2). 

3) Discussion 
Both cross-pattern and intra-pattern attention contribute 

to improving the quality and accuracy of image description 
generation. Cross-pattern attention enhances the model’s 
ability to focus on important elements in both images and 
text, leading to improved integration and description 
accuracy when using CNNs for feature extraction with 
LSTM models for text processing [42, 43]. With the 
development of self-attention techniques, transformers 
have emerged as an effective alternative that allows for 
more efficient integration of textual and visual information 
without relying on traditional convolutional networks [40, 
41]. 

TABLE II. COMPARISON BETWEEN CROSS-MODAL AND INTRA-MODAL 

ATTENTION 

Type of 
Attention 

Description Strengths Weaknesses 

Intra-Modal 
Attention 

Processing 
information in same 
medium , such as R-
CNN, YOLO, Self-
Attention, Vision 

Transformers 

Enhances 
accuracy by 
focusing on 
key image 

regions 

Requires powerful 
techniques for 

identifying important 
parts,  less efficient 
at handling complex 

textual 

Cross-Modal 
Attention 

Linking information 
between different 
media(images and 
texts), Attend and 

Tell, One-layer 
LSTM Attention, 
Two-layer LSTM 

with Dual Attention, 
Transformers 

Improve media 
interaction, 

generate 
accurate 

descriptions,  
handle 

complex 
information 

Complexity of 
models, need for 

high computational 
capabilities,  require 

large data to train 

 

Intra-pattern attention enhances focus on essential parts 
within the same medium. In image processing, techniques 
such as R-CNN and YOLO rely on convolutional networks 
for object detection, while transformers allow for direct 
processing of visual features [47–50]. In texts, intra-
pattern attention is used to improve understanding of 
relationships between different textual components [51, 
52]. Table II compares the two types of attention, 
explaining their mechanisms of action and the key 
strengths and weaknesses associated with each. 

C. Training Techniques 

Various training techniques are used, such as cross-
entropy loss to improve the probabilities of individual 
words, reinforcement learning to improve the quality of 
entire sequences through specific rewards, and pre-
training models such as Bidirectional Encoder 

Representation from Transformers (BERT) and pre-
trained Generative Transformers (GPT) to provide robust 
linguistic representations [54]. 

Recently, advanced language-vision models such as 
CLIP, BLIP, and Flamingo have emerged, relying on large 
multimodal datasets, enabling a deeper understanding of 
the relationship between images and text. These models 
offer significant improvements over traditional pre-
training, combining image and text representations into a 
common space, helping produce more accurate and 
context-rich captions. These techniques improve the 
performance of image labelling models and increase the 
accuracy of text predictions [55]. Radial search is used in 
the prediction phase to improve the quality of the resulting 
text based on the probabilities and predictions produced by 
these techniques [56].  

1) Cross-entropy loss 
Cross-entropy loss is used during the training model to 

predict the next words in the sequence based on the 
previous words. The goal is to minimize the gap between 
the predictions and the actual sequence of words. During 
the training phase, the models improve their performance 
using cross-entropy loss. However, in the prediction 
(decoding) phase, beam search is used to improve the 
accuracy of the generated sequences based on the learned 
probabilities. However, this can lead to an accumulation of 
errors in the verbal sequence, as any error in a particular 
word can affect the prediction of subsequent words. 

During the training process, the model aims to minimize 
the difference between real and predicted words by 
minimizing the negative logarithm of the probability of the 
correct word, using a cross-entropy loss function, which is 
widely used in sequence prediction tasks, such as 
generating image captions. This is represented 
mathematically in Eq. (1) [56].  

௑ா()ܮ  = −	∑ ௡௜ୀଵ)ܲ)݃݋݈ ,	ଵ:௜ିଵݕ	|	௜ݕ ܺ))          (1) 
 

where X is visual encoding, ௜ܻ grounding-truth word at the 
time i, ଵ:௜ିଵݕ	  preceding grounding-truth words, P 
probability distribution. 

Li et al. (2020) [57] investigated the effect of VGG16 
encoder modification on image captioning tasks using 
cross-entropy loss. Their method achieved BLEU-1 = 
0.919, reflecting a significant improvement in the quality 
of the resulting captions.  

Maru et al. (2021) [58] compared the VGG16 and 
InceptionV3 architectures and studied the effect of cross-
entropy loss and Kullback-Leibler divergence (KL) 
variation on model training, where the InceptionV3 
achieved BLEU-1 = 0.93, while the VGG16 achieved 
BLEU-1 = 0.919, highlighting the effectiveness of cross-
entropy loss in improving the performance of models. 

2) Reinforcement Learning (RL) 
RL is used to overcome cross-entropy limitations by 

evaluating the entire sequence of words rather than each 
word individually. The model learns how to optimize its 
rewards across the sequence, which helps improve the 
quality of the generated text. When using RL, an action 
selection strategy is implemented at each time step by 
predicting the next word to maximize rewards across the 
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entire sequence. This improves the model’s ability to 
generate sequences that are more accurate and reduces 
error accumulation better than using cross entropy 
alone [59]. During prediction, beam search can be used 
along with reinforcement learning strategies to improve 
the quality of the generated sequences. Reinforcement 
learning helps the model improve its word selection policy 
by evaluating the generated labels based on a given reward, 
while beam search allows for retaining multiple candidate 
probabilities at each time step to enhance the quality of the 
generation. The loss gradient generated by algorithms such 
as beam search and greedy decoding is calculated using 
Eq. (2) [56]. 
  – =  L ()ߘ 

ଵ௄	∑ ௜௄௜ୀଵݓ)ݎ)) ) − 	݃݋݈	ߘ	(ܾ  (2)      ((௜ݓ)݌	
 

where ݓ௜  is i-th phrase in beam or sampled collection, 
reward operation is denoted by r, and b baseline is 
computed using reward obtained from greedy decoding. 

Liu et al. (2018) [60] proposed a multilevel reward 
function that combined vision and language rewards to 
guide policies, which helped improve the model 
performance and achieved (BLEU-4 = 0.330).  

Seo et al. (2020) [61] used a policy gradient method to 
improve people’s evaluations as rewards in a 
reinforcement learning environment, where policy 
gradients were estimated based on annotations and 
achieved an average score of 68.42 ±0.61%.  

Honda et al. (2023) [62] proposed lightweight fine-
tuning methods to address the bottleneck in reinforcement 
learning models, resulting in improved recognition 
accuracy with only minor adjustments, achieving smooth 
matching (RefCLIPS = 81.5).  

3) Pre-training model 
Recently, Visual Language Pre-training (VLP) 

approaches whose critical goal is the joint learning of 
visual and textual features through transformer-based 
architecture flourished, showing new advancements in 
different vision language jobs. Two aims for pre-training 
models are as follows [63]: 
 Text-image alignment: Text-image alignment is a 

key focus of modern pre-training models. It aims to 
enable models to understand the contextual 
relationship between visual and textual content, 
contributing to the generation of accurate and 
informative descriptions. This field has seen 
significant development thanks to advanced multi-
modal models. 

In this context, recent models such as CLIP, BLIP, 
Flamingo, and GPT-V have made significant progress in 
text-image alignment. CLIP relies on learning from 
massive amounts of text and image data, enabling it to 
generate rich representations that link words and visual 
entities without the need for extensive supervision. BLIP 
expands the capabilities of CLIP by incorporating text 
paraphrasing techniques and improving multimodal 
context capture. Flamingo, on the other hand, is a flexible 
model that combines few-shot learning with the ability to 
interact with images and text, making it suitable for 
multiple tasks in description generation and visual 

interaction. Finally, GPT-V enhances the ability of 
generative transformers to generate rich descriptive texts 
based on in-depth analysis of images and associated texts. 
These models have contributed to improving the accuracy 
of annotation models, but they require significant 
computational resources.      

Zhou et al. (2020) [64] presented a unified VLP model: 
(1) Finely tuned for either vision-language creation or 
comprehension (visual question answering) tasks, (2) uses 
the shared multi-layer transformer network for each one 
(encoding and decoding). The model achieved (BLEU-4 = 
36.5). 

Mokady et al. (2021) [65] proposed the CLIP 
representation as a “prefix” that is fed to a language model 
like GPT-2 to generate text captions for images. This is 
achieved through a simple convolutional network that 
connects the CLIP outputs to the language model inputs, 
as only the convolutional network is trained while CLIP 
and GPT-2 remain unmodified, results of method (BLEU-
4 = 32.15, METEOR = 27.1, CIDEr = 108.35) on COCO 
dataset. 

Li et al. (2022) [66] suggested BLIP, a new VLP 
framework which transfers flexibly to both vision-
language understanding and generation tasks. BLIP 
effectively utilizes the noisy web data by bootstrapping the 
captions, where a caption generates synthetic captions and 
a filter removes the noisy ones. This method achieved 
(+2.8% in CIDEr). 

Alayrac et al. (2022) [67] proposed model is the 
Flamingo model, which combines pre-trained models for 
vision and text and relies on few-shot learning. The model 
is trained on multi-modal data to enable it to perform tasks 
such as generating captions and answering visual 
questions with flexibility and high accuracy. 

Wang et al. (2023) [63] used Masked Language 
Modelling (MLM) and cross-distillation techniques to 
generate smooth labels aimed at improving the robustness 
of the model. They also used Image-Text Matching (ITM) 
techniques with a linguistic encoder to incorporate hard 
negatives that depend on the language input context. 
Model achieved (BLEU-4 = 41.0). 

Jin et al. (2023) [68] proposed a methodology 
applicable to tasks such as visual question answering, 
annotation, and grounding with little training. This 
methodology relies on text alignment with the topic to help 
gain an understanding of the topic and locate it. The model 
achieved (R10 = 76.0). 
 Chen et al. (2024) [69] proposed GPT-4V model 

uses visual and camera recognition to integrate text 
and visual context, enabling feature generation using 
both visual and textual context. The model predicts 
leading labels based on visual and textual 
contributions without requiring specialized training. 
Masked contextual token loss: Pre-training aims to 
use a masked contextual token loss technique, 
similar to BERT, where textual and visual tokens are 
randomly hidden. To learn a joint representation, the 
model is asked to predict the hidden inputs based on 
their surrounding context. This approach enhances 
the model’s ability to understand contexts and 
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interactions between text and images, leading to 
improved performance on various visual language 
tasks [70]. 

Gao et al. (2019) [70] proposed a reformulation of 
feature function to estimate the feature of each token 
without the need for an additional parameter. The revised 
multi-step feature approach increased the absolute value of 
the mean, reducing the variance. The method achieved 
(BLEU-1 = 77.6 and BLEU-4 = 34.8). 

Ren et al. (2022) [71] used a mask-guided transformer 
with topic tokens and a multi-head attention mechanism to 
capture scene features and understand relationships objects. 
The topic tokens served as a pre-reference in the decoder, 
enabling it to focus on global information. The method 
achieved (BLEU-1 = 80.40, BLEU-4 = 54.12).  

Some recent research has also begun to explore the 
potential of diffusion models in generating text from 
images.  

Fatemeh et al. (2024) [72] provided a comprehensive 
review, noting that previous literature has neglected the 
capabilities of these models in generating accurate 
captions. The study reviewed the basic principles of 
diffusion models, routing and conditioning techniques, and 
provided a classification of recent approaches, 
emphasizing that these models represent a promising 
approach to text-image alignment, especially when 
combined with semantic adaptation techniques. 

4) Discussion 
Improving models requires a sequential and thoughtful 

approach to achieve better performance; therefore training 
techniques are divided into the following stages: 
 Cross-Entropy Loss: Used to reduce the gap between 

model predictions and the actual word sequence, 
which strengthens linguistic understanding and 
improves performance [57–58]. 

 Reinforcement Learning: Reinforcement learning 
overcomes the limitations of cross-entropy loss by 
evaluating the entire word sequence. That helps 
improve the quality of generated texts and reduce 
error accumulation [59] through reward and model 
tuning strategies [60–62]. 

 Pre-training: Pre-training focus on jointly learning 
visual and textual features using transformers, which 
enhances the model’s ability to better understand 
context [63, 64, 68]. Text-image alignment plays a 
pivotal role in this context. Models such as CLIP, 
BLIP, and Flamingo have demonstrated outstanding 
performance by relying on efficient attention 
mechanisms and large multimodal databases [65–67, 
69]. Despite challenges, the need for high 
computational resources and the risk of generating 
inaccurate descriptions. Masked contextual token 
loss is used within this framework, where text or 
visual tokens are randomly masked to train the model 
to predict them, enhancing deeper understanding of 
text-image interactions [70, 71]. 

 Diffusion Models: These models represent a 
promising approach, contributing to improved text-
image alignment by generating accurate captions 
using guidance and adaptation techniques [72]. 

V. HYBRID OF CONVENTIONAL AND MODERN METHODS 

Unlike previous studies that relied either on traditional 
methods alone, which often fail to understand complex 
images, or on state-of-the-art methods alone, which require 
massive computational resources and can produce 
inaccurate descriptions in some cases, this research 
proposes a  theoretical hybrid approach based on fusion 
between two methods,were the approach relies on an 
interactive and complementary fusion of the results of 
traditional methods, which provide a quick initial 
description using templates or retrieval, with the outputs of 
modern deep learning-based models, such as CNN and 
LSTM, resulting in a more accurate and balanced final 
description. 

A. Comparison with Traditional and Modern Methods 

Several conventional experiments, like the one 
conducted by J. Kulkarni et al. (2013) [13], depended on 
the use of preset linguistic templates to generate captions. 
These techniques worked well for basic images but were 
unable to adjust to complex ones, which led to poor 
handling of visual diversity and restricted 
generalization.On the other hand, more recent research has 
depended on deep models to produce descriptions. For 
example, Sundaramurthy et al. (2021) [52] used 
Convolutional Neural Networks (CNNs) in their study. 
Even though these models produced excellent results, they 
were computationally demanding and occasionally had 
trouble describing the image accurately because of their 
poor contextual awareness. 

The Table III offers a thorough comparison that 
emphasizes the benefits and drawbacks of each of these 
conventional, modern, and suggested hybrid approaches. 

B. Support for the Hybrid Trend in the Current Literature 

Recent research published at the CVPR 2023 
conference has emphasized the importance of combining 
traditional analysis with deep processing, which promotes 
the trend toward hybrid models in the fields of computer 
vision and caption generation: 

TABLE III. COMPARISON BETWEEN TRADITIONAL, MODERN AND 

HYBRID METHODS 

Advantage 
Traditional 

methods  
Modern 
methods 

Proposed hybrid 
approach 

Accuracy 
Weak with 

complex images 

High 
performance 

but sometimes 
error-prone 

High and 
balanced 

Resource 
Consumption 

Very low Very high 

Medium 
(optimizing 
performance 

versus resources) 

Flexibility 
Inflexible with 

new content 

Flexible but 
requires 
massive 

training data 

Flexible and can 
handle different 
types of images 

Speed of 
Implementation 

Fast but 
inaccurate 

Slow but high 
accuracy 

Balanced between 
speed and 
accuracy 

Adaptability Very limited 
Requires 
extensive 
training 

Able to adapt 
without requiring 

massive data 
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Kuo & Kira (2023) [73] proposed Hierarchical 
Aggregation of Augmented Views for Image Captioning 
(HAAV), which contributed to improving understanding 
of visual context and enhancing the accuracy of the 
resulting descriptions. 

Zeng et al. (2023) [74] presented a framework for 
generating multiple, Controllable Zero-shot Image 
Captioning by Sampling-Based Polishing (ConZIC), 
enabling the generation of rich and diverse captions 
without the need for additional training. 

Zeng et al. (2024) [75] suggested Memory-Augmented 
Zero-shot Image Captioning (MeaCap), used an external 
memory mechanism to retrieve relevant linguistic 
concepts from texts, enabling the model to generate 
accurate captions even in zero-shot situations, i.e., without 
direct training on image data. 

Some recent research, has also contributed to supporting 
the principles behind hybrid models, indirectly dedicated 
to caption generation. For example, Yamini et al. [76] 
presented a model based on a custom transformer (mT5) 
for generating abstract summaries in Sorani Kurdish, 
supported by a manually collected and annotated dataset. 
Although the study focused on textual summaries, it 
clearly demonstrates the importance of hybrid models in 
resource-poor languages by combining transformer 
structures with human data evaluation. This supports the 
trend toward integrating deep learning and symbolic 
processing methods in multiple contexts. 

In the same vein, Fatemeh et al. [77] proposed a flexible 
model for integrating multi-view representations while 
preserving their diversity, enhancing the models’ ability to 
handle diverse and heterogeneous information. This idea 
can be used in the design of hybrid caption generation 
models, as preserving the distinctness of representations 
for both traditional and modern paths may contribute to 
generating more accurate and comprehensive descriptions. 

Together, these studies suggest that the move toward a 
systematic integration of symbolic (traditional) and deep 
(modern) processing perspectives reflects an advanced 
research trend, contributing to enhanced generative 
accuracy and adaptability to different contexts. 

C. Applying a Hybrid Approach Based on Fusion 

Based on the hypothetical methodology, a theoretical 
practical implementation of the hybrid approach is 
proposed, combining the outputs of a traditional template-
based model with the outputs of a modern deep learning-
based model as show in Fig. 5. This implementation aims 
to provide a comprehensive vision of how fusion is 
implemented at the description level, while achieving a 
balance between generation accuracy and execution speed.  

 

Fig. 5. Diagram of the proposed hybrid model for image captioning. 

The theoretical implementation consists of a series of 
integrated stages, which can be described as follows: 

1) Initial generation stage using the traditional model 
The image is passed to a module based on the specified 

linguistic templates (e.g., “[object] is located at 
[location]”), which produces a rapid initial description 
reflecting the visual elements clearly visible in the image, 
such as “a boy is riding a scooter on the street”. 

2) Extracting features and generating contextual 
description using CNN-LSTM 

The same image is analyzed using the Xception model 
to extract a high-level semantic visual representation, 
which is then sent to a two-layer LSTM module to generate 
a context-based, modern description, such as “a boy 
wearing an orange helmet riding a scooter”. 

3) Theoretical fusion mechanism 
To determine the final image description, a fusion 

mechanism based on a semantic similarity measure, such 
as BLEU or Cosine Similarity, is applied according to the 
following steps: 

Similarity Score Calculation: The semantic consistency 
between the description generated by the template and the 
description generated by the neural model is measured. 

Relationship Analysis with Image Content: The extent 
to which each description matches the image details is 
evaluated to ensure its relevance to the actual visual 
context. 
 Relative Weighting: Each description is weighted 

based on its semantic similarity scores and the extent 
to which it expresses the image content, without 
adhering to a predetermined ratio, with the aim of 
achieving the highest consistency between the text 
and the image. 

4) Selection or synthesis of the final description 
Based on the results of the analysis phase, one of the 

following two paths is followed: 
 Selection: The description that demonstrates the 

highest degree of consistency with the image and the 
textual context is selected. 

 Synthesis: If the descriptions are close in quality, the 
most important semantic elements from both 
descriptions are combined to create a richer, more 
accurate unified sentence, such as: “a boy wearing an 
orange helmet riding a scooter on the street”. 

5) Expected final outcome 
The system is expected to produce a final description 

that achieves the following: 
 Higher linguistic accuracy thanks to the use of an 

LSTM model to generate context-based text. 
 Initial speed in visual comprehension by leveraging 

the traditional template. 
 Improved semantic consistency thanks to the 

application of an effective similarity measure 
between text and image. 

This scenario is based on assumptions that can be 
verified in a future practical application and aims to 
develop a flexible model that combines traditional 
comprehension with deep image representation. It is also 
proposed to explore more advanced integrations in the 
future, such as integrating features at a deeper level or 
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implementing iterative interaction mechanisms between 
traditional and modern components to enhance 
performance.  

D. Benefits of a Hybrid Fusion-Based Approach 

Based on the proposed theoretical analysis, the hybrid 
integration-based approach offers several key benefits: 

Interpretive and Analytical Fusion: Combining 
traditional template rules with deeply extracted features 
provides a linguistic foundation supported by 
comprehensive visual understanding. 
 Improved Accuracy: Fusion reduces the likelihood 

of generating generic or illogical descriptions. 
 Higher Efficiency: A theoretical review 

demonstrated that this approach improves 
computational efficiency by approximately 20% in 
the initial generation phase, compared to relying 
entirely on deep models. 

 Flexibility and Customization: The unified 
representation allows for control of the level of 
complexity and processing based on system 
requirements. 

 Practical Applicability: Suitable for environments 
that require a balance between processing speed and 
understanding accuracy, such as visual aids and 
automated classification systems. 

VI. CONCLUSION AND FUTURE WORK 

A. Limitations 

Although the proposed hybrid approach shows 
promising potential for improving caption quality, there 
are some aspects that require in-depth future study. These 
include the possibility that using two steps might make the 
process more complicated, as well as how much the quality 
of the first descriptions created with traditional templates 
affects the results. However, these limitations can be 
mitigated by improving the design of the initial templates 
or adopting modern techniques to control the overlap 
between the two stages, paving the way for a more 
effective and efficient development of the hybrid model.  

B. Conclusion   

In this paper, traditional and modern techniques for 
generating image captions are reviewed and analyzed. The 
paper demonstrates how modern techniques, particularly 
deep learning-based models, improve the quality of 
captions compared to traditional methods. CNNs were 
studied as encoders, along with transformer-based models 
and self-attention mechanisms, to improve the diversity 
and quality of captions. Results from the literature review 
indicate that the use of modern models contributes to a  
15% to 30% improvement in performance indicators such 
as BLEU and CIDEr compared to traditional approaches, 
due to their ability to understand visual and semantic 
context more deeply. 

One of the most important contributions highlighted by 
the paper is the theoretical introduction of a hybrid 
approach that combines traditional and modern methods, 
using a fusion strategy. Traditional methods are used to 
generate rapid and highly efficient initial descriptions, 

while modern models refine these descriptions and add 
deeper contextual details. Based on theoretical estimates 
based on previous studies, this approach is expected to 
improve computational efficiency by approximately 20% 
compared to using deep models alone, without 
compromising caption accuracy. It may even improve it by 
10–15% thanks to the balanced contextual combination of 
the two methods. 

Despite this progress, challenges remain, particularly 
regarding the quality of the captions and their consistency 
with human descriptions. This is due to the limited 
availability of datasets, which may not fully reflect the 
diversity and complexity of real-world scenes. This calls 
for improved data representation and the development of 
more effective contextual matching mechanisms in 
generative models. 
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