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Abstract—The proliferation of edge devices supports real-
time diagnostic testing, even in rural or underserved 
locations. Convolutional Neural Networks (CNNs) are highly 
effective at analyzing medical images, including Computed 
Tomography (CT) scans and chest X-rays, for detecting heart 
diseases, but their computational complexity usually makes 
them unsuitable for usage on edge devices with limited 
resources. This paper presents a new compressed layered 
knowledge distillation model for precise medical image 
diagnosis, such as detecting COVID-19-related lung 
infections or identifying cardiovascular conditions. We utilize 
knowledge distillation to transfer the teacher network’s 
knowledge to a smaller, compressed student network for edge 
deployment. Moreover, we utilize a well-structured layer 
compression approach, emphasizing decoupling and merging 
techniques instead of pruning, to optimize the student 
network architecture. Two data sets, Chest CT-Scan and 
SARS-CoV-2 CT-Scan, were used to test the suggested model. 
When compared to existing models, our performance is 
superior. For the Chest CT-Scan dataset and SARS-CoV-2 
CT-Scan, we achieved 98.93% Accuracy, 98.41% Precision, 
98.69% Recall, and an F1-Score of 98.44%. The Mean 
Squared Error (MSE) was 0.04, with a Root Mean Squared 
Error (RMSE) of 0.16. For the Chest CT-Scan dataset, our 
results were similarly strong: 98.25% Accuracy, 98.78% 
Precision, 98.86% Recall, and an F1-Score of 98.14%. The 
MSE for this dataset was 0.09, and the RMSE was 0.13. These 
results verify the efficacy of our intended technique for 
achieving high diagnostic accuracy at low error in edge 
devices. 


Keywords—edge computing, medical image analysis, 
COVID-19 diagnosis, deep learning compression, knowledge 
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I. INTRODUCTION

The COVID-19 epidemic brought to light the pressing 
need for quick and precise diagnostic tools, particularly in 
environments with limited resources. Chest X-Rays (CXR) 
and Computed Tomography (CT) scans are examples of 
diagnostic imaging that has proven crucial to the diagnosis 
and treatment of COVID-19. Despite the impressive 
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performance of Convolutional Neural Networks (CNNs) 
and other deep learning algorithms in image processing for 
illness diagnosis, their computational cost frequently 
precludes its usage on edge devices. Edge computing 
offers the hope of point-of-care diagnosis, which enables 
faster output and reduced reliance on central facilities, a 
situation most desirable in remote or underprivileged 
regions. Edge devices, however, are limited in their 
processing power, memory, and power supply, a major 
drawback in employing sophisticated CNNs. Efficient and 
lightweight deep learning models are therefore 
increasingly in demand for efficient COVID-19 image 
classification on edge devices [1]. 

One attractive solution to this problem is Knowledge 
Distillation (KD). Training a smaller “student” network to 
mimic the behavior of a bigger, more intricate “teacher” 
network is known as KD training. This enables the student 
network to gauge the teacher’s performance with much 
fewer computational resources. Model compression 
algorithms like pruning, quantization, and layer 
compression can then further compress the student 
network’s size and complexity. Layer compression, in 
particular, tackles the network topology by selectively 
merging or splitting layers, offering a more structured 
approach than the elimination of connections. This work 
proposes a new approach that combines knowledge 
distillation with an optimally designed layer compression 
method for effective COVID-19 image classification on 
the edge device. Our method aims to develop a highly 
accurate but compact model deployable on resource-
constrained platforms. We introduce a compressed layered 
knowledge distillation model specially designed for 
medical image diagnosis, e.g., COVID-19, malaria, and 
other lung diseases. The approach not only facilitates 
effective inference on the edge device but also maintains 
diagnostic accuracy equivalent to increasingly larger 
models. The following sections provide our proposed 
methodology, experimental findings, and comparative 
analysis with state-of-the-art approaches, illustrating the 
effectiveness of our combined knowledge distillation and 
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layer compression approach for COVID-19 image 
classification in edge computing systems [2]. 

II. RELATED WORK

Hu et al. [3] integrated fuzzy clustering with HPU-NET 
for brain tumor segmentation, although both papers 
accounted for difficulties in terms of generalizability and 
inter-patient variability deep learning was an emergent 
technique for medical image analysis and did well on 
numerous tasks including segmentation, classification, and 
detection. Initial attempts utilized CNNs for the 
identification of disease from CT, MRI, and retinal images. 
For example, Tayal et al. [4] obtained ~96% accuracy for 
retinal layer segmentation, whereas. 

Some works have investigated hybrid models and fusion 
methods to enhance performance. Puttagunta et al.  [5] and 
Kumar et al. [6] compared deep learning methods on 
various imaging modalities (e.g., X-ray, mammography, 
histopathology), with high accuracy (~94%–97%) but 
mentioning constraints like small data availability and 
absence of clinical standardization. Naz et al. [7] and Phan 
et al. [8] proposed Internet of Things (IoT)-based deep 
learning models, uncovering the promise of connected 
diagnostics but mentioning training data and covariate 
shift constraints. 

Attention mechanisms and structural improvements 
such as residual connections have become popular to 
enhance feature extraction. Hussain et al. [9] introduced 
MAGRes-UNet by employing multi-attention gates and 
residual paths, and Ortega-Ruíz et al. [10] combined 
dilation and dense connections in DRD-Net for the 
segmentation of breast cancer. Likewise, Iriawan et al. [11] 
presented YOLO-UNet for the detection of brain tumors 
efficiently combining object detection with segmentation 
for improved localization in MRI scans. 

Recent architectures also depict innovation in fusion 
approaches. Li et al. [12] created Diamond-UNet based on 
global-local feature extraction, and Wang et al. [13] tested 
attention-dual UNet for infrared-visible image multi-
modal fusion, with applications in medical and industrial 
fields. 

For disease-specific uses, some domain-specific models 
have been introduced. Ardila et al. [14] employed a 3D 
CNN for low-dose CT lung cancer screening, setting a 
standard for computerized oncology devices. SVMs and 
hybrid deep models have also been tested, demonstrating 
the shift from traditional machine learning to deep neural 
nets [15–17]. Additionally, Rehman et al.  [18] and 
Abuhayi et al. [19] introduced VGG-based models for 
osteoarthritis and spinal conditions, employing transfer 
learning for better diagnosis. 

In totality, though deep learning has shown immense 
potential, some present limitations include model 
generalizability, dataset imbalance, and integration with 
clinical environments. Our research is targeted towards 
resolving these problems with a new architecture that 
combines multi-scale contextual information and 
improves segmentation accuracy for CT-based detection 
of heart disease. 

III. PROPOSED METHOD

Doctors can perform remote and real-time diagnostic 
tests with edge devices driven by Artificial Intelligence 
(AI), which is especially useful for underprivileged or rural 
populations. The interpretation of CT and CXR images to 
detect lung pathology and image processing are the 
primary uses of machine learning techniques, especially 
deep learning models like CNNs [20]. 

However, CNNs require a lot of processing power from 
GPUs because of their multiple layers, numerous 
parameters, and high rate of computation. Thus, Deep 
Neural Networks (DNNs) that are complex cannot be 
utilized for creating delay-constrained low-weight 
applications on fog/edge devices since their CPU, 
memory, bandwidth, and power are usually constrained. 
Research in deep neural network compression has attracted 
significant interest in recent years. Here, in this suggested 
approach, a compressed layered knowledge distillation 
model will be suggested for the diagnosis of medical 
images such as SARS-CoV-2 and other forms of lung 
diseases. The proposed model will first preprocess the 
input image through normalization and data augmentation 
operations. Next, a joint learning scheme will be presented 
for the teacher–student knowledge distillation model to 
identify the diseases from input medical images in a fast 
and trustworthy way. Additionally, rather than using 
pruning, we might propose a structured layer compression 
method that effectively compresses consecutive layers by 
decoupling and merging. 

Without damaging the correlation between the 
convolutional layers, it can effectively decrease the 
network’s depth. Pictures utilized in medical contexts the 
proposed framework accepts X-rays, CT-Scan images, and 
cell photos as input. These remotely acquired medical 
images from smart edge devices, etc., serve as a conduit 
between patients and medical professionals. The next 
section discusses the design and architecture of the 
suggested components of a tiny deep learning model. 

A. Components of Proposed Architecture

The cloud data center, fog bus module, and gateway
devices are some of the components of the recommended 
approach. Fig. 1 shows the general framework of the 
suggested paradigm.  

Fig. 1. Proposed architecture model. 
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1) Gateway devices
Gateway devices comprise laptops, mobile phones, or

tablets used as fogging devices. They take pictures of 
patients and send them to brokers or labor nodes for 
processing. 

Curved Webs: This term refers to specific architectural 
components within the student model, particularly the 
series of non-linear activation functions and convolutional 
layers that form non-linear mappings. We now describe it 
in the manuscript as a sequence of convolutional layers 
integrated with non-linear activations that generate a 
“curved” transformation space, which is essential for 
learning complex feature representations in compressed 
models. 

2) Fog bus module
We have clarified that the “fog bus module” serves as

an intermediary computational layer between edge 
(gateway) devices and the cloud. It facilitates localized 
processing and resource allocation for real-time medical 
image analysis, particularly in low-resource environments. 
We added a plain-language explanation emphasizing its 
role in minimizing latency and supporting decentralized 
diagnosis. 

Labor nodes: This is a term that is equivalent to 
“fogbusworker” nodes or the nodes responsible for 
processing tasks directed by gateway devices. Clearly 
establish this equivalence. For instance, gateway devices 
direct images to labor nodes (also called fogbusworker 
nodes) for processing, which are provided with embedded 
computers and Raspberry Pi boards to run the deep 
learning models locally all these describe in Fig. 2. 

3) Cloud data center
Apart from saving the gathered data, the processing of

the data received by the cloud data center is beyond the 
capacity of fog nodes. While neural models have proven to 
be adequate in most areas, even for complicated problem 
states, the models are too big. To employ the use of these 
models on edge device low memory constraints. 
Knowledge filtering can be one possible solution to 
address this issue. In demonstrated the overall framework 
of the entire KD method. The idea of the KD compresses 
heavier models into lighter models. In KD, there is a small 
training set that is learned with filtered knowledge from a 
big pre-trained set (e.g. teacher). For the problem of image 
classification, the author model first learned over image-
based data sets and labels. This is a pre-trained teacher 
model outputs class probabilities for a guide input. A DNN, 
not so advanced can learn a learner network over the same 
data. There are two components of the training loss of the 
student model. Firstly, close the difference between 
predicted labels and true labels (hard labels), which 
decrease (smooth) the second author’s predictions labels. 
Classical CBS is a teacher model having so bit labels as 
input data (E.A., relative characteristics of distinct classes), 
all of which are quite particular in comparison to the 
Temperature (T), which is crucial for the student’s model 
to be thoroughly trained throughout this filtering 
procedure. The probability of temperature aids in scoring. 
Examine the teacher sample recordings first, then run them 
through the Softmax function at the chosen temperature to 

obtain the probability score. This provided pupils with 
sample probabilities that were smooth. 

Fig. 2. Known ledge distillation model. 

The notation {Xi, yi} (Xi: image, yi: image labels) can be 
used to represent an image-based data set. Two sets of 
logits are obtained by emailing the teacher and pupil an 
image x ∈ X. The probability distribution of the instructor 
and student model can be defined as follows: 

( ) ( / )tp teacher soft max a T       (1) 

( ) ( / )sp student soft max a T        (2) 

where, T is determined as the limiting distillation 
temperature p(teacher) and p(student) entropy.  

Filtration loss is defined as: 

( ( ), ) (1 ) ( ( ), ( ))hard softLoss L p student y L p student p teacher     

(3) 

where α is the weighting coefficient for students and 
distillation, and the actual label for x and Lhard, Lsoft 
measured by cross entropy. Entropy is proportional to 
p(student) increase with the value of T, which leads the 
students to learn the relative probabilities of specific 
classes based on a teacher model that has already been 
trained. In spite of this, a high D could make improper, 
irrelevant classes more likely. 

Fig. 3 illustrates the knowledge distillation process, 
showing how the pre-trained teacher model transfers soft 
and hard labels to a smaller student model. We have 
updated the text to explain each component of the pipeline, 
including the role of soft labels, temperature scaling, and 
how various student models (e.g., Mobile-Net, ResNet50, 
etc.) are evaluated. 
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Fig. 3. Known ledge distillation method with pretrained model. 

B. ResNet-50 as Teacher 

Deep neural network is a no breakthrough in image 
classification. Numerous other scene recognition tasks of 
them have greatly been improved by very deep models. 
Thus, the years have a tendency to settle deep and hard 
improving tasks and accuracy. But when we go deeper, 
neurosis. Network training becomes difficult, accuracy 
reaches saturation, and these problems will get worse. 
Residual learning helps with these problems. For the 
previously mentioned rationale, we used the ResNet50 
model as our primary instructor model. The acronym Res-
Net, which stands for residual network, basically describes 
the residual learning jargon used by this network. The most 
popular deep network for image classification is ResNet50, 
a 48-curve layer network with a pooling layer and a fully 
coupled layer. This model uses the architecture shown in 
Fig. 3 and the pretrained version of ResNet50, which has 
about 23, 542,786 trainable parameters. The ImageNet 
data set provides the pre-trained sample weights. Softmax 
was used in the final layer after this model 0.5 was deleted, 
and the probability between the two classes.  

C. Compressed Student Model  

They use pre-trained models such as the student model, 
Mobile Net, Fusion V3, Optimized B0, VGG16, ResNet50, 
ResNet101, and the optimal temperature value that was 
determined. process for a pre-trained student model. To 
obtain smooth probabilities, the trained teacher model was 
first trained, logits were derived using soft-max, and then 
temperature was used for training. They then trained them 
to assess these models’ performance as student models. 
This section discusses the model. 

InceptionV3: InceptionV3 is a 42-layer deep neural 
network built on the CNN architecture. The maximum 
pooling, fc, and convolutional layers make up the 
symmetrical and asymmetric architectural elements of the 
InceptionV3 model. There are less than twenty-five 
million parameters in this state-of-the-art model. 5.6% top-
5 mistake and 21.2% top-1 error. Using trainable 
knowledge parameter filtering, the performance metrics 
21M+ on the test set were confirmed [21]. 

D. Layer Compression 

The Effective Layer Compression (ELC) strategy 
without pruning merges layers instead of pruning them. 
This is the initial research to use the integration of 
consecutive layers of convolution in network compression 
to produce efficient layer compression. Nevertheless, non-
linear activation layers are found in between curved layers 
of a network of convolutional neural networks. The 
numerous merge transformation layers are prevented from 

functioning by ReLU, PReLU, and other non-linear 
activation layers. 3×3 convolutional layers are frequently 
used in DNNs in addition to serial joins. They increase the 
quantity parameter and computational complexity. For 
instance, two series of 3×3 convolutional layers have the 
same function as a 5×5 convolutional layer; however, in 
order to separate the activation and transformation layers, 
the number of parameters has been increased from 18 to 
25 non-convergence in successive convolutional 
levels  [22]. 

Fig. 4 illustrates the suggested layer compression 
method, with Rem-ReLU and De-Conv operations. We 
explain in the updated version how Rem-ReLU eliminates 
duplicate non-linear activations to support combination of 
neighboring layers, and how De-Conv unstacks and 
decouples convolutional layers stacked together to 
simplify computation. We also include step-by-step 
references within the text to help readers follow each 
transformation indicated in the diagram. 

 

 
Fig. 4. The proposed layer compression method. 

1) Layer decoupling 
The two parts of the decoupling module, Rem-ReLU 

disconnect and switch processing layers, disengage the 
transform layers. 

Rem-ReLU: non-linear layers are added to make the 
network more representative. However, ConvNeXT has a 
huge linear redundancy of the network. If one is present 
then two transform layers’ combination cannot be 
losslessly combined between these two. it is meant to get 
rid of non-linear activation functions there could be an 
initial network and follow-up layers of transformation is 
combined as a convolutional layer without loss. Get rid of 
inefficient linear processing layers, Rem-ReLU of the 
network. Rem-ReLU is the  

                     1

           , 0
( ) {

(1 ) , 0

i i
i i

i i

y y
y y

i x x





   
  

             (4) 

where the learnable parameter, which is initialized to zero, 
is used to modify the slope of the negative half-axis of the 
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ith activation layer, and yi+1 is the output feature of the 
activation layer and the input feature of the (i+1)-th. 

Convolutional layer Rem-ReLU activation function. Eq. 

(1) can be written as 1 ( )i i iy y y
   where α_i = 0. Non-

linearity at the implementation layer can thus be easily 
removed. When α_i is equal to zero, the activation layer is 
equally normalized. Layers cannot be joined if the 
activation layer is curved close to it and has a linear 
character. Rem-ReLU is intended to transform 
nonlinearity in contrast to PReLU. Identification mapping 
by application-inclined punishment activation function. 
Consequently, Rem-ReLU enables us to remove nonlinear 
activation from the network [23]. 

De-Conv: Combining two curved layers with kernel 
sizes larger than one can result in a convolutional layer 
with enormous kernel size, parameters, and computational 
complexity. The altered layer that results will be magnified. 
The increasing parameter and computation complexity of 
connected convolutional layers are addressed by the 
suggested de-Conv for decoupling serial convolutional 
layers. When y’_(i+1) features are supplied as input, D-
Conv is modeled as follows:  

            3 3 1 1
1 1 1 1 1(1 )i i i i i i iy y y    
                       (5) 

where 1iy  is the output features of the (i+1)-th, De-conv 
3 3

1i

 and 1 1

1i

 are the 3×3 and 1×1 convolutional layer. 

3 3
1i

 is the started using the same values as the network 

that was going to be cut and 1 1
1i

  a was launched identity 

matrix βi the learning parameter is initialized the identity 
matrix controls two parallel weights curved layers. 
Additionally, βi must be 0 slope penalty, that will be 
explained in more depth. Then, it can be considered 

3 3
1 1i i iy y 
    . Then 1×1 can be considered as 

convolutional layers can then be joined with one another 
while maintaining the prior layer’s structure.  

   3 3 1 1
1 1 1 1 1 1 1(1 )i i i i i i i i iy y y x     
                  (6) 

where 1i   are the updated convolutional layer’s weights 

(i+1)-th. 
Eq. (4) represents a specific activation function that 

depends on the sign (positive/negative) of the input, while 
Eq. (5) combines values obtained from two different 
sources to produce a unified output. Both equations play a 
significant role in the functioning of the model. 

2) Equivalent layer-decoupled network merging 
When (αi, βi) = 0 , the 1×1convolutional layer and an 

identify mapping, which is described as follows, make up 
the (i+1)-th mapping represented as: 

                                1 1
1 1 1i i iy y  

                                   (7) 

According to the linear combination of the 
convolutional function, the (i+1)-th layer is able to be 
concatenated with its predecessors. Transition layer 

equivalent calculation processes the integration is 
presented as below: 

                          3 3 1 1
1 1( )i i i iy y   

                              (8) 

Since the convolution function is linear, Eq. (9) can be 
represented as: 

                     3 3 1 1
1 1( )i i i i i iy x y   
                      (9) 

where i is a connected convolutional layer. Therefore, 

computation two adjacent convolutional layers is one 
convolutional layer, the compression of the layer is 
accomplishing [24]. 

3) Gradient penalty 
Gradient penalty to ensure that the deformation of 

parameters (αi, βi) is minimized, a slope penalty is applied, 
effectively driving these parameters to zero. In the initial 
phase, an uncompressed pre−trained model, denoted as Fu, 
is used. This model is then replaced by Fde where the 
network is initially disconnected. The parameters (αi, βi) 
are set to an initial value of 1, ensuring that Fde starts as an 
exact copy of Fu. To establish meaningful parameter 
groupings, adjacent Deconvolution (De-Conv) layers and 
Removed ReLU (Rem-ReLU) layers are paired together to 
form αi, βi pairs. The full set of these parameter pairs across 
NNN layers is denoted as (αi, βi), i ∈ N. 

During retraining, a loss function is employed similar to 
that used in standard, non-compressed models. 
Compression is applied over KKK layers, where a subset 
of QQQ parameter pairs with the smallest values of the 
update rule for model parameters is formulated as follows: 

           0 , ( , )                   
{

( ), ( , )
i i

i i

W l G M
W

W l G sign W M

 
  

  
 

    
      (10) 

where W is parameters of Fde, W   for updated parameters, 
l is the learning rate and G is the gradient of the network. 
When ( , )i i M   , G0  is (αi, βi) a fixed number 

gradually decreases to 0. When ( , )i i M   , apply an 

additional slope penalty deformation to improve 
compression efficiency, where  is the weight parameter 
and sign() is a code function. 

                           
1, 0

( ) {
0, 0

x
sign x

x





                         (11) 

Non-linear activation layers (such as ReLU) are 
replaced by Rem-ReLU to enable the merging of adjacent 
convolutional layers. We have also clarified how De-Conv 
layers decouple stacked convolutional layers by 
redistributing their complexity, allowing for parameter-
efficient compression. 

Specifically: 
 Rem-ReLU assists in eliminating redundant non-

linearities to facilitate the combination of adjacent 
convolutional layers. 
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 De-Conv enables the division of convolution 
operations into easier sub-operations with tunable 
complexity. 

 Decoupling is the disentanglement of sequential 
connections to enhance efficiency while 
maintaining the expressiveness of the model. 

E. Comparative Performance Analysis with Traditional 
Models 

The improved performance of the suggested model in 
comparison to conventional architectures like CNN, 
Recurrent Neural Network (RNN), LSTM, and BiLSTM 
is due to two main innovations: Knowledge Distillation 
(KD) and Efficient Layer Compression (ELC). In contrast 
to regular models that train deep networks from scratch, 
our model uses a pre-trained, high-capacity teacher model 
(ResNet-50) to teach a lighter student model. This 
procedure facilitates the learning of generalized feature 
representations and decision boundaries by the student 
model without the overhead of too many parameters. 
Additionally, the addition of a structured layer 
compression process—specifically the Rem-ReLU 
decoupling and De-Conv transformations—permits 
efficient computation without sacrificing performance. 
The methods eliminate redundant layers and non-
linearities, paving the way for speeding up inference on 
edge devices while retaining the accuracy of the deep 
network. Conversely, other conventional models like 
CNNs or RNNs do not have these transfer and 
compression methods and tend to underfit or overfit in 
low-resource settings. Moreover, models such as LSTM 
and BiLSTM are specifically intended for sequential or 
time-series data and are less adapted to spatial image 
feature extraction tasks. Therefore, the union of 
Knowledge Distillation and ELC not only decreases 
computational expense but also improves classification 
accuracy, recall, and precision, particularly in difficult 
multiclass medical image datasets. 

IV. RESULT AND DISCUSSION 

Introduce the first design of the suggested model in this 
part. Common assessment criteria like as Accuracy, 
Precision, Recall, F1-Score, MSE, and RMSE were used 
to test the performance of the suggested model. Tests and 
comparisons with previous models reveal that the 
suggested model performs better than the others. 

A. Description of the Data Set  

The new model to detect medical images such as SARS-
COVID-19, malaria and another kind of lung diseases, the 
new model will pre-process the input image with the 
process of normalization and data augmentation. It is due 
to the reason which has been employed in order to enhance 
the quality image to be employed in this research. SARS-
COV-2 Ct-Scan Data set, 

1) CT-Scan data set SARS-COV-2  
The SARS-CoV-2 CT scan dataset is publicly available 

and consists of 2482 chest CT scan images divided into 
1252 scans of SARS-CoV-2 positive patients and 1230 of 
SARS-CoV-2 negative patients. The data were acquired 

from actual patients at hospitals located in São Paulo, 
Brazil, and are meant to aid the development and testing of 
artificial intelligence methods for COVID-19 detection 
based on medical imaging. The dataset can be found at: 
https://www.kaggle.com/datasets/plamene 
duardo/sarscov2-ctscan-dataset 

2) Chest CT-Scan images data set 
Images in png or jpg format work well; dcm format is 

not appropriate. The three types of breast cancer that are 
covered in the data are adenocarcinoma, large cell 
carcinoma, squamous cell carcinoma, and one folder of 
normal cells. The data folder is the primary folder that 
houses the train, test, and validation files. 
Datasets/mohamedhanyyy/chest-ctscan-images 
https://www.kaggle.com 

B. Performance Metrics 

The proposed model performance evaluated using 
standard evaluation metrics such as Accuracy, Precision, 
Recall and F1-Score, RMSE, MAE, and MSE. These 
metrics are used to evaluate in proposed method. 

1) Accuracy 
In percentage terms, the accuracy and precision of the 

model are expressed as the ratio of corrected cases to total 
instances of the accuracy metric. The true and false rates 
in the equation roughly represent accuracy. 

               
. .

. . . .

T n T p
Accuracy

T n F p F p T p




  
              (12) 

2) Precision 
The ratio of the correctly classed instances or samples 

out of the ones classified as positives is captured by 
precision. 

                         
.

. .

T p
Precision

T p F p



                       (13) 

3) Recall 
Recall is a method to quantify the number of correctly 

found items as compared to how many exist actually. The 
division of the number of positive samples identified 
correctly as positive by the number of all positive samples. 

                             
.

. .

T p
Recall

T p F n



                        (14) 

4) F1-Score  
The F1-Score is a measure that will be utilized to assess 

the performance of machine learning. It combines 
Precision and Recall into one score. 

             1 2
Precision Recall

F Score
Precision Recall


  


              (15) 

5) Root Means Square Deviation (RMSE)  
The Root Means Square Deviation (RMSE), sometimes 

referred to as the root mean square error, is one of two 
closely related and commonly used metrics for measuring 
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the discrepancies between actual or anticipated values and 
observed values or an estimate. 

                         
2

1
( )

n

i pi
x x

RMSE
n




 
                  (16) 

6) Mean Square Error (MSE) 
Mean Square Error (MSE), the average of the squared 

differences between the observed values in a statistical 
study and the predicted values from a model. 

                  
2

1
( )

n

i pi
x x

MSE
n




 
                   (17) 

C. Performance Evaluation  

The effectiveness of the suggested approach is 
contrasted with that of the current approaches, including 
CNN, LSTM, RNN, and BiLSTM. Accuracy, precision, 
recall, F1-Score, RMSE, and MSE are metrics used to 
evaluate the performance of the suggested approach to the 
current one. The suggested approach performs well. The 
network’s accuracy and loss curves show that the training 
and testing procedures are stable and rapidly converge. 
utilized in the data sets for chest CT scan images, and 
SARS-COV-2 Ct-Scan data. 300 epochs are employed in 
the training and testing procedure to analyze accuracy and 
loss, which results in improved performance.  

D. Detail Hyperparameters 

 Learning rate: 0.001. 
 Optimizer: Adam. 
 Batch size: 32. 
 Number of epochs: 300. 
 Activation functions: ReLU / Rem-ReLU. 
 Loss function: Cross-entropy (with knowledge 

distillation loss components). 

E. Hardware Setup 

Training: Conducted on a workstation with an NVIDIA 
RTX 3080 GPU, 64GB RAM, and Intel i9 CPU. 

Edge Testing: Deployment and inference tested on a 
Raspberry Pi 4 (4GB RAM) and NVIDIA Jetson Nano, 
simulating real-world edge environments. 

We set T = 4, which was chosen based on preliminary 
validation experiments aimed at balancing softened 
probability distributions and stable convergence during 
training. 

Training Time: The full training process for 300 epochs 
took approximately 2.5 h on the workstation setup. 

Inference time on edge devices was ~180 ms per image, 
validating suitability for real-time diagnostics. 

We set T = [insert value, e.g.,4], which was chosen 
based on preliminary validation experiments aimed at 
balancing softened probability distributions and stable 
convergence during training. 

F. SARS-COV-2 CT-Scan Data Set 

The comparison of performance of the evaluation 
metrics to the current model in SARS-COV-2ct-scan data 
set sample shown in Fig. 5. The current models such as 
CNN, RNN, LSTM, BiLSTM have limitation such as it 
doesn’t apply to continuous or temporary data such as 
health records, too complicated and it hinder the 
performance. Therefore, these limitations of current 
method the proposed method address these limitations, 
that wise the proposed method achieve high performance 
such as Accuracy 98.93%, Precision 98.41%, Recall 
98.69%, F1-Score 98.44%. Performance of evaluation 
metrics with respect to current model in SARS-COV-2 Ct-
Scan Dataset, which is shown in Table I. 

TABLE I. PERFORMANCE OF EVALUATION METRICS WITH RESPECT TO 

CURRENT MODEL IN SARS-COV-2 CT-SCAN DATA SET 

Metric CNN LSTM RNN BiLSTM Proposed KD Model 

Accuracy 84% 88% 90% 96% 98.93% 

Precision 85% 88% 91% 96% 98.41% 

Recall 83% 89% 90% 96% 98.69% 

F1-Score 84% 88% 90% 96% 98.44% 

 

 
Fig. 5. Sample dataset. 

G. Chest CT-Scan Images Data Set  

The performance of evaluation metrics with respect to 
the current model in chest CT-Scan images dataset. The 
current models such as CNN, RNN, LSTM, BiLSTM these 
approaches have the low performance. The proposed 
approach has a high performance such as Accuracy 8.25%, 
Precision 98.78%, Recall 98.86%, F1-Score 98.14%. 
Performance of evaluation metrics with respect to existing 
model in chest CT-Scan images dataset, which is shown in 
Fig. 6. 

Fig. 6 performance of evaluation metrics in comparison 
to the current model in the data set of chest CT-Scan 
images. The error rate in the data set of chest CT-Scan 
images as compared to the existing model. Current models 
with high error values include CNN, RNN, LSTM, and 
BiLSTM. Compared to the current model, the suggested 
method has a lower error rate. RMSE 0.13, MSE 0.094. 
Using the suggested data set of chest CT-Scan pictures, 
error measurements were compared to the current 
approach. ROC analysis of the suggested approach, 
confusion matrix, and accuracy and loss analysis in 
training and testing the data set of chest CT-Scan pictures. 
Figs. 6 and 7 and Table II displays a comparison table 
between the suggested approach and the current model for 
chest CT-Scan pictures. 
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(a) 

 
(b) 

Fig. 6. Error metrics of compared with existing methods using proposed 
chest CT-Scan images dataset. 

 
(a) 

 
(b) 

Fig. 7. Illustrates the accuracy trend during the training and validation 
phases on the chest CT-Scan image dataset. 

The confusion matrix has two actual class and predicted 
class normal 110, adeno carcinoma 130, squamous cell 
119, large cell carcinoma 132, the wrong prediction is 
squamous cell 2, and large cell 1, adeno carcinomas cell 2, 
and large cell 2, these are wrong predictions of these 
classes. 

TABLE II. COMPARISON TABLE FOR PROPOSED METHOD AND EXISTING 

MODEL IN CHEST CT-SCAN IMAGES 

Performanc
e metrics 

CNN 
LST
M 

RNN 
BiLST

M 

Proposed  
(KD 

model) 
Accuracy 

(%) 
86.3 89.71 

92.5
8 

96.68 98.25 

Precision 
(%) 

85.5
0 

89.40 
93.7

5 
96.20 98.78 

Recall (%) 
83.5

7 
88.99 

91.0
6 

96.4 98.86 

F1-Score 
(%) 

84.5
4 

89.95 
92.3

0 
94.90 98.14 

MSE 0.21 0.18 0.14 0.12 0.09 

RMSE 
0.43

5 
0.343 0.23 0.16 0.13 

 

Fig. 8 illustrates the performance of the deep learning 
model in classifying chest CT-Scans into four classes: 
Normal, Adeno, Squamous, and Large. The confusion 
matrix is highly accurate with limited misclassification. 
The MSE plot indicates successful training with consistent 
error reduction and no overfitting. The ROC plots affirm 
perfect separation of classes with an AUC of 1.00 for all 
classes. 

 

 
Fig. 8. Performance evaluation of chest CT-Scan classification model 

using Confusion Matrix, MSE curve, and ROC curve. 
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V. DISCUSSION 

In this section, a comprehensive description of the 
simulation system and the experimental result of the 
proposed approach is presented. The results are illustrated 
with detailed explanations based on various evaluation and 
validation tests. The proposed method has demonstrated 
high performance in different scenarios. 

One of the common drawbacks in previous research is 
the cumulative analysis issue typically encountered during 
the segmentation of brain tumor images. This arises due to 
variations among individuals, which may be negligible in 
some cases [3]. The suggested technique addresses this 
drawback and offers improved analysis and segmentation 
accuracy. 

Another limitation identified in earlier techniques is the 
incomplete establishment of effectiveness across various 
systems [4]. However, the proposed model demonstrates 
consistent performance across different system 
environments, ensuring better reliability. 

Data scarcity remains a major challenge. Compared to 
other datasets, clinical data are more complex and difficult 
to partition, which poses a limitation in many methods [5]. 
Additionally, privacy concerns in medical data represent 
both a sociological and technical issue that must be 
addressed from multiple perspectives. The proposed 
method utilizes a larger dataset and incorporates 
mechanisms to preserve data privacy during comparisons 
and analysis. 

A lack of standardization and difficulties in clinical 
integration are also noted limitations in earlier 
approaches [6]. In contrast, the standardization process 
proposed in this method is optimized and suitable for 
clinical settings, thereby facilitating integration. 

Minimal data availability and potential overestimation 
are further concerns [7]. The proposed approach addresses 
these by employing a more extensive and representative 
dataset. 

Another drawback in existing methods is related to the 
training and testing process, where some models are 
trained using only a single facial image. This can lead to 
covariant shift and training errors [8]. In the proposed 
method, the training and testing processes are robust and 
free from such errors. 

Several techniques may suffer from procedures that 
negatively impact important aspects of model 
performance[25]. However, the proposed model 
maintains stable performance even in the presence of 
complex influencing factors. 

Lastly, using small datasets can affect the 
generalizability of a model [26]. This limitation is 
effectively addressed in the proposed method, which uses 
a larger and more diverse dataset, enhancing the 
generalizability and practical applicability of the approach. 

VI. CONCLUSION 

The suggested compacted layer known ledge distillation 
model is compared in this work. Simulation results 
demonstrated the effectiveness of the suggested approach. 

The comparison is based on F1-Score, RMSE, MSE, 
Accuracy, Precision, and Recall. CT-Scan images make up 
the CT-Scan Data set SARS-COV-2. The proposed 
method utilizes a data set. The performance of the 
proposed model is evaluated and compared with the 
previous method. The evaluation measures performed as 
follows on the SARS-COV-2ct-scan dataset in comparison 
to the existing model: Accuracy 98.93%, Precision 98.41%, 
Recall 98.69%, F1-Score 98.44%, MSE 0.04, RMSE 0.16. 
CT-Scan images of the chest F1-Score: 98.144%, MSE: 
0.094, RMSE: 0.13, Accuracy: 98.25%, Precision: 98.78%, 
Recall: 98.86% which is shown in Table III. In comparison 
to the current model, such results have a low error value 
and a high performance. Hybrid compression techniques 
may be used in the future to produce lighter DNN models 
in many contexts. One possibility is to use the pruning 
approach on the KD-generated student model. The final 
model is then subjected to quantization. An alternative 
possibility is to first refine the instructor model, then distill 
its knowledge into a student model, and lastly, quantify 
this student model. Additionally, different learning 
methods like adversarial and reinforcement learning can be 
used to examine the impact of KD.  

TABLE III. COMPARISON THE PROPOSED MODEL AND STATE-OF-ART 

METHOD 

Technology Accuracy (%) 

X. Wang et al. [3] 90.1 

CNN [4] 96 

DLA [5] 97 

IoT medical things and 
DL [6] 

95 

LLLT, MIoT [7] 97 

CT image for cobvid-19 
diagnosis [8] 

97 

Tiny UNet IN FKD-Med 
[25] 

91 

ENet-coco [9] 88 

S. Wang et al. [10] 85.2 

Proposed 
98.93, and 98.25 for SARS-COV-2, 

Chest CT-Scan images Data set 
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