
Dual-stream Generative Network Based Staining 
Transfer for Biomarker in Breast Cancer 

Ziyang Jin 1,2, Jiansheng Wang 2,3,*, Yan Wang 3, and Qingli Li 3  
1 Department of Electrical Engineering, ZJU-UIUC Institute, Zhejiang University, Haining, China 

2 Key Laboratory of Advanced Theory and Application in Statistics and Data Science, Ministry of Education, East 
China Normal University, Shanghai, China 

3 Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University,  
Shanghai, China 

Email: ziyang.22@intl.zju.edu.cn (Z.J.); jswang@cee.ecnu.edu.cn (J.W.); ywang@cee.ecnu.edu.cn (Y.W.); 
qlli@cs.ecnu.edu.cn (Q.L.) 

*Corresponding author

Abstract—Pathological examination is a crucial standard in 
cancer diagnosis, with breast cancer being one of the leading 
causes of morbidity and mortality in recent years, posing a 
major threat to health. Enhancing pathological examination 
capabilities has become an important way to save lives and 
improve patients’ quality of life. Common pathological 
examination methods include Hematoxylin and Eosin (H&E) 
and Immunohistochemistry (IHC) staining. H&E-stained 
images alone are often insufficient for cancer diagnosis, while 
IHC provides more comprehensive information for 
confirmed diagnosis. To address the challenges of limited 
IHC resources and high-cost consumption, we aim to 
generate virtual IHC images from H&E-stained images. In 
practice, it is difficult to perform multiple stains on the same 
tissue section, making it hard to obtain pixel-level matched 
data. To overcome this, we propose a dual-stream generative 
network that leverages pathological consistency constraints 
and a pathological representation network to extract 
pathological information and improve prediction accuracy. 
The network also incorporates structural similarity 
constraints and skip connections to enhance structural 
similarity. Additionally, we use stain unmixing results as 
annotated data, significantly reducing the workload of 
pathologists. We also conducted experiments to compare our 
model with models of similar functionality. In terms of 
pathological correlation, we have a lower Integrated Optical 
Density (IOD) and a higher Pearson-R, which are 
approximately 7.3% lower and 12.7% higher, respectively 
than the model with the best test results, so we have a higher 
pathological correlation. In terms of image quality, our 
Structural Similarity Index (SSIM) is higher than existing 
models, improving by approximately 8.8% compared to the 
model with the best test results, with higher image quality. 
These experiments show that our method has better stability 
and performance than the existing methods. 
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I. INTRODUCTION

In recent years, breast cancer has risen to become a 
severe health threat with both high incidence and mortality 
rates globally, particularly among women, occupying the 
top spot as the most frequently diagnosed cancer, 
surpassing lung cancer [1]. Given this dire situation, early 
detection and treatment are undoubtedly one of the critical 
pathways for breast cancer patients to improve their 
survival rates and quality of life. In this context, medical 
diagnostic technology has undoubtedly emerged as one of 
the vital means of timely identifying breast cancer patients 
and saving lives. 

In the field of clinical diagnosis, Hematoxylin-Eosin 
(H&E) staining is one of the most crucial staining methods 
in histopathological examination. H&E staining uses the 
acid-base properties of the dye, hematoxylin staining the 
nucleus blue and dark purple, and eosin staining the 
extracellular matrix and cytoplasm pink. Other cellular 
structures form various colors and shades under the 
influence of these two stains, which helps to make the 
structural morphology of cells clearer and more 
discernible [2]. However, although H&E is a cost-effective 
staining method, it has limitations in terms of the 
composition information it provides and its lack of contrast, 
making it difficult to effectively distinguish specific 
proteins. Therefore, in such circumstances, pathologists 
require stains that can offer more information. 

Immunohistochemistry (IHC) is a molecular-level 
staining technique based on the principle of specific 
antigen-antibody binding. It plays an indispensable role in 
defining malignant tumor types and providing therapeutic 
decisions. Specific antibodies bind to specific antigens in 
target tissues or cells, and then a marker is introduced 
through chemical reactions to make the antigen-antibody 
complex visible, achieving the purpose of staining. 
Markers used in IHC are generally related to cancer cell 
proliferation activities. For instance, Ki-67 protein can be 
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utilized as a cellular marker in IHC examinations. It is 
closely related to cell proliferation [3]. In IHC, Ki-67-
positive tumor cells are stained brown, while Ki-67-
negative cells appear blue. 

In the existing experiments, the high cost makes it 
difficult to promote the diagnosis of IHC [4]. However, the 
sole use of H&E diagnosis is related to the experience of 
pathologists and is prone to disputes [5]. The scarcity of 
such experimental resources and human resources has led 
to difficulty in obtaining paired datasets of different 
staining with high accuracy. This means that once a tissue 
sample has undergone a certain staining procedure, it is 
difficult to revert it to its pre-stained state through methods 
such as decolorization to perform new staining. As a result, 
it is nearly impossible to obtain large-scale, pixel-level 
matched data of different stains. Consequently, we often 
rely on serial tissue sections to study information about the 
same tissue under different staining conditions. Serial 
tissue sections involve cutting the same tissue block into 
slices with a thickness between 3 μm and 5 μm, which are 
then stained using different methods. However, due to this 
method of continuous slicing along the same axis, spatial 
variability within cellular and tissue structures is 
unavoidable. We can only ensure that adjacent slices have 
similarity, not pixel-level matching, which naturally leads 
to difficulties in locating and analyzing different slices, 
reducing the overall accuracy of the experiment. IHC-
stained images provide selective, high-contrast imaging of 
cellular and tissue components. However, compared to 
conventional H&E staining, this high-precision IHC 
examination requires more time and cost. Therefore, 
predicting IHC expression from H&E images is of great 
significance in reducing the cost and time of clinical 
diagnosis, thereby improving the survival outcomes of 
cancer patients. 

In previous research, Cycle-GAN and its derivative 
models have been widely applied in the field of virtual 
staining. Zanjani et al. [6] and Runz et al. [7] developed 
color normalization methods based on Cycle-GAN to 
achieve consistent staining in histopathological images. 
Boyd et al. [8] enhanced Cycle-GAN with a Region of 
Interest (RoI) discriminator to improve stain transfer in 
whole slide images. Liu et al. [9] tested the GAN 
derivative model pix2pix on a breast cancer dataset, while 
Moghadam et al. [10] and Shen et al. [11] proposed multi-
stain simulation models by incorporating additional 
modules into GANs. Veronese et al. combined PatchGAN 
and U-Net with Cycle-GAN to improve the quality of 
simulated images [12]. Dubey et al. used a Structural 
Cycle-GAN (SC-GAN) model to investigate glandular 
markers in colonic tissue [13]. Although these models have 
advanced image conversion, most remain unsupervised, 
lacking prior knowledge, and the supervised models 
impose weak constraints on pathological information, 
leading to limited prediction accuracy. In fact, the 
performance of Cycle-GAN in the field of pathology is not 
entirely satisfactory. Cycle-GAN only uses cycle 
consistency and adversarial loss to constrain feature loss 
during the transformation between two domains. Cycle 
consistency mainly aims to preserve the structure and 

content of the original image, avoiding the generation of 
similar images in the target domain. Adversarial loss 
primarily reduces the differences between the generated 
image and the target domain [14]. However, when dealing 
with more complex textures in style transfer, Cycle-GAN 
fails to effectively retain pathological features and other 
critical information from the source image. 

We propose a dual-branch generative network for 
predicting breast cancer IHC markers from 
histopathological images, aiming to reduce data 
acquisition difficulty and improve prediction accuracy. 
The main innovation points of this paper are as follows.  

(1) By performing coarse alignment of the data, we
minimize the impact of spatial information
discrepancies on training.

(2)  Additionally, we simplify the acquisition of
annotated data and reduce labor costs by de-
mixing staining of IHC slice images. The model
requires only a small amount of annotated data to
effectively guide the learning of pathological
features, thereby enhancing performance.

(3)  Furthermore, we introduce pathological
consistency and structural constraints in the
pathological information learning process,
combined with a supervised framework, to
improve prediction accuracy.

II. RELATED WORK

Stain transfer networks can be divided into three main 
categories: traditional Generative Adversative Networks 
(GANs), Cycle-GAN, and stain unmixing while 
processing data. 

A. Generative Adversarial Networks (GANs)

Generative Adversarial Network (GAN) [15], as a
powerful generative model, was born from Goodfellow et 
al.’s creative application of the “two-player zero-sum 
game” in game theory. This model optimizes the 
adversarial loss by constructing two adversarial networks, 
the generator and the discriminator, minimizing the 
difference between the output of the generator and the 
distribution of the real data while maximizing the 
discriminator’s ability to distinguish between the real data 
and the generated data. This model has shown 
extraordinary potential and remarkable results in natural 
image processing. It has achieved impressive results in the 
areas of image generation, super-resolution reconstruction, 
image restoration, and image style migration. Now, this 
model is also used in medical image processing, especially 
when analyzing complex histopathological images, 
offering the possibility of improving the accuracy and 
efficiency of disease diagnosis. 

B. Cycle-GAN

During the training process, converting source images
to the target style often relies on paired training data. In 
real-world situations, such paired data is often difficult to 
obtain. To address this issue, Zhu et al. [16] proposed 
Cycle-GAN, an unsupervised image-to-image translation 
method that does not require paired training samples. 
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Unlike traditional methods that depend on paired training 
data [15], Cycle-GAN can perform image translation 
without the need for one-to-one annotated data. Its core 
architecture consists of two generators and two 
discriminators, responsible for converting images from 
one domain to another and distinguishing the authenticity 
of the generated images. Through the combined 
optimization of adversarial loss and cycle consistency loss, 
Cycle-GAN not only generates realistic images in the 
target domain but also ensures that the translated images 
retain the content and structure of the original images. This 
feature makes Cycle-GAN particularly suitable for tasks in 
medical image processing, such as the translation between 
different stained pathology images, providing cross-
domain image generation capabilities while preserving key 
pathological features. 

C. Stain Unmixing 

Stain unmixing is a crucial image processing technique 
in digital pathology. Its purpose is to decompose stained 
pathology slide images into images of individual stain 
components, facilitating better analysis and quantification 
of specific biomarker expressions. In this paper, we use the 
Hematoxylin-Eosin-DAB (HED) decomposition method 
based on the Optical Density (OD) model proposed by 
Ruifrok and Johnston [17] to separate HER2 staining from 
other background stains. In our work, through linear 
decomposition in the optical density space, grayscale 
images are obtained and processed using Gaussian 
filtering and Otsu’s thresholding method to generate 
corresponding masks. These masks are further processed 
using morphological closing operations to extract the 

target regions. The resulting outputs are ultimately used as 
our annotated data. 

III. METHODOLOGY 

A. Network Framework 

The overall framework of the proposed method is 
shown in Fig. 1. We propose a dual-stream generative 
network that leverages pathological consistency 
constraints and a pathological representation network to 
extract pathological information and improve prediction 
accuracy. The network also incorporates structural 
similarity constraints and skip connections to enhance 
structural similarity. Additionally, we use stain unmixing 
results as annotated data, significantly reducing the 
workload of pathologists. We intercept the stained image 
as a block of size 512×512 containing three color channels 
as our input data. We then perform the initial processing 
through an encoder, which captures the initial features of 
the image by means of a convolutional layer with a 7×7 
convolutional kernel and a step size of one. Then, in order 
to ensure that the image is spatially coherent and as 
detailed as possible in terms of structural information, we 
chose to downsample by replacing the general pooling 
layer with a convolution operation of step size 2. After 
three consecutive uses of this 3×3 convolutional kernel 
with a step size of 2, we reduced the size of the original 
image from 512×512 to 64×64, which preserved the key 
features while reducing the dimensionality of the data. In 
the feature extraction part, we also formed a module with 
high efficiency by five residual convolution blocks, which 
are marked with orange arrows in the image. 

   
Fig. 1. Overview of the proposed method. Based on a dual-stream generative network, a pathological representation network is added. Joint training is 
performed using the stained de-mixing processed annotation data and the training set data. During the training process, adversarial loss, cycle-
consistency loss, and pathological consistency loss are used as constraints. 
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In the pathology presentation network part, we select 
features at different resolution levels in the encoder (i.e., 
256×256, 128×128, and 64×64 resolution layers) and 
uniformly resize these features to a pixel size of 72×72 by 
using B-spline interpolation and downsampling, and then 
process them by convolution with a step size of 2 and a 
kernel of 3, and again use a module of five residual 
convolution blocks to extract the pathology-related 
features in depth. of modules to deeply extract pathology-
related feature information. We then generated a pathology 
representation map through a 3×3 convolutional layer and 
a Sigmoid activation function, which reflects the 
pathology features in the original image. 

In the decoding phase, we first deeply integrate the 
extracted features by means of a module of five residual 
convolutional blocks to achieve full interaction and 
enhancement of the features. Subsequently, in order to 
recover the resolution of the feature map from the reduced 
64×64 to 512×512, we justify the deconvolution operation 
with a step size of 2 and a convolution kernel of 3 as a way 
to enlarge the size of the feature map. Finally, we 
generated our virtual stained image by a 7×7 convolutional 
layer with Tanh activation function. This image maintains 
the structure and details of the original image while equally 
accurately reflecting the pathological information of the 
source image. 

And at the same time, in order to improve the 
performance as well as stability of the network, we 
performed convolutional operations with a convolutional 
kernel of 3×3 after each convolutional layer, instance 
normalization as well as LeakyReLU activation layer. In 
addition, the jump-linking mechanism between the 
encoder and decoder not only facilitates the sharing of low-
level information, but also provides a direct and effective 
path for the recovery of image details, thus ensuring that 
the virtual stained images we generate are realistic and rich 
in pathological information.  

B. Loss Function 

The overall objective function of our model includes 
four types of losses in total. In addition to the general 
adversarial loss ℒ௔ௗ௩	and cycle consistency loss ℒ௖௬௖௟௘	 , 
we also added the circular structural consistency loss, 
pathological consistency loss	ℒ௣௔௧௛௢௟௢௚௬, and basic spatial 
alignment loss ℒ௕௔௦ୣ. 

     
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1 2 1 2

1 2 1 2

, , , , , , ,

, , ,
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cycle pathology X Y base

G G D D P P G D G D

G G P P G G  
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 

  

  
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where ߣ, ,ߚ ߛ  are hyperparameters that reflect the 
importance of each item and are tuned to the specific task 
and dataset to achieve optimal performance. ܩଵ  is a 
generator of ܺ → ܻ  and ܩଶ  is a generator of ܻ → ܺ ௒ܦ and	௑ܦ .  are respectively the discriminators of ܺ  data 
and ܻ  data. ௑ܲ  and ௒ܲ  are separately pathological 
representation networks for input ܺ data and ܻ data. From 
this basis, we target to solve the following optimization 
problem: 

 
1 2

1 2 1 2
, , ,

, , , , , ,
X Y X Y

X Y X Y
G G P P D D

G G arg min max G G D D P P     (2) 

Based on this method, we adjust the generators ܩଵ	and ܩଶ  to make them compete with each other while also 
cooperating, thereby continuously optimizing our data 
conversion effect. This enables our generators to 
accurately convert data styles while preserving the key 
features and information of the data. 

The core objective of our network lies in generating 
images that embody the unique staining characteristics of 
the target domain, rather than simply performing pixel-
level RGB value matching. To achieve this, we need to 
match the distributions between the two domains. For this 
purpose, we employ two generators, ܩଵ and ܩଶ which are 
responsible for the style transfer between ܺ  and ܻ , and 
vice versa, respectively. An adversarial loss is utilized for 
optimization. During the transformation process of ܩଵ : ܺ → ܻ ଵܩ ,  undergoes adversarial training with the 
discriminator ܦ௒ , aiming to enhance the realism of the 
generated images, matching their distribution to that of the 
target domain ܻ , while preserving crucial features and 
information. The adversarial loss is defined as: 
 

     1 1, log log(1 ( ( )))adv Y x X x YG D D x D G x       (3) 

In this process, ܩଵ  generates images ܩଵ(ݔ)  from the 
input ݔ , aiming to make these generated images as 
indistinguishable as possible from the real images in 
domain ܻ . Meanwhile, task of  ܦ௒  is to accurately 
distinguish which images are generated by ܩଵ and which 
are authentic images from domain ܻ. The goal of ܩଵ is to 
minimize the risk of its generated images being identified 
by ܦ௒, while ܦ௒ strives to maximize its ability to discern 
images produced by ܩଵ. Correspondingly, the adversarial 
loss for the mapping function ܩଶ : ܻ → ܺ  and its 
corresponding discriminator is defined as: 
 

     2 2, log log(1 ( ( )))adv X y Y y XG D D y D G y       (4) 

Structural Similarity Index (SSIM) [18] as a 
Comprehensive Image Quality Assessment Tool. SSIM 
comprehensively evaluates image quality by considering 
three key dimensions: luminance, contrast, and structure, 
providing a relatively comprehensive similarity measure 
for each pixel. In order to further enhance the preservation 
of tissue structural details in images, we have defined a 
cyclic structural consistency loss function based on the 
SSIM index, which is incorporated into the original cyclic 
consistency loss framework [18]. The definition of SSIM 
is as follows: 

              
  

1 2

2 2 2 2
1 2

2 2
, a b ab

a b a b

c c
ssim a b

c c

  
   

 


   
 (5) 

where ߤ௔  and ߤ௕  represent the average values within an ܰ × ܰ sliding window centered on a specific pixel, while ߪ௔  and ߪ௕  represent the standard deviations within these 
windows. ߪ௔௕		denotes the covariance between the two. ܿଵ 
and ܿଶ  act as regularization parameters, ensuring the 
stability of calculations under low variance conditions, 
thereby leading to a more accurate similarity assessment. 
Based on this, our new cycle consistency loss can be 
expressed as: 
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In our framework, our stain transformation process is 
divided into two steps: firstly, the step of removing the 
original stain, and secondly, the step of restaining. During 
this process, we need to ensure that after stain removal, 
image ݔ can be mapped to a shared base space state with 
its corresponding image ݕ , ideally achieving (ݔ)ଵ೐೙ܩ	 (ݕ)ଶ೐೙ܩ	;݋= 	=  thereby enabling both images to share ,	݋	
the same abstract representations of anatomical structures 
and pathological features. To achieve this goal, we 
introduce a base space consistency alignment loss function 
between the encoders of ܩଵ and ܩଶ. This function of ℒ௕௔௦௘ 
is based on the calculation of L1-norm, aiming to optimize 
the consistency of feature representations between the two 
generators at the base space level. The specific formula for 
this loss		ℒ௕௔௦௘ is: 

         2 1 1 1 2 21 1base x en en y en enG G x G x G G x G y   
         (7) 

where ܩଵ  and ܩଶ  are the generators for the ܺ → ܻ  
and ܻ → ܺ  transformations, respectively. ܩଵ೐೙	 and 	ଶ೐೙ܩ	 represent the encoder parts of these two 
generators. The notation ‖	‖ଵ	denotes the L1 distance. 

In the analysis of multi-stained histopathological 
images, the issue of case consistency is a core concern. 
With this objective in mind, we have incorporated a 
pathological representation network into both generators 
to obtain pathological representation heatmaps of the input 
images. To further enhance the pathological consistency 
between the input images and the generated images, we 
have additionally introduced a loss function to reduce the 
differences in pathological representation heatmaps 
between the input image x and the generated image. 

In our experimental process, the data we used were 
images of tissue sections that had undergone continuous 
slicing and were stained using both H&E staining and 
immunohistochemical HER2 staining techniques. These 
two staining methods yielded images with high structural 
consistency. Furthermore, we employed staining unmixing 
techniques on the images obtained from 
immunohistochemical HER2 staining and used them as a 
reference for annotating the H&E-stained images. 
Similarly, we also used the unmixed images from 
immunohistochemical HER2 staining as a reference for 
their own annotations. Based on this, we obtained the 
annotation databases 	௑ܭ	 and ܭ௒	 derived from staining 
unmixing for training the pathological representation 
network ௑ܲ	ܽ݊݀	 ௒ܲ . The definition of pathological 
consistency loss is as follows: 

         
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X Yk y
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   
   

         

   

 

 
 (8) 

where ௑ܲ	ܽ݊݀	 ௒ܲ represent the pathological representation 
networks for domains ܺ	ܽ݊݀	ܻ in generators ܩଵ and ܩଶ , 
respectively. ݇ିݔ  and ݇ିݕ  are samples from the 
annotation databases ܭ௑	 and ܭ௒  where the label (*) 
represents the annotation for the continuous section of 

sample ∗ . ߱ଵ  and ߱ଶ  are the weights in the supervised 
learning process, which are set to 2.0 in the experiment. 

C. Implementation Details 

Our model was implemented on a computer equipped 
with an NVIDIA GeForce GTX 3090 GPU using the 
Python-based open-source deep learning library PyTorch. 
The input image size for the model is 1024×1024, and the 
parameters of the convolutional layers were initialized 
according to the method described in [19]. Additionally, 
according to [20], we set the hyperparameters of the 
overall loss function, with λ = 10, β = 10, and γ = 5. The 
Adam optimizer was used to minimize the overall loss. 
The entire model is trained end-to-end using 
backpropagation. Given computational constraints, the 
batch size for the training dataset was set to 1, the batch 
size for the expert knowledge database was set to 4, and 
the initial learning rate was set to 0.0002, with an 
exponential decay rate of 0.9 and a decay period of 2 
epochs. 

IV. EXPERIMENT AND RESULT 

A. Datasets and Evaluation Metrics 

In terms of datasets, we choose the publicly available 
Multi-IHC Stain Translation (MIST) dataset [21]. In the 
MIST dataset, we use the biomarker HER2, which 
contains 5642 paired samples from 64 WSIs. We selected 
1000 pairs of samples and divided them equally into 500 
samples each of the labeled data sets of H&E and HER2. 
Each part accounted for about 8.8% of the total sample. 
The final labeled data sets of H&E and HER2 were 
obtained by means of staining and unmixing. At the same 
time, 1000 samples were used as the test set, which 
accounts for about 17.7% of the total sample, and the 
remaining 3642 samples were used as the training set. It 
accounts for 64.55% of the dataset. 

To verify whether our virtual staining results meet 
clinical requirements, we chose to evaluate the 
pathological relevance of the results using Integrated 
Optical Density (IOD), Mean Integrated Optical Density 
(mIOD), and Pearson’s correlation coefficient (Pearson-R). 
Additionally, we assessed the quality of the final generated 
images using the Structural Similarity Index (SSIM) [18]. 

IOD is used to quantify and count the number of 
positive signals in the image [22], while mIOD represents 
the intensity of positive signals within a region [23]. We 
subtract the mIOD and IOD values from Ground Truth 
(GT). The closer the final value is to 0, the better the result. 
Pearson’s correlation coefficient (Pearson-R) is employed 
to evaluate the pathological relevance between the staining 
results and protein expression levels across the entire 
region [14]. SSIM evaluates the quality of the image from 
multiple dimensions, including brightness, contrast, and 
structure. Based on these metrics, we can comprehensively 
assess the generated virtual staining results to determine 
whether they meet the requirements for clinical application. 

B. Experiment Result 

The experimental results are shown in Fig. 2. We 
visually compared the virtual HER2-stained images 
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generated by different methods and observed that, under 
the pathology consistency constraint, the virtual HER2-
stained images produced by our model more closely 
resembled the reference HER2-stained images in 
consecutive sections, reducing many noticeable 
recognition errors. This demonstrates that our pathology 
consistency constraint plays a significantly positive role in 
extracting pathological features, contributing to the 
improved accuracy of virtual HER2-stained images. 

To demonstrate the superiority of our model, we 
compare its performance with the most advanced methods. 

The superiority of this method is proved by the final 
empirical results. It can be seen from Table I that the 
mIOD and IOD simulated by our model have the smallest 
deviation compared with the Ground Truth. At the same 
time, the Pearson-R score is much higher than that of the 
other two models, which reflects the highest pathological 
consistency of our model. In addition, our model has a 
higher SSIM. This shows that the virtual colored image 
generated by our model is closer to the original result. It 
can be seen that our model has higher performance than 
the existing models. 

 

 
Fig. 2. Results of virtual HER2 staining images with different methods on MIST datasets. These from top to bottom are (a) Ground Truth, (b) source 

H&E-stained image and (c) generated HER2-stained image by our model. 

TABLE I. QUANTITATIVE EVALUATION RESULTS OF VIRTUAL HER2 STAINING IMAGE ON MIST DATASET 

Methods 
Pathological Relevance Image Quality 

mIOD ↓ IOD×10
7 ↓ Pearson-R ↑ SSIM ↑ 

ASP [21] 0.5308 2.3781 0.5343 0.3837 

PSPStain [24] 0.2014 1.0012 0.7543 0.4345 

Ours 0.1873 0.9808 0.8638 0.4731 

 

C. Ablation Study 

To verify the significance of the pathology consistency 
constraint, we conducted an ablation study as shown in 
Fig. 3, by using a model that combines the standard SSIM 
constraint, skip connections, and Cycle-GAN as a 
comparison method. The same training tasks were 
performed under identical training datasets and hardware 
conditions. Cycle-GAN+SSIM model presents the model 
without skip connections, which means the model without 
complete pathological consistency. Meanwhile, Cycle-
GAN+UNet [23] model presents the model without SSIM 
constraint. In this way, we prove the importance of each 
module in the model by removing some of the modules in 
the model. The experimental results show that with the 
addition of pathological representation network and 
structural similarity constraint module, the proposed 
method has higher accuracy in predicting IHC-marker 
expression. 

According to Table II, through the analysis of the 
quantitative results, we found that in terms of pathological 
information extraction, our model, compared to the Cycle-
GAN model constrained solely by SSIM, had a smaller 
difference when subtracted from the GT image, and the 
pathological information was closer to the ground truth. 
Furthermore, in the prediction of positive IHC-stained 
regions, the Pearson correlation coefficient of our model 
reached 0.8638, significantly higher than other comparison 
models. This indicates that the skip connection and 
pathological consistency constraint we introduce 
effectively improves the model’s ability to extract 
pathological features. Additionally, in terms of image 
quality, our model also outperformed the comparison 
models which were constrained solely by UNet, better 
restoring the tissue structure of the original images.  In 
summary, the pathological consistency constraint not only 
improved the accuracy of Cycle-GAN in predicting IHC 
images from H&E images but also enhanced the integrity 
of structural restoration. 

Journal of Image and Graphics, Vol. 13, No. 4, 2025

424



 
Fig. 3. Ablation study results of different experiments. The columns from left to right correspond to (a) Ground Truth, (b) input image, (c) our model 

results, (d)Cycle-GAN+SSIM results, and (e) Cycle-GAN+UNet results. 

TABLE II. QUANTITATIVE EVALUATIONS USING TWO PATHOLOGY-RELATED METRICS AND ONE IMAGE QUALITY METRICS FOR THE 

ABLATION STUDIES 

Methods 
Pathological Relevance Image Quality 

mIOD ↓ IOD×10
7 ↓ Pearson-R ↑ SSIM ↑ 

Cycle-GAN+SSIM 0.2308 1.3781 0.7734 0.4678 
Cycle-GAN+UNet 0.2283 1.4102 0.7228 0.4573 

Ours 0.1873 0.9808 0.8638 0.4731 

 

V. CONCLUSION 

In this study, we proposed a dual-stream generative 
network that can effectively predict the virtual staining of 
pathological images from H&E images to IHC images. 
This model links H&E images from consecutive slices 
with IHC images through stain unmixing, allowing the 
unmixing results of IHC images to serve as initial 
annotation data, thereby significantly reducing the 
workload of pathologists. Additionally, the model 
incorporates a pathological consistency loss function to 
constrain the learning of pathological features, requiring 
only approximately 10% of the training data to be 
annotated, which considerably shortens the data 
preparation phase. Through extensive experiments, we 
validated that this method is highly effective at the current 
stage, outperforming state-of-the-art methods. In 
conclusion, the proposed method exhibits a good 
performance in predicting IHC biomarker. 
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