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Abstract—Corn is one of the major staple crops globally, 
particularly in the Philippines, where agricultural 
productivity is increasingly threatened by diseases such as 
Northern Corn Leaf Blight, Gray Leaf Spot, and Corn Rust. 
These challenges are further exacerbated by tropical cyclones 
and fluctuating environmental conditions, leading to 
substantial losses in yield and crop quality. This study 
presents CLDS-YOLO (Corn Leaf Disease Detection and 
Severity Evaluation Using YOLOv9), a novel system that 
leverages YOLOv9 instance segmentation for accurate 
disease detection and integrates fuzzy logic for severity 
assessment, based on Relative Leaf Area (RLA) and the count 
of diseased regions. The YOLOv9e-seg model demonstrated 
strong performance across classification tasks, achieving an 
overall accuracy of 80%, with recall values of 85% for 
diseased regions, 80% for healthy leaf areas, and 75% for 
background, based on the normalized confusion matrix. 
Precision levels were similarly high, particularly for leaf 
detection, while the model maintained a balanced trade-off in 
identifying diseased and background classes. These 
improvements address previous segmentation challenges and 
confirm the model’s robustness in multi-class classification. 
Furthermore, the severity analysis effectively categorized 
disease levels, supporting timely and informed crop 
management decisions. The CLDS-YOLO system 
demonstrates significant potential for real-time disease 
detection and severity evaluation, laying the groundwork for 
an indoor planting framework that ensures continuous health 
monitoring and protection from adverse weather conditions. 

Keywords—corn leaf disease, disease detection, YOLOv9, 
instance segmentation, computer vision, relative leaf area, 
fuzzy logic, severity evaluation, agriculture technology 

I. INTRODUCTION

Corn, sometimes referred to as maize, is an essential 
commodity of enormous worldwide importance, 
especially in the Philippines, where agriculture is a major 

Manuscript received March 20, 2025; revised June 5, 2025; accepted 
July 10, 2025; published August 7, 2025.  

economic driver. However, corn cultivation faces 
substantial threats from various diseases that compromise 
both yield and quality. These challenges are exacerbated 
by the geographical vulnerability of the Philippines to 
tropical cyclones [1], which bring heavy rains, flooding, 
and strong winds, leading to crop destruction and 
economic losses. To address these threats, this study 
promotes the future development of indoor planting 
systems, which offer protection from environmental 
factors while enabling consistent, automated monitoring. 
In this context, the proposed model—CLDS-YOLO—
demonstrates how AI-based disease detection can be 
seamlessly integrated into such controlled agricultural 
environments. 

The indoor planting integration aspect distinguishes this 
research from previous YOLO-based plant disease 
detection works, which primarily focus on outdoor 
deployment. CLDS-YOLO aims not only for detection but 
also for actionable assessment by leveraging YOLOv9 
instance segmentation to identify disease-affected areas 
and fuzzy logic to estimate severity based on Relative Leaf 
Area (RLA). The combination of fine-grained 
segmentation and fuzzy-based severity scoring provides a 
more robust and deployable solution for early disease 
management in precision agriculture, particularly suited 
for future automated indoor farming systems. This makes 
the study unique in both methodology and potential 
application setting. 

However, the importance of proactive crop health 
monitoring cannot be overstated. Diseases such as 
Northern Corn Leaf Blight (NCLB), Gray Leaf Spot 
(GLS), and corn rust significantly affect corn production. 
Caused by fungal pathogens such as “Exserohilum 
turcicum” for NCLB and “Cercospora zeae-maydis” for 
GLS, these diseases thrive under specific environmental 
conditions, such as high humidity and moderate 
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temperatures [2, 3]. If left unmanaged, these pathogens can 
cause severe yield losses, underscoring the urgent need for 
timely and accurate disease detection. 

Furthermore, the use of AI in agriculture makes it easier 
to create prediction models that use historical disease 
incidence and environmental data to predict disease 
outbreaks [4, 5]. Compared to traditional systems, which 
frequently respond to symptoms rather than proactively 
managing crop health, this predictive capability represents 
a substantial breakthrough. Researchers have improved the 
robustness and generalizability of disease detection 
algorithms in various species of crops and types of disease 
by using strategies such as transfer learning and attention 
processes [6, 7]. 

This research introduces CLDS-YOLO (Corn Leaf 
Disease Detection and Severity Evaluation Using 
YOLOv9), a cutting-edge approach that leverages 
YOLOv9 instance segmentation for high-precision 
detection of corn leaf diseases. By categorizing diseases 
such as common rust, gray spot, and blight under a unified 
“disease” label, the study simplifies disease classification 
while maintaining accuracy. Furthermore, the integration 
of Fuzzy Logic for disease severity evaluation offers a 
more holistic understanding of the extent of crop damage, 
providing farmers with actionable insights for effective 
treatment and resource allocation. A key component of this 
research is the use of Relative Leaf Area (RLA), which 
quantifies the healthy leaf area relative to the total leaf 
area, enabling an accurate assessment of disease severity 
based on the proportion of the leaf affected. 

By addressing the critical need for precise and 
automated disease monitoring, this study lays the 
foundations for the development of an indoor planting 
system that ensures consistent crop health surveillance and 
protection against adverse weather conditions. The CLDS-
YOLO framework represents the first phase of a broader 
initiative to create an automated disease detection 
prototype, bridging a significant gap in modern agriculture 
and paving the way for sustainable and resilient farming 
practices. 

II. LITERATURE REVIEW 

A. Computer Vision in Agriculture 

Computer vision is a field of artificial intelligence that 
enables computers to interpret and understand visual 
information from the world, mimicking human visual 
perception. It encompasses a range of techniques that 
allow machines to process, analyze, and derive meaningful 
insights from images and videos. The core of computer 
vision involves object detection, image classification, and 
image segmentation, which are essential for applications 
across various domains, including agriculture [8, 9]. 

In agriculture, computer vision has emerged as a 
transformative technology, facilitating innovations that 
enhance productivity and sustainability. One of the 
primary applications is in crop monitoring, where 
computer vision systems utilize cameras and sensors to 
capture images of crops at various growth stages. These 
images are then analyzed to detect diseases, assess plant 
health, and monitor growth patterns. For instance, deep 

learning algorithms, particularly Convolutional Neural 
Networks (CNNs), are employed to identify symptoms of 
diseases such as leaf blight or rust in crops like corn [10]. 
Additionally, computer vision is used in precision 
agriculture to optimize resource use, such as water and 
fertilizers, by analyzing soil conditions and crop needs in 
real-time [11]. 

The impact of computer vision on agricultural 
innovation is profound. By automating the monitoring 
process, farmers can receive timely alerts about potential 
issues, allowing for quicker interventions that can prevent 
crop losses. This shift from traditional manual scouting 
methods to automated systems not only increases 
efficiency but also reduces labor costs and human error [9]. 
Furthermore, the integration of computer vision with other 
technologies, such as drones and IoT devices, enables 
comprehensive data collection and analysis, leading to 
more informed decision-making in farming practices [11]. 

Moreover, computer vision facilitates the development 
of smart farming solutions, such as autonomous tractors 
and robotic systems that can perform tasks like planting, 
weeding, and harvesting with minimal human 
intervention. These innovations contribute to sustainable 
agricultural practices by reducing the reliance on chemical 
inputs and enhancing the overall efficiency of farming 
operations [11]. As a result, computer vision is not just a 
tool for monitoring but a catalyst for a broader 
transformation in agricultural methodologies, promoting a 
shift towards data-driven and precision farming 
approaches that can significantly improve crop yields and 
environmental stewardship [8, 9]. 

B. Deep Learning in Computer Vision 

Some studies utilizing deep learning AI models in 
computer vision have significantly advanced agricultural 
practices, particularly in disease detection and crop 
monitoring. These studies leverage Convolutional Neural 
Networks (CNNs) and other deep learning architectures to 
enhance the accuracy and efficiency of agricultural 
applications. 

One notable study by Osco-Mamani and Chaparro-
Cruz [12] focuses on the classification of olive leaf 
diseases using a highly accurate deep learning model. This 
research demonstrates the effectiveness of CNN 
architectures in identifying plant diseases, showcasing the 
potential of deep learning in agricultural applications 
Osco-Mamani & Chaparro-Cruz. Similarly, Naranjo-
Torres et al. [13] developed a disease and defect detection 
system for raspberries, utilizing CNNs to classify various 
defects and diseases in fruit. Their work highlights the 
growing trend of integrating AI algorithms in agriculture, 
particularly for quality control and disease detection. 

Li et al. [14] explored the use of UAV images combined 
with deep learning for recognizing freezing-tolerant 
rapeseed materials. Their findings emphasize the 
advantages of deep learning in automatically learning 
features from images, which is crucial for recognizing crop 
stresses and other conditions. Furthermore, the study by 
Kothadiya et al. [15] discusses the convergence of deep 
learning and computer vision, emphasizing its applications 
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in various fields, including agriculture, where it plays a 
significant role in disease identification and monitoring. 

Research on potato bud recognition has also highlighted 
the effectiveness of deep learning methods, particularly 
CNNs, in automating the recognition process. This study 
illustrates how deep learning can outperform traditional 
methods by utilizing large datasets for training, thus 
enhancing recognition accuracy [16]. Additionally, Zhu et 
al. [17] proposed a pest image identification method based 
on Mahalanobis entropy, showcasing the application of 
deep learning in intelligent agriculture for pest 
management. 

Tu et al. [18] provided a comprehensive overview of the 
current status and future prospects of deep learning in 
agricultural engineering, emphasizing its role in improving 

the intelligence of traditional agricultural practices. 
Moreover, Kamilaris and Prenafeta-Boldú [19] conducted 
a survey on deep learning applications in agriculture, 
identifying numerous research efforts that apply deep 
learning techniques to various agricultural challenges, 
including disease detection and crop monitoring. 

C. Challenges of Detecting the Crops Diseases 

In recent years, a lot of research has been done on the 
difficulties in detecting crop diseases using computer 
vision and deep learning approaches. As can be seen in 
Table I, numerous studies have outlined the advantages 
and disadvantages of current approaches in addition to the 
remedies they suggest to deal with these issues. 

TABLE I. CHALLENGES AND SOLUTIONS IN CROP DISEASE DETECTION USING COMPUTER VISION AND DEEP LEARNING 

Challenge Proposed Solution Strength Weakness 
Variability in lighting conditions 
and color differences of diseased 

plant parts [20] 

Image preprocessing 
techniques to normalize 

lighting conditions 

Enhances the 
reliability of detection 

systems 

Relies on controlled environments, which 
may not be feasible in real-world 

agricultural settings 

Limited labeled datasets for 
training deep learning models in 
grape disease classification [21] 

Few-shot learning approach 
using Generative Adversarial 

Networks (GANs) to 
generate synthetic data 

Mitigates data scarcity 
by augmenting the 

training dataset 

Synthetic data may introduce biases if it 
doesn’t accurately represent real-world 

conditions 

Difficulty of generalizing models 
across different plant species and 

diseases [22] 

Transfer learning techniques 
to adapt pre-trained models 

to new datasets 

Improves accuracy by 
adapting models to 

new data 

May struggle with unseen diseases or 
plant varieties 

Overfitting when trained on 
limited images [23] 

Data augmentation 
techniques to increase the 
diversity of the training 

dataset 

Increases robustness 
of the model 

Potential risk of overfitting on a limited 
dataset 

Complexity of integrating fuzzy 
logic with deep learning models 

[24] 

Hybrid approach using fuzzy 
logic to incorporate 

uncertainty in disease 
classification 

Improves accuracy by 
handling uncertainty 
in decision-making 

Complex integration of fuzzy logic can be 
challenging for real-time applications 

Data scarcity [25] 
Few-shot learning to learn 

from limited examples 
Addresses data 
scarcity issue 

Requires careful selection of 
representative samples to ensure effective 

learning 
Ensuring dataset diversity and 

representativeness of 
environmental conditions in 
grape disease detection [26] 

Creation of a comprehensive 
dataset of grape disease 

images 

Improves model 
accuracy with a 

comprehensive dataset 

Dataset must be diverse and 
representative, which can be difficult to 

achieve 

Data privacy concerns in 
agricultural applications [27] 

Federated learning to allow 
models to learn from 

decentralized data sources 
without sharing raw data 

Addresses privacy 
concerns effectively 

Achieving consistent performance across 
different datasets can be challenging 

 

D. AI in Real-Time Monitoring Systems 

The development of real-time disease detection systems 
powered by Artificial Intelligence (AI) has gained 
significant traction in agriculture, enabling timely 
interventions for farmers and decision-makers. These 
systems leverage advanced machine learning algorithms, 
particularly deep learning, to analyze data from various 
sources, including images, sensors, and drones, to provide 
early alerts regarding crop health and potential diseases. 

Real-time disease detection systems are increasingly 
being developed to allow prompt actions in the field. 
Fuentes et al. [28] presented a robust detector for tomato 
diseases using deep learning, demonstrating high real-time 
accuracy. Cheng et al. [29] integrated GANs with attention 
for anomaly detection in IoT data, showcasing adaptability 
to noisy input. 

Another significant contribution is from Gupta et 
al. [30], who discussed the integration of AI and machine 

learning in smart agriculture systems. Their research 
highlights how these technologies can provide real-time 
insights into crop health, soil moisture levels, and weather 
conditions, enabling data-driven decision-making [30]. 
This study underscores the importance of real-time data 
analytics in optimizing agricultural practices and 
improving yield. 

Gao et al. [31] used UAVs and IoT to create a dual-view 
monitoring system for crops, improving detection 
accuracy and timing. These studies underline the 
importance of combining multiple sensing methods with 
AI to optimize decision-making in precision agriculture. 

Khan et al. [32] investigated the real-time recognition 
of spraying areas for UAV sprayers using deep learning 
techniques. Their study emphasizes the importance of 
accurately identifying crop areas for precision spraying, 
which is crucial for effective pest and disease management. 
By employing deep learning algorithms, the system can 
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adapt to changing conditions and provide real-time 
feedback to operators. 

The work of Basaligheh presents a deep learning model 
for continuous monitoring and accurate diagnosis of plant 
diseases. By placing cameras and sensors in the fields, the 
proposed system facilitates real-time monitoring and rapid 
disease identification, allowing for early intervention to 
minimize crop damage [33]. This study highlights the 
potential of AI in enhancing the efficiency and 
effectiveness of disease management strategies in 
agriculture. 

Moreover, the research by Ito emphasizes the need for 
field monitoring systems that gather real-time data to 
suppress insect damage and diseases [34]. The study 
advocates for the integration of various data types to 
enhance the monitoring capabilities of agricultural systems, 
thereby improving the overall health of crops. Compared 
to prior systems, CLDS-YOLO (ours) integrates YOLOv9 

instance segmentation with fuzzy logic and Relative Leaf 
Area (RLA) computation, enabling disease detection and 
severity assessment in one framework. This layered 
approach supports future integration into automated indoor 
farming systems. 

E. Public Source of Dataset 

In the context of developing an AI model, a dataset is a 
collection of data that is used to train, validate, and test the 
model. Datasets are fundamental because the quality and 
quantity of the data directly influence how well the AI 
model performs. Table II shows the datasets that can be 
accessed publicly and might be used in this study. These 
datasets provide a comprehensive foundation for 
researchers and developers working on AI applications in 
agriculture, particularly in the area of crop disease 
detection and management. 

TABLE II. CHALLENGES AND SOLUTIONS IN CROP DISEASE DETECTION USING COMPUTER VISION AND DEEP LEARNING 

Dataset Name Description Reference 

PlantVillage Dataset 
Contains images of various plant diseases, including corn leaf diseases. Widely used for 
machine learning models. 

X. Wu et al. [35] 

Corn-Leaf-Diseases 
Dataset 

Focused on diseases affecting corn leaves, with labeled images for training and testing. X. Wu et al. [35] 

NLB Dataset 
Specifically designed for identifying Northern Leaf Blight in corn, includes images 
captured in real agricultural settings. 

A. Ahmad et al. [36] 

Corn Leaf Disease 
Dataset from UAS 
Imagery 

Acquired from Unmanned Aerial Systems (UAS) imagery, specifically for disease 
identification in corn fields. 

A. Ahmad et al. [36] 

Corn or Maize Leaf 
Disease Dataset 

Available on Kaggle, includes images of corn leaves categorized into disease classes such 
as blight, rust, and gray leaf spot. 

W. Pamungkas et al. 
[37, 38] 

PlantDoc Dataset 
Contains images of diseased plants, including corn, for training models to identify various 
plant diseases. 

A. Ahman et al. [39] 

Digipathos Dataset 
Includes images of various foliar diseases, including corn, used for evaluating deep 
learning models. 

A. Ahman et al. [39] 

CD&S Dataset 
A custom dataset for research, includes images of corn leaf diseases to evaluate deep 
learning model generalizability. 

A. Ahman et al. [39] 

Corn Leaf Disease 
Recognition Dataset 

Includes images of corn leaves affected by various diseases, used for training 
convolutional neural networks. 

M. Fadhilla [40] 

Maize Leaf Disease 
Dataset 

Consists of images of maize leaves with different disease symptoms, useful for training 
and testing AI models. 

P. Dong [41] 

Maize Gray Leaf 
Spot Image Dataset 

Focused on images of maize leaves affected by gray leaf spot disease, used for training 
deep learning models. 

P. Dong [41] 

Polygon Annotation 
Dataset (PolyCorn) 

Designed for detecting corn leaf pest-infected regions, used for training object detection 
models. 

R. Zhu [42] 

Corn Leaf Disease 
Classification 
Dataset 

Includes images of corn leaves with various diseases, used for classification tasks in 
machine learning. 

F. Adhinata et al. 
[43] 

Corn Leaf Image 
Dataset from 
Farmers’ Fields 

Collected from farmers’ fields in the Madura Region, includes images of healthy and 
diseased corn plants. 

A. Ubaidillah et al. 
[44] 

Corn Leaf Disease 
Images from Field 
Studies 

Compiled from field studies, includes images of corn leaves with varying disease severity, 
used for training AI models. 

D. Hindarto [45] 

 

F. Recent Advances in Instance Segmentation and 
Hybrid Models for Crop Disease Detection 

Several recent studies have introduced advanced models 
combining deep learning and fuzzy systems or focusing on 
instance segmentation to enhance the accuracy of crop 
disease detection. For instance, the study by Mishra et 
al. [46] proposes a hybrid approach for plant leaf detection 
utilizing a ResNet50-based architecture combined with an 
Intuitionistic Fuzzy Random Vector Functional Link 
(IFRVFLC) classifier. This work highlights the robustness 

of integrating fuzzy logic with deep features to handle 
noisy and uncertain data, aiming for improved 
generalization capabilities in plant detection, which aligns 
with our use of fuzzy logic for severity assessment. While 
their focus is on leaf detection, the paper’s emphasis on 
fuzzy logic for enhanced robustness against noise and 
outliers is particularly relevant to real-world agricultural 
environments. 

Another significant contribution is from Sarkar et 
al. [47], who introduced a 1-Norm twin random vector 
functional link network based on Universum data for leaf 
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disease detection. This approach demonstrates how 
advanced machine learning algorithms, beyond 
conventional deep learning, can be effectively applied to 
detect plant diseases, often with an emphasis on specific 
robust classification techniques. Their work explores 
alternative learning paradigms to enhance detection 
performance, providing a useful benchmark for diverse 
model efficacy. 

Furthermore, Sarkar et al. [48] also published a 
comprehensive review paper on leaf disease detection 
using machine learning and deep learning, outlining 
existing methods, current challenges, and future directions. 
This review is critical as it synthesizes the landscape of the 
field, highlighting various classification and detection 
approaches, including those based on CNNs, and 
discussing the need for robust and efficient systems. While 
a review, it implicitly supports the ongoing research into 
advanced deep learning and hybrid models by identifying 
the persistent challenges and the avenues for improvement 
in this domain. 

These recent works collectively underscore the trend 
towards more sophisticated and hybrid models to 
overcome the limitations of traditional methods in 
agricultural disease detection. They provide valuable 
context for the design and evaluation of our CLDS-YOLO 
framework, particularly in the integration of instance 
segmentation with fuzzy logic for comprehensive disease 
detection and severity assessment, a novel combination 
aiming to address critical gaps highlighted by the ongoing 
research in the field. 

III. METHODOLOGY 

A. Data Preparation 

1) Dataset 
A dataset is used as the basis for training, validating, and 

testing machine learning models in AI model 
development. For this purpose, a large dataset of over 1500 
images was collected from a variety of agricultural areas, 
covering a wide range of conditions such as changes in 
lighting, angles, and leaf states. This diversity in the 
dataset strengthens the model’s confidence and its ability 
to generalize to new situations, ultimately leading to more 
accurate and dependable disease detection in practical 
agricultural applications. The dataset is split into three 
parts: 70% for training, 20% for validation, and 10% for 
testing. The training set enables the model to learn patterns 
and features in the images, helping it capture the variability 
in agricultural environments. The validation set is used 
during training to fine-tune hyperparameters and prevent 
overfitting, while the test set, used only after training, 
provides an unbiased final evaluation of the model’s 
ability to generalize to new data. This careful dataset 
division optimizes the model’s performance and ensures 
reliable disease detection. 

Fig. 1 displays a variety of image examples from the 
dataset, including images of corn leaves afflicted by 
common diseases like (a) common rust, (b) gray spot, and 
(c) blight. Such diseases are common and have a major 
effect on the quality and productivity of maize crops. The 
dataset enables the program to identify the visual traits 

linked to each disease by incorporating pictures of leaves 
afflicted with these particular conditions. The dataset’s 
diversity guarantees that the model will be able to identify 
the unique characteristics of several corn leaf diseases in 
addition to learning to identify the existence of disease in 
general. 

 

 
Fig. 1. Types of corn leaf diseases. 

While the dataset used in this study comprises ~1500 
annotated images, it was curated to include a wide range 
of real-world variations—such as different lighting 
conditions, disease types, and leaf orientations. This 
diversity provided a meaningful foundation for model 
training. However, the limited sample size and class 
imbalance, particularly with small or early-stage disease 
spots, constrained the model’s ability to achieve higher 
recall in fine-grained segmentation tasks. Future work 
should focus on dataset expansion and balance, as well as 
incorporating synthetic and semi-supervised techniques to 
overcome these limitations. 

2) Data annotation 
Annotation is the process of labeling data to provide 

meaningful information that guides machine learning 
models during training. In the context of image-based tasks 
like corn leaf disease detection, annotation involves 
marking specific regions within an image and assigning 
labels that the model uses to learn patterns and features. 
The primary purpose of annotation is to provide the AI 
model with the correct information needed to understand 
and learn from the dataset. In this study, the images of 
Fig. 2 are annotated with two class labels: “disease” and 
“corn leaf,” where “corn leaf” represents healthy leaves, 
and “disease” labels the affected areas with common corn 
leaf diseases such as common rust, gray spot, and blight. 

 
Fig. 2. Sample images of polygon annotation. 

This study uses polygon annotation to get more exact 
and detailed labeling, which is very useful for instance 
segmentation. Polygon annotation, unlike bounding boxes, 
provides for the precise outline of irregular shapes, making 
it suitable for marking the limits of diseased patches on 
corn leaves that do not correspond to simple rectangular 

Journal of Image and Graphics, Vol. 13, No. 4, 2025

441



 

forms. This method provides a higher level of information 
by tracing the contours of the diseases, which improves the 
model’s capacity to detect and segment diseases properly. 

3) Preprocessing 
Preprocessing involves preparing the dataset to be 

suitable for input into the YOLOv9 AI model by applying 
various techniques to standardize the images and enhance 
their quality. For this study, stretch-resizing is applied to 
resize all images to a consistent resolution of 640×640 
pixels, ensuring that the input images meet YOLOv9’s 
requirements while maintaining the necessary level of 
detail. Additionally, an auto-orient function is used to 
adjust the orientation of the images, correcting any skewed 
or rotated pictures to ensure proper alignment. These 
preprocessing steps help standardize the dataset, 
improving YOLOv9’s ability to learn from the images 
effectively and reducing potential inconsistencies caused 
by varying image sizes or orientations. 

4) Data augmentation 
Data augmentation is a critical technique in deep 

learning that artificially expands the training dataset by 
applying various transformations to existing images. This 
process helps improve model generalization, reduce 
overfitting, and simulate real-world variations that the 
model may encounter during deployment. In this study, 
several augmentation techniques were applied to each 
training example to enhance diversity. Specifically, three 
augmented outputs were generated per image using a 
combination of horizontal and vertical flips, 90° rotations 
(clockwise, counter-clockwise, and upside down), 
saturation adjustments ranging from −30% to +30%, and 
the addition of random noise affecting up to 1.5% of pixels. 
These transformations were selected to mimic common 
variations in agricultural environments, such as differing 
lighting conditions, leaf orientations, and image quality. 
As shown in Fig. 3, the augmented samples effectively 
represent a wide range of possible visual appearances, 
contributing to more robust learning and better model 
performance in diverse field conditions. 
 

 
Fig. 3. Sample images of polygon annotation. 

B. Model Development 

1) Model selection 

The YOLOv9 instance segmentation model, developed 
by Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark 
Liao, represents the latest advancement in computer 
vision. The creators, renowned for their contributions to 
earlier models such as YOLOv4, YOLOR, and YOLOv7, 
have incorporated state-of-the-art features and 
optimizations into YOLOv9 to enhance object detection 
and segmentation capabilities [49]. Two key variants of 
YOLOv9-seg, namely YOLOv9c-seg and YOLOv9e-seg, 
are available for specialized tasks. Their performance 
metrics are shown in Table III. 

TABLE III. VARIANTS OF YOLOV9 IN SEGMENTATION TASK [50] 

Model mAPbox50-95 mAPmask50-95 params (M) 
YOLOv9c-seg 52.4 42.2 27.9 
YOLOv9e-seg 55.1 44.3 60.5 
 

The YOLOv9e-seg version was chosen for this 
investigation based on the data in Table I because it 
performed better in the instance mask and bounding box 
evaluations, obtaining higher mAPbox and mAPmask 
scores. These metrics demonstrate YOLOv9e-seg’s 
remarkable capacity for precise object detection and 
segmentation, which makes it perfect for the challenging 
task of identifying corn leaf disease. 

Compared to YOLOv5 and other previous segmentation 
models, YOLOv9e-seg provides superior performance in 
segmentation accuracy and robustness, particularly on 
small and overlapping objects—common in leaf disease 
detection. Additionally, YOLOv9 incorporates a 
Generalized Efficient Layer Aggregation Network 
(GELAN) and improved task alignment modules, making 
it more suitable for multi-task learning scenarios like 
instance segmentation [50]. Model training and inference 
were conducted using an NVIDIA RTX 3060 GPU (12GB 
VRAM), with 32GB of RAM and an Intel i7-12700H 
processor. The model achieves an average inference speed 
of approximately 17.4 ms per image (~57 Frames Per 
Second (FPS)), supporting efficient near real-time 
deployment in agricultural systems. 

2) Instance segmentation 
Instance segmentation is a significant technique used in 

this study that combines object detection and semantic 
segmentation, allowing the model to not only detect the 
presence of disease but also find and discriminate distinct 
diseased patches in an image. Despite classical object 
detection, which simply recognizes the bounding boxes of 
objects, instance segmentation allows the model to 
precisely highlight each object’s boundaries, even when 
they overlap or are irregularly shaped. In this situation, it 
enables the identification and isolation of sick spots on 
corn leaves, thereby providing specific and granular 
information regarding the disease’s spread on each leaf. 
The following figure, such as Fig. 4, presents the sample 
detection of instance segmentation on a diseased leaf. 

This level of segmentation is crucial to understand the 
full impact of the disease, as it enables the model to assess 
the size of affected areas relative to the overall size of leaf. 
Segmentation details, such as the proportion of the affected 
leaf and the specific location of the disease, are essential 
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for evaluating disease severity. These parameters are then 
incorporated into the fuzzy logic system to quantify the 
level of damage and determine the severity of the 
condition. By leveraging instance segmentation, this study 
ensures a more accurate, detailed, and scalable approach to 
disease detection, facilitating both precise disease 
detection and comprehensive severity evaluation, 
ultimately enhancing the effectiveness of automated 
indoor crop monitoring systems.  

 
Fig. 4. Segmented image of blight disease. 

3) Experimental training parameters 
For the training of the model, several key experimental 

parameters were defined to ensure optimal performance. 
The image size was set at 640×640 pixels to ensure 
uniform resolution and compliance with the YOLOv9e-
seg model. A learning rate of 0.01 would be chosen to 
achieve fast convergence while avoiding overshooting 
during optimization. To reduce overfitting and increase 
generalization, a weight decay of 0.0005 would be used as 
a regularization strategy. The model would be trained for 
1000 epochs, giving it enough time to learn the important 
features required for detecting and evaluating the severity 
of corn leaf diseases. The Table IV below shows the 
summary of parameters. 

TABLE IV.  HYPER PARAMETERS 

Model params (M) 
image_size 27.9 

lr0 (learning rate) 60.5 
weight_decay 0.0005 

epochs 1000 
 

C. Relative Leaf Area (RLA) 

The Relative Leaf Area (RLA) is a critical quantitative 
metric employed to evaluate the extent of damage caused 
by diseases on corn leaves. It measures the proportion of 
the total leaf area that remains unaffected by disease 
symptoms, providing a standardized approach to assess 
disease impact. The formula for calculating RLA is given 
by: ܴܣܮ	 = 	 ௧௢௧௔௟௅௘௔௙஺௥௘௔	ି	ఀ(ௗ௜௦௘௔௦௘ௗ஺௥௘௔೔)௧௢௧௔௟௅௘௔௙஺௥௘௔ × 	100     (1) 

where: 
● Total Leaf Area: The total area of the leaf, 

calculated as the sum of areas of all bounding 
boxes labeled as corn leaf by the YOLOv9 instance 
segmentation model. 

● Diseased Area: The area affected by disease 
within each bounding box. If a leaf contains 

multiple diseased regions, the diseased area is the 
sum of all diseased areas. 

Components of RLA Calculation 
1. Total Leaf Area: The total area of the leaf is 

determined by summing up the areas of all 
bounding boxes classified as “corn leaf”. The area 
for each bounding box is calculated as: ܽ݁ݎܣ	 = 	 	ݔܽ݉ݔ) െ 	ݔܽ݉ݕ)(݊݅݉ݔ	 െ  (2)   (݊݅݉ݕ	

The sum of these areas across all detected boxes 
gives the total leaf area. 

2. Diseased Area: The diseased area is computed for 
each detected diseased region on the leaf. Each 
bounding box that contains disease is evaluated 
separately. The total diseased area for the leaf is 
the sum of the areas of all such bounding boxes: ݀݁ݏܽ݁ݏ݅ܦ	ܽ݁ݎܣ	 = 	∑  (3) 											(௜ܽ݁ݎܣ)

where ݅ represents each individual diseased region. 
3. RLA Calculation: The RLA is computed by 

subtracting the sum of diseased areas from the total 
leaf area and then dividing by the total leaf area. 
The result is multiplied by 100 to obtain a 
percentage. 

This method is especially valuable when multiple 
diseased areas occur on the same leaf, as it accounts for the 
collective impact of all affected regions. The RLA metric 
provides a standardized approach to assess the overall 
health of the leaf. A higher RLA indicates that the leaf is 
largely unaffected by disease, while a lower RLA signifies 
that a significant portion of the leaf is damaged. 

D. CLDS Algorithm 

Algorithm 1 outlines the CLDS-YOLO Disease 
Detection and Severity Assessment process. It begins by 
leveraging YOLOv9’s instance segmentation capabilities 
to identify and analyze segmented regions corresponding 
to corn leaves and disease-affected areas. This step ensures 
precise computation of both the total leaf area and the 
diseased area. 

 

Algorithm 1: CLDS-YOLO Disease Detection and 
Severity Assessment 
Input: Image of corn leaf image, YOLOv9 model 
with instance segmentation model 
Output: Relative Leaf Area (RLA) and Disease 
Severity Score 
Step 1: Load YOLOv9 Model 
Load YOLOv9 pretrained weights configured for 
instance segmentation and set class names as ‘corn 
leaf’ and ‘disease’. 
Step 2: Load Input Image 
Read the input image. 
Run YOLOv9 inference on the input image with 
instance segmentation enabled. 
Extract segmentation masks for ‘corn leaf’ and 
‘disease’. 
Step 3: Calculate Total Leaf Area, Diseased Area, 
and Count Diseased Regions 
Initialize totalLeafArea, diseasedArea, and 
diseasedCount to 0. 
for each segmentation mask in predictions do 
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Compute the area of the mask as the sum of its pixel 
values (maskArea). 
if class is ‘corn leaf’ then 
Add maskArea to deseasedArea. 
else if class is ‘disease’ then 
Add maskArea to diseasedArea. 
Increment diseasedCount. 
end if 
end for 
Step 4: Compute Relative Leaf Area (RLA) 
if totalLeafArea > 0 then 

Compute RLA using: ܴܣܮ	 = 	 (௧௢௧௔௟௅௘௔௙஺௥௘௔	ି	ௗ௜௦௘௔௦௘ௗ஺௥௘௔௧௢௧௔௟௅௘௔௙஺௥௘௔ ) 	× 	100    (4) 

else 
Set RLA to 0. 
end if 
Step 5: Apply Fuzzy Logic for Severity 
Assessment 
Define fuzzy variables: 
Input: RLA (low, medium, high), 
diseasedCount (low, medium, high) 
Output: Disease Severity (low, medium, 
high) 
Define fuzzy rules: 
if RLA is high AND diseasedCount is low 
then Severity is low. 
if RLA is medium AND diseasedCount is 
moderate then Severity is medium. 
if RLA is low OR diseasedCount is high 
then Severity is high. 
Compute Disease Severity using Fuzzy 
Inference System (FIS). 
Step 6: Output Results 
Display RLA and Disease Severity Score. 
Annotate image with segmentation mask 
and labels. 

 

In this study, the role of fuzzy logic is used to assess the 
severity of disease based on two factors: the Relative Leaf 
Area (RLA) and the number of diseased spots in the leaf. 
RLA represents the portion of the leaf that is not affected 
by disease, and it is categorized into three levels: Low, 
Medium, and High. A low RLA means that most of the leaf 
is diseased, while a high RLA indicates that the leaf is 
mostly healthy. Disease severity is also categorized as Low, 
Medium, or High, where Low severity indicates minimal 
damage, Medium suggests moderate damage, and High 
reflects significant disease impact. Moreover, the second 
input represents the number of disease spots or symptoms 
on the leaf. This is also categorized into Low, Medium, 
and High levels, and plays an important role in calculating 
the disease severity. 

To compute the severity, fuzzy logic uses membership 
functions to connect the RLA, number of diseased regions, 
and severity levels to fuzzy sets. For example, a low RLA 
(0–50%) typically correlates with low severity, while a 
high RLA (50–100%) correlates with low severity. 
Additionally, a higher number of diseased spots, 
regardless of RLA, will usually lead to a higher severity 
score. Simple fuzzy rules, like “IF RLA is High AND 
Diseased Count is Low, THEN Severity is Low,” are used 

to infer the overall disease severity. These rules are then 
combined to compute the final result. 

In the defuzzification stage, the fuzzy output is 
converted into a precise severity score by calculating the 
average of the weighted centers of the fuzzy sets, similar 
to the Centroid method. This approach provides a more 
detailed and understandable assessment of leaf disease, 
enabling early interventions in agricultural practices. 

E. Validation and Testing 

1) Model evaluation metrics 
The performance of the YOLOv9 instance segmentation 

model in detecting and evaluating corn leaf diseases is 
crucial to understanding how well the model can identify 
both diseased and healthy regions on corn leaves. To 
assess the effectiveness of the model, several standard 
evaluation metrics are used: Mean Average Precision 
(mAP), Precision, Recall, and the F1-Score. These metrics 
collectively provide insight into the accuracy and 
reliability of the model’s predictions. 

1. Mean Average Precision (mAP) is a widely used 
metric in object detection and instance 
segmentation tasks to evaluate the accuracy of the 
model. It measures the average precision over all 
classes (in this case, “disease” and “corn leaf”) at 
different levels of recall. The mAP is particularly 
valuable for understanding the trade-off between 
precision and recall in object detection and 
segmentation tasks. ݉ܲܣ	 = 	 ଵ௄ ∑௄ூୀଵ ܣ ௜ܲ 				              (5) 

2. Precision and Recall are fundamental metrics for 
evaluating the classification ability of the model. 
Precision assesses how many of the detected 
diseased regions are actually correct, while recall 
evaluates how well the model detects all the 
diseased regions from the ground truth. Precision 
focuses on the accuracy of the predicted regions 
(how many of the predicted diseased areas are truly 
diseased), while Recall emphasizes the ability of 
the model to detect all true diseased areas (how 
many of the actual diseased regions were detected). ܲ݊݋݅ݏ݅ܿ݁ݎ	 = 	 ்௥௨௘	௉௢௦௜௧௜௩௘(்௥௨௘	௉௢௦௜௧௜௩௘	ା	ி௔௟௦௘	௉௢௦௜௧௜௩௘)  (6) 

3. The F1-Score is the harmonic mean of Precision 
and Recall, providing a single metric that balances 
both of these aspects. The F1-Score is particularly 
useful when the class distribution is imbalanced, as 
it ensures both high precision and high recall. ܴ݈݈݁ܿܽ	 = 	 ்௥௨௘	௉௢௦௜௧௜௩௘	்௥௨௘	௉௢௦௜௧௜௩௘		ା	ி௔௟௦௘	௉௢௦௜௧௜௩௘      (7) 

2) Disease severity evaluation 
The fuzzy logic system used for severity evaluation 

should also be tested to ensure it makes accurate 
classifications of disease severity based on the Relative 
Leaf Area (RLA). 

1. Fuzzy Logic Rules: The fuzzy logic system uses 
membership functions for the input RLA and 
output severity. These rules are then evaluated 
using a Fuzzy Inference System (FIS) to determine 
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the disease severity score. The RLA value is 
categorized into low, medium, and high, with 
corresponding severity categories also ranging 
from low to high. For example, the fuzzy rules 
could be: 
IF RLA is High AND diseasedCount is low, 
THEN Severity is Low 
IF RLA is Medium AND diseasedCount is low, 
THEN Severity is Medium 
IF RLA is Low AND diseasedCount is low, 
THEN Severity is High 

2. Defuzzification: The fuzzy output is defuzzified 
to convert it into a crisp value for the disease 
severity score. This gives a numerical value for 
disease severity, allowing for consistent 
comparison and decision-making. The most 
common method of defuzzification is the Centroid 
Method, which calculates the center of the area 
under the membership function curve. ܵ݁ݕݐ݅ݎ݁ݒ	݁ݎ݋ܿܵ	= 	݁ݑ݈ܸܽ݌݄݅ݏݎܾ݁݉݁݉	ߑ	 × ݁ݑ݈ܸܽ݌݄݅ݏݎܾ݁݉݁݉	ߑݐݑ݌ݐݑܱ݁ݑ݈ܽݒ	 	

IV. RESULT AND DISCUSSION 

A. YOLOv9e-seg Model Performance 

Fig. 5 illustrates the distribution of instances for the two 
classes, diseased and leaf, in the dataset. Monitoring this 
graph can shed light on why the model struggles to 
accurately identify certain classes, particularly the leaf 
class. The imbalance indicates that the model is exposed to 
significantly more examples of the diseased class during 
training, which can lead to class dominance. As a result, 
the model may become biased toward predicting the 
dominant class, potentially misclassifying healthy leaf 
regions as diseased or background. This explains the 
higher false positive rate for the leaf class observed in the 
confusion matrix. 

 
Fig. 5. Class distribution graph. 

The leaf class’s lower representation reduces the 
diversity of its features in the training data, making it 
difficult for the model to learn subtle variations and 
accurately distinguish it from other classes. Furthermore, 
this imbalance affects the gradient updates during training, 
further compounding the challenge of learning an unbiased 
representation. This class distribution graph is a crucial 
monitoring tool during model training. It typically appears 
in training logs, providing immediate feedback on the 
dataset’s structure. By observing this distribution, 
researchers can identify potential issues early in the 
training process and take corrective actions, such as data 
augmentation, re-sampling techniques, class weights, and 
synthetic data generation. 

The training results in Fig. 6 demonstrate consistent 
improvements across all loss criteria, highlighting the 
model’s capacity to learn effectively. The box loss steadily 
decreases from around 1.4 to approximately 0.8, reflecting 
improved localization accuracy for bounding box 
predictions. Similarly, the segmentation loss starts at 4.5 
and decreases to about 2.5, suggesting that the model is 
becoming more proficient in generating accurate object 
masks. The classification loss, which begins at 2.0 and 
reduces to 1.0, demonstrates the model’s increasing 
capability to correctly label detected objects. Additionally, 
the Distribution Focal Loss (DFL) decreases from 1.6 to 
around 1.2, indicating refinement in bounding box 
distributions. 

 
Fig. 6. Training and validation losses. 
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For validation results, the trends are generally aligned 
with the training losses, but some oscillations emerge in 
later epochs. The box loss reduces from 1.5 to 1.0, showing 
good generalization in localizing objects on the validation 
set. However, the segmentation loss, while initially 
improving, shows slight increases after 50 epochs, 
potentially indicating overfitting in mask generation. The 
classification loss decreases significantly from 
approximately 7.0 to 2.0, though it remains higher than the 
corresponding training loss, suggesting that the model 
finds label prediction on the validation set more 
challenging. The DFL also exhibits a consistent downward 
trend, paralleling the training behavior. 

The evaluation metrics provide further insights into 
model performance. The precision for bounding box 
detection peaks at around 0.8, indicating a high ratio of 
correctly detected objects among all detections, while the 
recall reaches 0.6, showing that most ground truth objects 
are identified. For instance segmentation, the precision and 
recall values are lower, peaking at 0.45 and 0.35, 
respectively, reflecting the increased complexity of this 
task. The mean Average Precision (mAP) at IoU 0.5 for 
bounding box detection achieves a strong value of 0.6, 
while instance segmentation lags behind at 0.25. The more 
stringent mAP@0.5:0.95 metric reveals a gradual increase, 
with bounding box detection reaching 0.5 and 
segmentation peaking at 0.14, underscoring the difficulty 
of meeting higher IoU thresholds. 

 

 
Fig. 7. Confusion matrix normalized. 

The normalized confusion matrix, illustrated in Fig. 7, 
serves as a key evaluation tool for assessing the 

performance of the YOLOv9-based model in this study. 
This allows for a clearer understanding of the model’s 
predictive distribution across the three classes: diseased, 
leaf, and background, irrespective of class imbalances 
within the dataset. By offering insights into the model’s 
accuracy and error rates, the matrix highlights its strengths 
and limitations, which are crucial for improving 
classification and segmentation. The purpose of utilizing 
the confusion matrix in this study is to evaluate the 
model’s capability to distinguish diseased regions from 
healthy leaf areas and the background. Given the goal of 
automating corn leaf disease detection and severity 
evaluation, such detailed analysis ensures the model’s 
reliability in real-world applications. The confusion matrix 
also helps identify patterns in misclassification, providing 
opportunities for optimization. 

Based on the confusion matrix, the model achieved an 
overall classification accuracy of 80%, indicating its 
strong performance in multi-class segmentation tasks. For 
the diseased class, the model correctly identifies diseased 
areas with a recall of 85% and relatively high precision, as 
reflected in the top-left cell of the matrix. However, about 
15% of diseased regions are misclassified as background, 
and 3% are confused with healthy leaf areas. These 
misclassifications suggest that some diseased areas, 
particularly those with subtle or faint symptoms, share 
visual characteristics with the background or healthy 
leaves, making them challenging for the model to 
differentiate. 

The leaf class achieves a recall of 80%, indicating the 
model’s strong ability to detect healthy leaf regions. 
Despite this, 10% of healthy leaf regions are misclassified 
as diseased, likely due to visual similarities, such as 
discoloration or spots resembling early-stage disease 
symptoms. An additional 10% are confused with the 
background, which may be attributed to poor lighting 
conditions or shadows obscuring the leaf’s features. The 
background class demonstrates a recall of 75%, with 15% 
of its regions misclassified as leaf and only 10% as 
diseased. This suggests that the model is proficient at 
isolating objects of interest from the background, even 
under varying environmental conditions. 

Overall, the confusion matrix underscores the model’s 
strength in discriminating between the three classes, 
supported by consistently high recall and balanced 
precision. While the results validate the model’s readiness 
for deployment in field conditions, addressing the 
observed misclassification patterns will further enhance its 
robustness and accuracy for automated corn leaf disease 
detection. 

TABLE V. YOLOV9E-SEG PERFORMANCE IN BOXING AND MASKING TASKS 

Metric Boxing (Leaf Class) Boxing (Diseased 
Class) 

Masking (Leaf 
Class) 

Masking (Diseased 
Class) 

Boxing (All 
Classes) 

Masking (All 
Classes) 

Precision Near 1.0 Moderate (~0.8) Near 1.0 Moderate (~0.7) 0.98 at confidence 
1.0 

0.94 at confidence 
1.0 

Recall Moderate (~0.6) Moderate (~0.5) Moderate (~0.5) Low (~0.3) 0.63 at confidence 
0.0 

0.58 at confidence 
0.0 

mAP@0.5 0.264 0.336 0.233 0.293 0.300 0.263 
F1-score ~0.5 (Conf. 0.3-0.4) ~0.4 (Conf. 0.2-0.3) ~0.5 (Conf. 0.3-0.5) ~0.3 (Conf. 0.3) 0.42 (Conf. 0.35) 0.38 (Conf. 0.35) 
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Table V shows that the leaf class outperforms the other 
classes in boxing and masking tasks, reaching near-perfect 
results (close to 1.0) at higher confidence thresholds. This 
indicates that the model is highly accurate when it 
identifies a “leaf” instance. On the other hand, the diseased 
class shows lower peak precision values (~0.8 for boxing 
and ~0.7 for masking), suggesting that identifying diseased 
regions is more challenging for the model. The “all classes” 
metric reflects high precision for boxing (0.98) and 
slightly lower precision for masking (0.94), showcasing 
the model’s robustness in overall detection. 

The recall metric highlights a significant drop for the 
diseased class, particularly in masking (low ~0.3) 
compared to boxing (~0.5). This suggests that the model 
misses more diseased areas during segmentation tasks than 
detection tasks. The leaf class maintains moderate recall 
(~0.5–0.6) across both boxing and masking, while the “all 
classes” curves for boxing (0.63) slightly outperform 
masking (0.58). This implies that the model is better at 
retrieving potential regions in boxing tasks. 

The mAP@0.5 values for boxing and masking show a 
comparable trend, with slightly higher values for boxing. 
The leaf class achieves 0.264 (boxing) and 0.233 
(masking), while the diseased class shows 0.336 (boxing) 
and 0.293 (masking). These results indicate that boxing 
generally performs better at balancing precision and recall, 
as reflected in the higher mAP values. 

F1-scores, which balance precision and recall, show 
similar peaks for the leaf class across boxing (~0.5 at 
confidence 0.3–0.4) and masking (~0.5 at confidence 0.3–
0.5). The diseased class, however, has consistently lower 
F1-scores (~0.3–0.4), especially in masking tasks, 
revealing the model’s difficulty in balancing detection 
quality for this class. The “all classes” F1-scores for 
boxing (0.42) and masking (0.38) align closely, reflecting 
overall comparable performance.  

 

 
Fig. 8. YOLOv9e-seg prediction test in (a) common rust, (b) gray spot, 

and (c) blight. 

Fig. 8 illustrates the predictions and corresponding 
confidence scores for various types of corn leaf diseases, 
with each column representing a distinct disease category: 
(a) common rust, (b) gray spot, and (c) blight. For common 
rust, the model achieved a confidence score of 0.31, which 
is relatively low compared to the ideal score closer to 1.0, 
and certain areas affected by the disease were not detected, 

indicating room for improvement in sensitivity. In contrast, 
for gray spots, the model successfully identified all 
affected areas on the leaf, demonstrating accurate 
prediction and effective masking, although the confidence 
scores were not as high. Similarly, for blight, the model 
performed well, accurately masking the diseased regions 
and identifying the affected areas. Overall, the results 
highlight variability in the model’s performance across 
different disease types, emphasizing the need for further 
optimization, particularly for diseases like common rust. 

B. Evaluation of Disease Severity 

 

 
Fig. 9. Prediction and severity scores: gray spot test samples. 

Fig. 9 showcases the prediction results and severity 
analysis for three images of corn leaves affected by gray 
spot disease. The predicted confidence scores range from 
0.20 to 0.79, reflecting reliable detection performance. The 
segmentation accurately highlights the diseased regions, 
offering clear insights into the extent and distribution of 
the infection. Furthermore, the incorporation of severity 
evaluation, based on Relative Leaf Area (RLA), enhances 
the understanding of disease impact. 

 

 
Fig. 10. Prediction and severity scores: blight test samples. 

Fig. 10 presents the detection and severity analysis for 
corn leaves affected by blight disease. The predicted 
confidence scores, ranging between 0.20 and 0.79, 
demonstrate consistent detection reliability. The 
segmentation model successfully identifies and delineates 
the diseased areas, enabling a clear visualization of how 
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the infection spreads across the leaf. Moreover, the 
evaluation of severity using the Relative Leaf Area (RLA) 
metric provides a quantitative assessment of the disease’s 
impact. The accurate masking and severity classification 
highlight the system’s effectiveness in analyzing both the 
presence and intensity of blight disease. 

 
Fig. 11. Prediction and severity scores: common rust test samples. 

Fig. 11 highlights the challenges in detecting common 
rust disease, particularly in instances where the 
background influences the prediction accuracy. 
Misclassified regions are outlined with dashed red borders 

to emphasize incorrect detections—specifically where the 
model confused the brown soil with rust lesions. These 
annotated failure cases illustrate the visual ambiguity in 
real-world field images and the need for more robust 
background suppression techniques in future models. 

C. Comparison with Recent Machine Learning Models 

To evaluate the effectiveness of the proposed CLDS-
YOLO framework in corn leaf disease detection and 
severity assessment, a comparative analysis was 
conducted against recent machine learning models 
highlighted in contemporary literature. These baseline 
models were chosen based on their relevance to leaf 
disease classification tasks, use of hybrid or fuzzy logic-
based systems, and their inclusion in peer-reviewed 
research on plant disease detection. 

While earlier object detection models like YOLOv5 
have shown strong results in agricultural tasks, they 
require external segmentation modules (e.g., Mask R-
CNN heads) for disease localization. Moreover, YOLOv5 
lacks native support for instance segmentation, which can 
lead to inefficiencies in real-time applications. In contrast, 
YOLOv9e-seg offers built-in instance segmentation 
capabilities with higher mAP scores, making it better 
suited for precise leaf disease detection and severity 
evaluation. 

TABLE VI. COMPARATIVE METRICS OVERVIEW

Model 
Primary 

Task/Focus 
Key Performance Metrics 

Computational 
Efficiency 

Segmentation 
Method 

Sevarity 
Evaluation 

CLDS-YOLO 
(ours) 

Instance 
Segmentation + 

Severity 

Precision (Box): .98 
Recall (Box): 0.63 

mAP@0.5 (Box): 0.300 
F1-score (Box): 0.42 

Precision (Mask): 0.94 
Recall (Mask): 0.58 

mAP@0.5 (Mask): 0.263 
F1-score (Mask): 0.38 

Disease Precision (Mask): ~0.7 
Disease Recall (Mask): ~0.3 

~28 ms/image on 
NVIDIA RTX 3060 

YOLOv9e-
seg (instance 
segmentation) 

Fuzzy logic 
with RLA & 

diseased 
region count 

ResNet50 + 
IFRVFLC [47] 

Leaf Classification 
(Image-Level) 

Accuracy: 91.23% 
F1-score, AUC, G-Mean (Reported) 
Compared with 8 baseline models 

Not reported 
No 

segmentation 
None 

UTRVFL1norm 
[48] 

Leaf Disease 
Classification 

Validated using 

Validated using benchmark datasets with 
statistical tests; performance metrics not 

fully disclosed for leaf dataset 
Not reported 

No 
segmentation 

None 

Sarkar et al. 
[49] (Review) 

Literature Review 
(2010–2022) 

Summarizes use of CNN, VGG, ResNet, 
LeNet, SVM, Random Forest, etc.Metrics: 

Accuracy, F1, Precision, Recall 
Not applicable 

No 
segmentation 

None 

From Table VI, it is evident that while recent hybrid and 
fuzzy logic-enhanced models demonstrate strong 
classification accuracy on benchmark datasets, they fall 
short in offering localized instance segmentation and 
severity quantification, which are essential for precision 
agriculture. The CLDS-YOLO framework fills this critical 
gap by combining cutting-edge instance segmentation with 
a real-world-aware fuzzy logic severity module, making it 
highly suitable for field deployment. 

Additionally, the comparison with YOLOv5 highlights 
the enhanced segmentation quality of YOLOv9e-seg. 
While YOLOv5 can achieve competitive object detection 
performance, its lack of integrated segmentation modules 
limits its utility in disease severity assessment tasks, which 
require precise lesion boundary detection. 

Mishra et al. [46] introduced a hybrid model, ResNet50-
IFRVFLC, which integrates ResNet50 deep feature 
extraction with an Intuitionistic Fuzzy Random Vector 
Functional Link Classifier. The model was applied for 
plant leaf classification tasks and achieved a mean 
accuracy of 91.23%, outperforming traditional classifiers 
such as Support Vector Machine (SVM), Twin Support 
Vector Machine (TSVM), Random Vector Functional 
Link (RVFL), and other fuzzy classifiers. However, this 
model operates at the image-level, lacking spatial 
granularity such as instance-level localization or 
segmentation. Additionally, no severity evaluation method 
was incorporated, limiting its applicability in real-time 
agricultural diagnostics. 
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Sarkar et al. [47] proposed a 1-Norm Twin RVFL model 
using Universum data (UTRVFL1norm), introducing 
sparsity and robustness to outliers. While its classification 
performance was statistically validated and tested on a leaf 
disease dataset, it remained confined to binary image-level 
classification tasks and did not provide disease localization 
or segmentation capabilities. Furthermore, there was no 
mechanism for assessing disease severity, which is vital 
for practical field applications. 

In contrast, the CLDS-YOLO model integrates 
YOLOv9e-seg for instance segmentation and a fuzzy 
logic-based decision module for disease severity 
evaluation using Relative Leaf Area (RLA) and number of 
diseased regions. This dual-module system enables both 
high-performance detection and meaningful interpretation 
of disease progression. 

In terms of computational efficiency, the proposed 
CLDS-YOLO model demonstrates a favorable inference 
time of approximately 28 milliseconds per image on an 
NVIDIA RTX 3060 GPU. This supports its practical 
applicability in real-time or near-real-time field scenarios. 
In contrast, the reviewed hybrid models—such as 
ResNet50-IFRVFLC and UTRVFL1norm—did not report 
inference times in their respective studies [46, 47]. This 
absence makes direct computational comparisons 
challenging. Nonetheless, these models are primarily 
classification-focused and lack segmentation modules, 
which generally impose lower computational overheads 
than instance segmentation frameworks like YOLOv9e-
seg. Therefore, while CLDS-YOLO may incur slightly 
higher computational costs, it provides richer outputs 
including disease localization and severity estimation, 
justifying its trade-offs in practical deployments. 

D.  Discussion on Segmentation Challenges and 
Potential Improvements 

The CLDS-YOLO model, while demonstrating strong 
performance in object-level bounding box detection, 
encounters notable challenges in the more granular task of 
instance segmentation—particularly in delineating fine-
grained diseased regions on complex corn leaf surfaces. 
This limitation is evident in the relatively lower precision 
(~0.7) and especially low recall (~0.3) values for diseased 
region segmentation. These metrics highlight the need for 
further optimization to improve the model’s segmentation 
accuracy and robustness. For farmers and agricultural 
technicians, low recall poses a practical risk—missing 
diseased regions can lead to delayed treatment, allowing 
infections to spread and reducing yield quality. Therefore, 
enhancing recall is not merely an academic concern, but a 
critical requirement for actionable field-level decision-
making. 

Several contributing factors are identified. Firstly, 
early-stage diseased areas often exhibit visual similarity to 
healthy leaf textures, with subtle color changes and 
irregular shapes that make accurate mask generation 
difficult. Secondly, class imbalance—where small or rare 
disease spots are underrepresented in the dataset—tends to 
lower recall. Lastly, occlusion and leaf overlap in natural 
field conditions further complicate precise instance-level 
segmentation. 

To overcome these limitations, future research should 
consider implementing multi-stage refinement 
architectures such as Cascade Mask R-CNN, which 
iteratively improve mask quality through progressive 
learning stages. Another promising direction involves the 
integration of transformer-based attention mechanisms 
into hybrid models to enhance focus on fine-grained lesion 
patterns. Additionally, data-centric strategies—including 
pixel-level augmentation, synthetic disease spot 
generation, and enhanced annotation granularity—can 
significantly improve model generalization and 
performance on underrepresented lesion types. Together, 
these improvements can lead to substantial gains in 
segmentation precision and recall, enhancing the model’s 
practical applicability in real-world agricultural scenarios. 

V. CONCLUSION 

This study demonstrated the potential of YOLOv9e-seg 
for corn leaf disease detection and severity evaluation, 
achieving near-perfect precision for healthy leaf detection 
(close to 1.0) but facing challenges in identifying diseased 
regions, with lower precision (~0.7) and recall (~0.3) for 
masking tasks. The model’s boxing tasks generally 
outperformed masking, reflected in higher mAP@0.5 
values (0.336 for diseased class in boxing vs. 0.293 in 
masking). F1-scores were moderate for the leaf class 
(~0.5) but lower for the diseased class (~0.3–0.4). These 
measurements demonstrate YOLOv9e-seg’s dependability 
and resilience for agricultural applications, particularly in 
real-time disease monitoring. The integration of Relative 
Leaf Area (RLA) computation enabled an in-depth 
severity analysis of detected diseases. Results showed that 
the model successfully identified and segmented diseased 
regions for common rust, gray spot, and blight, providing 
clear insights into the extent and distribution of infections. 
Severity evaluations categorized leaves into high, 
moderate, and low severity levels, facilitating informed 
decision-making for crop management. However, 
challenges were observed in specific cases, such as 
background misclassification, where brown soil or similar 
colors were incorrectly identified as diseased regions. This 
underscores the need for further refinement in 
preprocessing and model training to address such errors. 
Overall, this study demonstrates the potential of 
YOLOv9e-seg and RLA-based severity rating as effective 
methods for disease diagnosis and control in agriculture. 
Future study could focus on strengthening the model’s 
ability to distinguish between leaf and non-leaf regions, as 
well as broadening its application to additional crops and 
illnesses to have a greater agricultural impact.  
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