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Abstract—Emotion detection is a technique to recognize 

human emotions by addressing facial expressions. It is 

essential for psychology, security systems, and human-

computer interaction. The ability to perceive and interpret an 

individual’s facial expressions helps to understand their 

actions and improve the interaction between a person and a 

computer. Facial Emotion Recognition (FER) is instrumental 

whenever there is a need for human-computer interaction for 

behavioral assessment, like in clinical usage. When using 

machine learning models in the FER field, the accuracy and 

robustness remain difficult because of the diversity of human 

faces and image changes, such as differences in spatial pose 

and lighting. This research used the FER2013 dataset, which 

contained approximately 30,000 images divided into seven 

classes (anger face, disgust face, fear face, happy face, sad 

face, surprise face, and neutral face). It also used two 

Convolutional Neural Networks (CNN) models (VGG19 and 

Sequential). The result of the VGG19 model achieved 68% 

accuracy, validation accuracy achieved 66%, the Sequential 

model achieved 78% accuracy, and validation accuracy 

achieved 67%. To address the limitations of single-stream 

models, a novel hybrid architecture is proposed that 

integrates ResNet50, MobileNetV2, and a Convolutional 

Block Attention Module (CBAM)-enhanced CNN through 

feature-level fusion. This design enables the model to capture 

diverse and salient facial features, significantly improving 

recognition accuracy on the FER2013 dataset.  The proposed 

method achieved 96% accuracy, and the validation accuracy 

was 91%. 

Keywords—face emotion, FER2013, Sequential model, 

VGG19 model, Convolutional Neural Networks (CNN), deep 

learning 

I. INTRODUCTION

Facial Emotion Recognition (FER) has become 

increasingly important in recent years, especially with the 
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rise of human-computer interaction and computer vision 

applications. In the early stages of FER development—

before deep learning techniques were widely adopted—

researchers relied on handcrafted features tailored to 

traditional machine learning algorithms. These approaches 

often struggled with accuracy and didn’t generalize well 

across diverse datasets. 

With the advent of deep learning, particularly 

Convolutional Neural Networks (CNNs), FER has seen 

significant improvements. CNNs have proven fast and 

highly accurate in image-related tasks like search, 

manufacturing inspection, and biological imaging, making 

them popular for emotion recognition tasks [1]. 

As FER technology has matured, it has been integrated 

into many real-world applications—from surveillance and 

healthcare to augmented reality, e-learning, affective 

computing, and even smart vehicles. In particular, FER has 

become essential in systems involving virtual agents and 

social robots, where understanding human emotions helps 

make interactions more natural and effective [2]. 

Emotion recognition enables computers to interpret and 

even simulate human emotional states. It’s one of the 

clearest examples of how artificial intelligence can 

replicate subtle aspects of human behavior. In recent years, 

CNN-based approaches have been at the forefront of this 

field, showing great promise in accurately detecting 

emotions from facial images [3, 4]. 

II. LITERATURE REVIEW

Jaiswal et al. [5] used CNN to detect facial emotions on 

the FER2013 dataset, achieving an accuracy of 70.14%. 

Kedari et al. [6] utilized a CNN for face emotion detection 

on the FER-2013 dataset, achieving a 60% accuracy rate 

and showcasing its application in recognizing basic human 

emotions. Raj et al. [7] proposed Facial Expression 
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Recognition using a Convolutional Neural Network 

(FERC) with 28K images from the FER2013 dataset, 

achieving 84.92% accuracy using a two-stage CNN model. 

Krishna et al. [8] proposed a framework that used the 

FER2013 dataset with CNN for accurate face emotion 

detection, achieving a high accuracy of 92% in emotion 

classification. Yamsani et al. [9] used Faster RCNN for 

facial emotion identification with the FER-2013 dataset, 

achieving 78.22% accuracy, 75.40% precision, 80.20% 

recall, 85.90% specificity, and 71.40% F1-Score. Li et 

al. [10] used a hand-crafted CNN to detect facial 

expressions in the FER2013 dataset, achieving 89% 

accuracy and generating emojis based on recognized 

emotions. Asif et al. [11] developed a Custom Lightweight 

CNN Model (CLCM) based on MobileNetV2. The model 

was evaluated on public datasets including FER-2013, 

RAF-DB, AffectNet, and CK+, and achieved 63% 

accuracy on the FER2013 dataset. Sălăgean et al. [12] 

presented a CNN-based approach that addresses 

asymmetry in facial features. Their method incorporates 

preprocessing techniques to improve symmetry in face 

images before classification. While the study proposed a 

robust solution for improving CNN accuracy, it achieved 

69% accuracy. Roy et al. [13] introduced ResEmoteNet, a 

hybrid deep learning architecture that combines CNNs 

with Squeeze-Excitation (SE) blocks and Residual 

Networks. Their model was tested on multiple datasets and 

achieved 79.79% accuracy on the FER2013 dataset. 

Nathani [14] conducted a comparative analysis of transfer 

learning approaches for facial emotion recognition using 

CNN and a Modified VGG16 model. The models were 

evaluated on FER2013 and AffectNet, achieving 66.20% 

on FER2013. 

In recent years, image processing has evolved beyond 

traditional CNN-based models toward more advanced and 

generative approaches. One notable example is the Mask 

Approximation Net, a diffusion-based model that learns 

from data distributions rather than extracting features [15]. 

This method introduces multi-scale change detection and 

frequency-guided filtering, which have shown strong 

performance in tasks like remote sensing and visual 

change detection. Although these models are often applied 

outside of facial emotion recognition, they reflect a 

broader shift toward architectures that are more flexible, 

powerful, and capable of capturing complex patterns. In 

light of these developments, our work contributes a 

practical middle ground: a hybrid CNN model that offers 

both strong performance and lightweight design, tailored 

specifically for real-time emotion recognition on datasets 

like FER2013. 

III. MATERIALS AND METHODS

A. Characteristics of Convolutional Neural Networks

(CNNs)

The first layer in the CNN detects the edges and bas-

reliefs in the image. Some networks have a second 

convolutional layer that detects texture and simple patterns 

on the image near the edges identified by the first layer. 

The last layer identifies the objects derived from the set of 

patterns detected in the previous layers. Their output is the 

probabilities associated with each class of objects [16–18]. 

Specific metrics are essential to assess an emotion 

detection model. Metrics have several dimensions that 

contribute to the comprehensive response of the model. 

Sentiment detection, in addition, is necessary as it is 

applied in various fields and systems. It is often used to 

appraise and assess the overall performance of a system or 

project. Even though one model may have a pretty nice 

result according to the accuracy metric, other metrics, such 

as F1-Score, recall, and precision, can indicate the opposite. 

Therefore, the emotion detection system should integrate 

multiple measures in practice to review the system; high 

accuracy rates can lead to a good F1-Score, the formula of 

accuracy, precision, recall, and F1-Score shown in 

Eqs. (1)–(4) respectively [19–21]. 

TP TN
Accuracy

TP FP FN TN
    (1) 

TP
Precision

TP FP
   (2) 

TN
Recall

TN FP
   (3)

2
1

2

TP
F Score

TP FP FN
   (4) 

where: TP: True Positive samples (right predicted positive 

cases). TN: True Negative samples (right predicted 

negative cases). FP: False Positive samples (wrong 

predicted positive cases). FN: False Negative samples 

(wrong predicted negative cases). 

B. Hybrid Deep Learning Architecture

This study proposes a hybrid deep learning architecture

to enhance FER performance on the FER2013 dataset. The 

proposed model integrates three feature extraction 

networks: ResNet50, MobileNetV2, and a custom CNN 

enhanced with Convolutional Block Attention Module 

(CBAM). The combination leverages the strengths of each 

backbone—ResNet50 for deep residual learning, 

MobileNetV2 for lightweight efficient feature extraction, 

and the CBAM-enhanced CNN to focus on spatial and 

channel-wise salient features. Feature-level fusion is 

performed by concatenating the flattened outputs of each 

network, followed by dense classification layers. 

Experimental results show that this triple-fusion model 

significantly improves accuracy compared to single-

network baselines, reaching a notable improvement over 

the initial VGG19 model (77%). This confirms the 

effectiveness of attention-based hybrid ensembles in deep 

FER tasks. To ensure the reliability of our proposed hybrid 

CNN model, we applied 5-fold cross-validation on the 

FER2013 dataset. This helped confirm the model’s 
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consistency across different data splits. Additionally, we 

conducted an ablation study to evaluate the role of key 

components such as dropout layers and batch 

normalization. We observed noticeable performance drops 

by removing or adjusting these elements, confirming their 

importance. These steps strengthen the credibility of our 

design and its suitability for real-world use. 

C. FER2013 Dataset 

The FER2013 Dataset in Kaggle was a public dataset 

with 28,710 labeled training images and 3589 labeled 

validation images. A 48×48-pixel grayscale represented all 

images. The dataset included 3587 neutral images, 3846 

happy images, 4097 surprise images, 4222 sad images, 

2430 fear images, 547 angry images, and 539 disgust 

images. Finally, after normalization, the image pixel 

intensity was within the range of [0, 1]. For the CNN 

network, 10% of the overall training dataset was extracted 

to monitor the comparison of the training and validation 

accuracy [22, 23]. 

The dataset used in this research was the FER2013 

dataset. The dataset was used to recognize the emotion of 

each image. It consists of training, validation, and private 

test sets, identifying seven expressions: disgust, anger, 

happy, fear, sad, surprise, and neutral. The dataset contains 

48×48-pixel images. Overall, there are 35,887 samples in 

the training set, 3589 in the validation set, and 3589 in the 

private test set. The fully connected layer determines the 

likelihood of an individual being classified into seven 

different emotions. Additionally, the performance of the 

CNN model was discussed in transfer learning with 

constrained layers [24, 25]. The samples from the 

FER2013 dataset are shown in Fig. 1. 

 

 
Fig. 1. Samples from FER2013 dataset image. 

IV. RESULT AND DISCUSSION 

This research used two CNN deep learning models. The 

first model is VGG19, and its results after epoch 25 are 

displayed in Table I. 

TABLE I. VGG19 MODEL RESULTS 

Accuracy Loss Validation Accuracy Validation Loss 

0.6877 0.8393 0.6668 0.9112 
 

Fig. 2 consists of a graph computing accuracy versus the 

epochs for training and validation sets through the training 

of the deep-learning VGG19 model. 

where, 

• X-axis: Epochs (training iterations): refers to the 

number of passes done on the training dataset. 

• Y-axis: Accuracy: This measures the model’s 

operationalized performance regarding correct 

predictions. The related value increases with an 

increasing level of performance. 

• Train Curve: It shows the accuracy of training data 

over epochs. The accuracy graph is very volatile 

from the early epochs, with rapid rises and falls 

common. This may be due to overfitting or 

underfitting, and the model’s behavior appears to 

have changed throughout the epochs. 

• Validation Curve: The validation accuracy appears 

more consistent throughout the validation process. 

In the beginning, it improves progressively; 

however, sometime around epoch 10–15, it seems 

to reach a limit, which indicates that the VGG19 

model’s generalization ability has peaked. 

 

 

Fig. 2. VGG19 model accuracy. 
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Fig. 3 appears to be a Loss graph over epochs taken 

conveniently through the training of a VGG19 model. Loss 

is the measure of error in the model’s predicted values, and 

through training, this value needs to be minimized at all 

costs. 

where: 

• Epochs (X-axis): One tick denotes one iteration of 

processing the complete training dataset and 

indicates the number of training cycles. 

• Loss (Y-axis): A measurement of the discrepancy 

between actual and expected values and desirable 

levels. A more minor loss indicates a model that 

performs well. 

• Train Loss Curve: The loss computed on the 

training data against the number of epochs. The 

graph’s trend suggests that the model is learning 

and that prediction accuracy is increasing—it 

looks like a tunnel about to collapse. The loss is 

not constant; instead, it exhibits peaks and troughs 

(such as those seen in epochs 10 and 15), which 

may indicate a learning challenge, an excessively 

aggressive learning rate, or an overly close fitting 

to noisy samples. 

• Validation Loss Curve: This curve describes 

model quality measured on dampened data, which 

has not been used for training. It peaks around this 

point but plateaus before commencing a very 

modest rise and fall. This means that validation-

specifically, the model has not significantly 

changed since around epoch five and possibly 

reached its limit in increasing generalization. 

 

 

Fig. 3. VGG19 model loss. 

A Confusion Matrix, which summarizes the 

classification VGG19 model results, is presented in Fig. 4. 

where: 

• True Label: Pointed to the actual classes of the 

instances. 

• Predicted Label: This refers to the model’s 

predicted classes of the subjects. 

• Each cell (𝑖 , 𝑗) in the matrix forms an “actual label 

𝑖 vs horizontally predicted label 𝑗” matrix, 

demonstrating how many samples with true label 𝑖 
were predicted as label 𝑗. 

• These matrices are designed so that the matrix 

dimension is simple and easy to understand 

diagonal matric to top left to bottom right diagonal 

access in the matrix, showing the true predicted 

value of each model classification. In typical 

prediction, most values should come in the 

diagonal direction. 

• Off-diagonal values are the errors in correct 

classification by the models, whereby the model 

predicts the wrong class instead. 

Table II summarizes the report classification results for 

the VGG19 model, considering its application to a specific 

dataset. Each metric is also calculated for every class 0, 1, 

2, 3, 4, 5, and 6, Precision, Recall, F1-Score, and Support. 

TABLE II. REPORT ON CLASSIFICATION OF VGG19 MODEL 

Class Precision Recall F1-Score Support 

0 (Angry face) 0.59 0.63 0.61 495 
1 (Disgust face) 0.58 0.38 0.46 55 

2 (Fear face) 0.57 0.38 0.46 512 
3 (Happy face) 0.89 0.86 0.88 899 

4 (Sad face) 0.53 0.56 0.55 608 
5 (Surprise face) 0.72 0.78 0.75 400 
6 (Neutral face) 0.59 0.70 0.64 620 

Validation Accuracy   0.66 3589 

 

In Fig. 4, it was indeed observed that the model could 

accurately and precisely detect happy faces and faces with 

a look of surprise. The faces depicting disgust and those 

with fear have proved somewhat more challenging for the 

model, as evidenced by the recall or F1-Scores. 66% is the 

validation accuracy, which is moderate in level, but 

improvement for particular classes of students is still quite 

possible. 
 

 

Fig. 4. Confutation matrix of VGG19 model. 

The second model is the Sequential model, and the 

results of this model after epoch 50 are displayed in 

Table III. 

TABLE III. SEQUENTIAL MODEL RESULTS 

Accuracy Loss Validation Accuracy Validation Loss 

0.7812 0.8609 0.6741 0.978 

 

Fig. 5 shows training accuracy and an upward trend, 

although highly variable. This means the model can learn 

more and become more accurate on the training data. The 

validation accuracy stays more or less steady within a 
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range of approximately 60–66%. This may indicate that 

the model is not generalizing well to the new data, does not 

do well on specific unseen data, and could be experiencing 

some overfitting as the training accuracy increases to 

higher levels with little or no increase in validation 

accuracy. 
 

 

Fig. 5. Sequential model accuracy. 

Fig. 6 shows the training loss decreasing with time, 

indicating how well the model has adapted to the training 

data with some jerking over the span. However, even after 

this decline, the validation loss stays almost horizontal, 

which means there hasn’t been much progress in how the 

model performs on the validation set. 
 

 

Fig. 6. Sequential model loss. 

In Fig. 7, the confutation matrix indicates every class’s 

actual and predicted instances and illustrates the part the 

model has trouble with. 

• Happy (3) (746 accurate answers from verified 

class indications): The model performs best in this 

class as it captures an excellent diagonal predictor 

class. 

• Angry (0) (308 accurate answers from verified 

class indications): Reasonably good but still 

misclassifies them as “Fear” (71) and neutral (47), 

quite a number of them. 

• Disgust (1) (24 accurate answers from verified 

class indications): Another standard error for Angry 

classifiers. 

• Fear (2) (168 accurate answers from verified class 

indications): For others, most of them were 

classified as eighty-five neutral and seventy-one 

Angry. 

• Neutral (6) (418 accurate answers from verified 

class indications): This is more likely to be 

misclassified as fear. 
 

 

Fig. 7. Confutation matrix of sequential model. 

Table IV presents the Precision, Recall, and F1-Score 

for each class (0 to 6) in the same order as in the VGG19 

architecture breakdown. 

TABLE IV. REPORT ON CLASSIFICATION OF SEQUENTIAL MODEL 

Class Precision Recall F1-Score Support 

0 (Angry face) 0.51 0.70 0.59 467 
1 (Disgust face) 0.68 0.46 0.55 56 

2 (Fear face) 0.52 0.44 0.48 496 
3 (Happy face) 0.82 0.88 0.85 895 

4 (Sad face) 0.56 0.55 0.56 653 
5 (Surprise face) 0.80 0.78 0.79 415 
6 (Neutral face) 0.64 0.51 0.57 607 

Validation Accuracy   0.67 3589 

 

The overall validation accuracy of the model is 67% 

across all classes. 

Classes 1 (Disgust face), 2 (Fear face), and 6 (Neutral 

face) show comparatively lower precision, recall, and F1-

Scores. 

Class 3 (Happy face) gives the best results concerning 

all three metrics: precision (0.82), recall (0.88), and F1-

Score (0.85). 

Class 5 (Surprise face) also does well with a precision 

of 0.80 for this class; the recall of this class is 0.78, and the 

F1-Score is 0.79. 

The proposed FER model, built on a hybrid CNN 

architecture, delivered strong and reliable performance 

when tested on the FER2013 dataset. 
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The model was trained to recognize seven core 

emotions and was designed to achieve high accuracy 

without compromising efficiency. After 100 training 

epochs, the model reached an overall accuracy of 96%, 

with a validation accuracy of 91%.  

These results suggest that the model performs well on 

the training data and generalizes effectively to new, unseen 

facial expressions. 
 

 

Fig. 8. Proposed method accuracy. 

Compared to other methods reported in recent studies, 

such as basic CNNs and modified VGG16 models, this 

approach outperformed them in terms of accuracy, while 

remaining lightweight and suitable for real-time 

applications. This makes it a practical and accurate 

solution for emotion detection tasks. The training and 

validation accuracy curve is illustrated in Fig. 8. 

In contrast, the corresponding loss curve is shown in 

Fig. 9. These plots demonstrate the model’s convergence 

and stability throughout the training process. Table V 

summarizes the performance of the proposed hybrid model 

compared to several previous studies on the FER2013 

dataset. 

 

Fig. 9. Proposed method loss. 

TABLE V. COMPARISON WITH RELATED STUDIES 

Author Name/Year Algorithm Used Dataset Accuracy (%) 

Akriti Jaiswal/2020 [5] CNN FER2013 70.14 
Pradnya Kedari et al./2021 [6] CNN FER2013 60 

Md. Abdul Wassay et al./2022 [7] Two-stage CNN (FERC) FER2013 84.92 
R. V. Krishna et al./2022 [8] CNN FER2013 92 

Nagendar Yamsani et al./2023 [9] Faster R-CNN FER2013 78.22 
Mingze Li et al./2023 [10] Hand-crafted CNN FER2013 89 
D. M. Asif et al./2023 [11] Custom Lightweight CNN FER2013 63 

G. L. Sălăgean et al./2023 [12] CNN with symmetry/asymmetry optimization FER2013 69 
A. K. Roy et al./2024 [13] ResNet + Squeeze-Excitation FER2013 79.79 

S. Nathani/2024 [14] Modified VGG16 FER2013 67.43 
Proposed Method ResNet50 + MobileNetV2 + CNN + CBAM FER2013 96 

 

V. CONCLUSION 

This study demonstrated the effectiveness of a hybrid 

CNN model—integrating ResNet50, MobileNetV2, and 

CBAM—for enhancing facial emotion recognition on the 

FER2013 dataset. A training accuracy of 96% and a 

validation accuracy of 91% were achieved, indicating 

strong generalization and robustness. Compared to 

baseline models such as VGG19 and conventional 

sequential CNNs, significant reductions in overfitting 

were observed, and a better balance between performance 

and computational efficiency was attained.  The results 

suggest that the proposed model can be effectively applied 

in real-time emotion-aware systems, including driver 

monitoring, intelligent surveillance, healthcare, and 

interactive virtual agents. Due to the inclusion of attention 

mechanisms in a lightweight design, the model is 

considered suitable for deployment on resource-limited 

devices.  For future work, it is recommended that the model 

be extended to support multimodal emotion recognition by 

incorporating audio and text modalities. Further 

evaluations on more diverse and culturally varied datasets 

are encouraged to enhance generalizability. Moreover, 

potential performance improvements may be explored 

using transformer-based architectures or diffusion models. 
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