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Abstract—Wheat is a staple crop cultivated widely across the 

world, making effective management of wheat fields a critical 

task. A key component of this management is accurately 

identifying and counting wheat heads, which provides 

essential data for assessing growth conditions, estimating 

crop yields and optimizing agricultural. This study 

introduces a novel approach for automatic wheat head 

detection by treating the wheat head as a single point to avoid 

ambiguous annotation of dense objects while leveraging the 

long-range dependency modeling capabilities of Transformer 

architecture to learn multi-scale features for head prediction, 

dubbed as CenterFormer. Specifically, we employ a 

hierarchical Transformer architecture with self-attention 

exploitation in both spatial and channel domains as the 

backbone to extract multi-scale features in the hierarchical 

stages. To maintain the linear complexity of the Transformer 

block, we implement window-based self-attention in spatial 

domain and group-wised self-attention in channel direction. 

In addition, to leverage the multi-scale features with both 

detailed spatial information and abstracted semantic 

contexts, we design a simple yet effective fusion block to 

integrate these features for enhanced wheat prediction. The 

prediction block aims to estimate a heat map, denoting the 

probabilities if the points are located at the centers of the 

wheat heads, and regresses other object properties such as 

size and sub-pixel deviations for each center location. 

Extensive experiments on the Global Wheat Head Detection 

(GWHD) dataset have demonstrated that our proposed 

method achieves substantial performance improvements 

compared with the state-of-the-art object detection models.  

Keywords—wheat head detection, transformer, self-attention, 

multi-scale feature fusion, hierarchical architecture, center 

point, CenterNet  

I. INTRODUCTION

Wheat serves as a fundamental dietary crop for 

approximately 30% of the global population, highlighting 

its critical role in global food security [1]. As the world’s 

population continues to grow, the demand for increased 

crop production becomes more pressing. Enhancing wheat 

productivity is expected to have a substantial impact on the 

global food supply, necessitating innovative agricultural 

optimization strategies to meet future needs [2, 3]. Among 

the optimization way, effective management of wheat 
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fields has emerged as a key focus for boosting production 

yields. One pivotal and widely used strategy in assessing 

wheat field situations is the wheat head count, which 

provides valuable insights into crop growth dynamics. The 

density of wheat heads during the growth stage is 

particularly significant, as it serves as a direct predictor of 

potential yield [4]. However, accurately measuring wheat 

head density presents numerous challenges. The 

variability in wheat head orientation, often influenced by 

environmental factors such as wind, the relatively small 

size and their overlapping clusters, make manual counting 

both labor-intensive and prone to error. To address these 

challenges, the adoption of automated detection methods 

is essential. Leveraging advances in machine learning and 

image processing technologies, these automatic methods 

have potential of facilitating accurate and efficient wheat 

head detection, enabling scalable and timely management 

of crop fields, and thus attracted substantial research 

attention for supporting efforts to optimize agricultural 

productivity [5–7]. 

In recent years, Deep Convolutional Neural Networks 

(DCNNs) [5–7] have emerged as impressive tools in 

computer vision, achieving significant advancements 

across a wide range of tasks including object detection. 

Many deep models such as the region-based CNN (R-

CNN) series [8–11], single shot multibox detector 

(SSD) [12], and you look only once (YOLO) models [13–

17] have been extensively exploited for general object

detection, and have demonstrated promising performance

on publicly available image datasets [18, 19], solidifying

their position as state-of-the-art solutions in the field.

These methods require to generate large number of

bounding boxes as object candidates based on predefined

anchor points, and thus are usually categorized as anchor-

based methods. Although such approaches have been

employed in wheat head detection tasks [20–23], their

design is inherently optimized for detecting generic objects,

typically characterized by larger sizes and more distinct

spatial locations. Consequently, directly applying these

anchor-based methods to wheat head detection often

results in significant performance degradation, particularly

for small-sized objects like wheat heads. To address this

challenge, Feature Pyramid Networks (FPN) [24] have
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been integrated into detection models to improve 

performance across objects of varying sizes. Despite these 

enhancements, most existing methods aggregate multi-

scale features with heavily down-sampled spatial 

resolutions, limiting their ability to preserve the intricate 

details needed to detect small objects, such as wheat heads. 

This limitation is exacerbated by the dense and 

overlapping nature of wheat heads, which complicates the 

generation of precise annotations for the large number of 

bounding boxes required. As a result, achieving accurate 

and efficient wheat head detection remains a substantial 

challenge, necessitating novel strategies to account for 

these unique characteristics. 

In contrast, several anchor-free object detection models 

that conceptualize objects as single points have been 

proposed [25–27], demonstrating remarkable performance. 

For instance, Zhou et al. introduced an approach that 

focuses exclusively on the object center as the positive 

candidate, referred to CenterNet [26]. They represented the 

object center point as a heatmap to effectively detect 

objects in highly crowded scenarios with significant 

overlap. However, its performance is constrained when 

dealing with small objects, due to its reliance on 

significantly downsampled feature maps during detection. 

This limitation arises because the reduced spatial 

resolution impairs the model’s ability to capture fine-

grained details necessary for accurately detecting small-

sized objects. 

Besides, conventional detection models typically utilize 

CNN architectures as their backbone. While these 

architectures are adept at capturing local features, they 

often struggle to effectively model long-range 

dependencies. In the context of wheat head detection, the 

field environment is characterized by densely distributed 

plants and complex structural arrangements. Leveraging 

the global contextual correlations among multiple wheat 

heads can facilitate the extraction of more semantic and 

intrinsic representations, thereby enhancing detection 

performance. Recently, Transformer architectures, which 

is firstly proposed in Natural Language Processing 

(NLP) [28], has been introduced as a novel paradigm to 

capture global dependencies, prompting researchers to 

adapt these models for computer vision applications [29–

34]. Unlike the feature abstraction of local receptive fields 

in the CNN architectures, Transformers inherently 

produce global receptive fields, making them more 

effective for object detection in crowed and complex 

environments. The dominated component in the 

Transformer block leverages the attention mechanism to 

capture global dependencies, potentially achieving more 

semantic and intrinsic representations of the focused 

objects for accurate localization. 

To this end, this study proposes a novel method for 

automatic wheat head detection, referred to as 

CenterFormer, which represents each wheat head as a 

single point to mitigate the challenges of ambiguous 

annotations in densely populated scenarios. The approach 

leverages the Transformer architecture’s capacity for 

modeling long-range dependencies to learn multi-scale 

features critical for accurate head prediction. Specifically, 

a hierarchical Transformer architecture is employed as the 

backbone, utilizing self-attention mechanisms in both 

spatial and channel dimensions to extract multi-scale 

features across hierarchical stages. To ensure the 

computational efficiency of the Transformer block, 

window-based self-attention is applied in the spatial 

domain, while group-wise self-attention is implemented in 

the channel domain, maintaining linear complexity. 

Moreover, we explore a cross-scale attention mechanism 

to refine the low-level features in the shallow stages 

according to the high-level semantic feature of the final 

stage. Finally, a simple yet effective fusion block is 

introduced to integrate multi-scale refined features, 

combining detailed spatial information with abstracted 

semantic contexts to enhance predictive performance. The 

prediction module generates a heat map that represents the 

likelihood of points corresponding to the centers of wheat 

heads. Additionally, it also estimates the object size of 

each center location, providing a comprehensive 

representation for wheat head detection. Comprehensive 

experiments conducted on the Global Wheat Head 

Detection (GWHD) dataset validate the efficacy of the 

proposed method, showcasing significant performance 

enhancements over state-of-the-art object detection 

models. 

In summary, the key contributions of this study can be 

outlined as follows: 

1) We introduce CenterFormer, a novel framework for

accurate wheat head detection that combines the 

Transformer architecture’s robust capability for modeling 

long-range dependencies with the CenterNet framework’s 

effectiveness in predicting distinct objects in densely 

populated scenarios 

2) We utilize a dual-attention Vision Transformer to

exploit correlations in both spatial and channel domains, 

dubbed as Spatial and Channel Attention (SCA) based 

Transformer, and preserve multi-scale features across 

hierarchical stages, facilitating the detection of small-sized 

wheat heads. 

3) A cross-scale attention mechanism is implemented to

refine low-level features, incorporating detailed spatial 

information from shallow stages with high-level semantic 

features from deeper stages. This mechanism enables the 

extraction of multi-scale, discriminative, and intrinsic 

representations of wheat heads. 

4) We design a simple yet effective fusion block to

integrate refined multi-scale features, effectively 

combining detailed spatial information with abstracted 

semantic contexts, thereby improving predictive 

performance.  

II. LITERATURE REVIEW

This section firstly presents a brief survey of the existing 

detection models for the wheat heads, and then introduces 

the closely related techniques to our proposed model, 

including the anchor-free based CenterNet and vision 

Transformer architecture. 
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A. Existing Deep Models for Wheat Head Detection

Various deep learning models for generic object

detection, such as the R-CNN series [8–11], SSD [12], and 

YOLO models [13–17], have been proposed and achieved 

remarkable success across diverse applications. Recent 

studies for wheat head detection have focused on adapting 

these advanced models to the specific domain tasks. For 

instance, Hasan et al. [35] employed four variations of the 

R-CNN model to detect wheat spikes and evaluate yields

across different wheat varieties. Madec et al. [36] explored

two complementary approaches, employing the Faster R-

CNN network and the TasselNet local count regression

network, to estimate wheat spike density using high-

resolution RGB images. Gong et al. [20] advanced the

YOLOv4 framework by integrating a Dual Spatial

Pyramid Pooling (SPP) module, developing a highly

efficient real-time detection system for wheat spikes.

Similarly, Yang et al. [37] incorporated the Convolutional

Block Attention Module (CBAM) [38, 39] into the CNN

backbone within the YOLOv4 framework, improving

detection performance through enhanced attention

mechanisms. Further advancements include the work of

Sun et al. [40], who introduced WHCnet, an enhanced

wheat head counting network leveraging an improved

feature pyramid network (AugFPN) to address challenges

related to low detection accuracy. Ye et al. [41] developed

WheatLFANet, a lightweight, real-time neural network

optimized for efficient wheat head detection and counting,

particularly on low-resource devices. Yan et al. [42]

applied the GradCAM interpretability technique to refine

detection layer scales in wheat spike detection networks.

Additionally, Zhao et al. [43] proposed WheatNet, a model

designed to detect wheat spikes throughout developmental

stages, from the filling to maturity phases. These studies

demonstrate the potential of adapting generic object

detection models, and possible performance improvement

with the incorporation of the domain-specific

modifications according to the characteristic of the wheat

head detection scenario. However, all the above methods

employed the CNN architectures, which possess a strong

capability for capturing local features while exhibit

limitations in capturing global context. These limitations

become particularly evident in the crowed and complex

scenarios associated with wheat spike detection. In generic

object detection application, detection Transformer

(DETR) [44] has been proposed to achieve the powerful

modeling capability of long-range dependencies, and

manifested great performance improvement. Recently,

Yang et al. [45] proposed to combine the DETR and a

lightweight feature pyramid for wheat spike detection in

complex background.

B. CenterNet

CenterNet [26] is a cutting-edge object detection

framework that identifies objects by predicting their 

geometric centers, simplifying the detection process while 

maintaining high accuracy. Unlike conventional deep 

models [8–12, 14–16] that rely on anchor boxes or region 

proposals, CenterNet directly predicts heatmaps 

representing object centers, along with additional 

regression tasks for object size and offsets. This anchor-

free approach eliminates the need for complex post-

processing steps and reduces computational overhead. 

Therefore, the simplified pipeline of the CenterNet 

framework consolidates object detection tasks into a 

unified framework, reducing the need for separate region 

proposals or Non-Maximum Suppression (NMS). By 

predicting object centers and other properties (e.g., 

dimensions and offsets) in a single stage, CenterNet 

achieves competitive performance while being 

computationally efficient. Benefiting from the anchor-free 

design of the CenterNet, it particularly well-suited for 

tasks involving densely packed objects, such as wheat head 

detection. By focusing on the center of each wheat head, 

this framework demonstrates the following advancements. 

1) It reduces the ambiguity of overlapping objects; 2) It

enhances detection performance in crowded and occluded

scenarios; 3) It simplifies the annotation process, as only

object centers need to be labeled. Taking the previously

discussed attributes of the CenterNet framework into

account, this study utilizes the CenterNet pipeline to

facilitate wheat head detection.

C. Vision Transformer

The Transformer architecture, introduced by Vaswani et

al. [28], has become a cornerstone in Natural Language 

Processing (NLP) tasks. More recently, Dosovitskiy et 

al. [29] extended this framework to computer vision with 

the introduction of the Vision Transformer (ViT). Unlike 

traditional CNNs, the Transformer possesses a 

significantly larger receptive field and performs feature 

aggregation based on relationships directly learned from 

pairwise feature interactions, and has become a powerful 

and competitive module for feature learning in computer 

vision applications. Numerous studies have been done to 

develop more advanced Transformer-based networks for 

applications such as image, classification [29–34], object 

detection [44, 46], and semantic segmentation [47, 48]. To 

further enhance the representation capability, various 

efforts have been done for vision tasks, and made 

significant progress. For instance, Swin Transformer [30, 

31] incorporate a hierarchical architecture with shifted

windows for attention, improving scalability and

computational efficiency while maintaining global context

awareness. Touvron et al. [32] proposed to fucus on data-

efficient training to achieve strong performance with

smaller datasets while Ding et al. [49] explored a Dual

attention Vision Transformer (DaViT) by combining the

self-attention mechanisms in both spatial and channel

domains for image classification. In object detection

scenario, DETR (Detection Transformer) [44] employs a

Transformer encoder-decoder framework to directly

predict objects from learned query embeddings, providing

a novel approach to object detection. Building on this,

Deformable DETR [44] introduces a deformable attention

mechanism to enhance training efficiency and

convergence. Recent studies [50–52] have highlighted that

incorporating guidance mechanisms, such as anchor boxes,

can substantially enhance the convergence speed and

stability of DETR-based models. Despite the notable

advancements obtained by these models, they continue to
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face significant challenges, including high computational 

costs, particularly when processing large input images. 

Additionally, their require long training times and large 

datasets to achieve convergence, primarily due to the 

inherent difficulties in learning object representations and 

the complexities associated with the bipartite matching 

process. Recently, several studies have explored 

Transformer-based approaches for wheat head detection 

[45, 53 54]. For instance, Yang et al. [45] adopted a 

DETR-style framework by integrating a CNN backbone 

with a Transformer encoder-decoder architecture, dubbed 

as WH-DETR. This design eliminates the need for hand-

crafted components such as anchor generation and the 

Non-Maximum Suppression (NMS) step. Basically, WH-

DETR inherits the limitations of the original DETR, such 

as slow convergence and difficulty in detecting densely 

packed objects. Zhou et al. [53] exploited a WheatFormer 

by employing a multi-window Swin Transformer as the 

feature extraction backbone. While the WheatFormer is 

effective in modeling local spatial dependencies through 

window-based attention, it is limited in capturing global 

context, which is essential for robust wheat head detection 

across diverse and complex field conditions. Additionally, 

Suma et al. [54] proposed a two-stage architecture, termed 

CETR, wherein a Vision Transformer (ViT) was employed 

as the second stage to enhance the feature representations 

extracted by a CenterNet-based backbone in the first stage. 

The CETR demonstrated impressive improvements in 

wheat head detection performance compared to CNN 

backbones. However, CETR’s architecture involved a 

naïve concatenation of CenterNet and ViT modules, 

resulting in substantial computational overhead. 

In this study, we aim to harness the superior capability 

of Transformers in modeling long-range dependencies by 

leveraging the recently developed Dual Attention Vision 

Transformer (DaViT) [49], which is designed with Spatial 

window and Channel group Attention (SCA) to achieve 

computational efficiency without compromising 

representational power. Specifically, we propose to 

integrate DaViT as the backbone within the CenterNet 

framework, thereby unifying the SCA mechanisms of 

DaViT with a streamlined detection pipeline, which offers 

the following advantages over standard ViT-based and 

DETR-like architectures. 1) Linear complexity is achieved 

via a hybrid of window-based and group attention 

mechanisms, significantly reducing computational cost 

compared to global self-attention. 2) The SCA module 

enables effective multi-scale feature extraction and 

spatially-aware context aggregation, facilitating both local 

and global dependency modeling. 3) These design choices 

result in faster convergence and more accurate localization, 

particularly in dense and cluttered scenes typical of in-field 

wheat head images. 

III. PROPOSED METHOD

This section firstly presents the overview of proposed 

CenterFormer for the wheat head detection, and then 

introduces the contributed components in our detection 

pipeline. 

A. Overview

This study aims to exploit a novel CenterFormer by

leveraging the complementary strengths of two advanced 

methodologies: the Transformer’s powerful capacity for 

capturing long-range dependencies and modeling complex 

relationships in data, and the simplified, efficient detection 

framework provided by CenterNet. This combination is 

specifically designed to address the complex challenges 

inherent in detecting wheat heads within intricate 

agricultural environments. These challenges include 

handling occlusions, where spikes are partially obscured, 

and managing overlaps, where multiple wheat heads are 

closely clustered, making accurate detection particularly 

demanding. The overall structure of our proposed 

CenterFormer is manifested in Fig. 1(a).  

Specifically, our approach employs a dual-attention 

Transformer block as the core component of the 

representation learning backbone, which operates across 

both spatial and channel domains, dubbed as SCA-Trans 

block. This design enables the model to capture rich 

contextual dependencies and multi-scale features, ensuring 

robust feature representation. Similar to the encoder 

structures commonly adopted in state-of-the-art image 

classification models [30, 31, 34, 55], the backbone is 

organized in a hierarchical layout. This layout begins with 

an initial patch embedding layer, which partitions the input 

image into fixed-size patches and embeds them into a high-

dimensional feature space. Subsequently, the backbone 

consists of four progressive stages, each designed to 

extract representative features at varying spatial 

resolutions. Given an image 𝐼 ∈ ℛ𝑊×𝐻×3 , the backbone 

encoder hierarchically extracts representative features 

across four stages, each corresponding to progressively 

coarser spatial resolutions and richer semantic abstractions. 

Specifically, these features are represented as 𝑋1 ∈

ℛ
𝑊

4
×
𝐻

4
×𝐶1 ,  𝑋2 ∈ ℛ

𝑊

8
×
𝐻

8
×𝐶2 , 𝑋3 ∈ ℛ

𝑊

16
×
𝐻

16
×𝐶3 , and 𝑋4 ∈

ℛ
𝑊

32
×
𝐻

32
×𝐶4, transitioning from fine-grained spatial details 

in the early stages to global semantic context in the later 

stages. This hierarchical feature extraction enables the 

model to effectively represent information at varying 

scales. Given that wheat heads are typically small-sized 

and densely distributed, both fine-grained spatial details 

and high-level semantic contexts play a critical role in their 

accurate detection and localization. Fine-grained details 

help identify subtle features of individual wheat heads, 

while semantic context aids in distinguishing them from 

background and overlapping regions. To address this, we 

integrate multi-scale feature representations across the 

encoder’s stages. This approach facilitates the generation 

of a robust and discriminative predictive feature map, 

effectively capturing the intricate balance of local detail 

and global context necessary for precise wheat head 

localization. 
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(a) The overall architecture of our proposed CenterFormer

(b)  (c)  (d)   

Fig. 1. Conceptual scheme of the proposed CenterFormer. (a) The overall architecture of the CenterFormer; (b) The SCA-Trans block; (c) The cross-

scale attention module (CSAM); (d) The multi-scale fusion module (MSFM). 

To enhance the representation learning process, we 

design and investigate a Cross-Scale Attention Module 

(CSAM) that integrates information from different stages 

of the backbone. Specifically, the CSAM refines the low-

level, fine-grained features extracted from earlier stages by 

incorporating the global semantic context captured in the 

final stage. This process can be mathematically expressed 

as 𝑋̅𝑖 = 𝑓𝐶𝑆𝐴𝑀(𝑋𝑖 , 𝑋4) , where 𝑋̅𝑖  represents the refined

feature map for stage represents the refined feature map for 

stage 𝑖 , and  𝑓𝐶𝑆𝐴𝑀  denotes the cross-scale attention

operation. By aligning and combining fine spatial details 

with high-level semantic information, this module enables 

the resulting representations to encode both precise spatial 

structures and enriched semantic content. Following the 

refinement of features at individual scales, the 

representations from multiple stages (𝑋̅2, 𝑋̅3, 𝑋̅4)  are

aggregated using a Multi-Scale Fusion Module (MSFM). 

This module performs an efficient yet effective fusion of 

the refined features to produce a unified predictive feature 

map 𝑋̅ = 𝑓𝑀𝑆𝐹𝑀([𝑋̅2, 𝑋̅3, 𝑋̅4]). The MSFM is designed to

preserve complementary information across scales, 

allowing the predictive feature map to simultaneously 

capture detailed local features and broad contextual cues.  

In our framework, the predictive feature map is 

produced with horizontal and vertical dimensions of  
𝑊

4

and 
𝐻

4
, respectively. Building upon this feature map, we

employ two separate prediction heads, inspired by the 

CenterNet pipeline, to directly estimate the outputs. The 

first head generates a center heatmap 𝐻 ∈ ℛ
𝑊

4
×
𝐻

4
×1

, which 

represents the likelihood of object centers at each spatial 

location. The second head perform box regression 𝐵 ∈

ℛ
𝑊

4
×
𝐻

4
×2

, which encodes the horizontal and vertical sizes 

of the bounding boxes for detected objects. Since the 

wheat head detection scenario involves a single object 

class, the center heatmap 𝐻  is designed with a single 

channel while the box regression 𝐵 focuses solely on the 

spatial dimensions of the objects, minimizing 

computational complexity. During training, the ground 

truth for the center heatmap is derived from a Gaussian 

function centered on the annotated bounding box centers, 

effectively guiding the model to learn precise localization. 

This design ensures an efficient and effective prediction 

pipeline tailored to the specific requirements of wheat head 

detection in agricultural settings. The overall architecture 

of our proposed CenterFormer is manifested in Fig. 1.  

In the subsequent sections, we detail the architectural 

components of our proposed model, including the 

hierarchical backbone constructed with CSA-Transformer 

blocks, which serve as the foundational building units for 

representation learning. Additionally, we present the 

Cross-Scale Attention Module (CSAM), designed to refine 

features across different scales by leveraging both fine-

grained and semantic information. The Multi-Scale Fusion 

Module (MSFM) is then introduced as an effective 
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mechanism for integrating features from multiple scales to 

produce a unified representation. 

B. The Hierarchical SCA-Transformer Backbone

The SCA-Transformer backbone is organized into a

hierarchical structure comprising four distinct stages, each 

designed to progressively extract features of increasing 

semantic complexity while preserving essential spatial and 

channel-wise information. At the beginning of each stage, 

a patch embedding layer is introduced to transform the 

input features into a structured representation suitable for 

subsequent processing. This embedding operation reduces 

the spatial resolution while increasing the feature 

dimensionality, enabling efficient computation and better 

feature abstraction. 

Within each stage, multiple Spatial and Channel 

Attention (SCA) blocks are stacked to enhance feature 

learning. These blocks operate at a fixed resolution and 

feature dimensionality throughout the stage, ensuring that 

the spatial details and channel dependencies are effectively 

captured and retained. Given the input image 𝐼 ∈ ℛ𝑊×𝐻×3, 

the overall backbone obtains the hierarchical features, with 

progressively decreasing spatial resolutions and increasing 

channel dimensions. The feature resolutions of 4 stages are 
𝑊

4
×

𝐻

4
, 

𝑊

8
×

𝐻

8
, 

𝑊

16
×

𝐻

16
 , and 

𝑊

32
×

𝐻

32
 while the 

corresponding channel dimensions are 𝐶, 2𝐶, 4𝐶, and 8𝐶, 

respectively. The patch embedding layers, responsible for 

initializing the transformation at the start of each stage, are 

implemented using stride convolution operations. These 

layers reduce the spatial resolution while increasing the 

channel dimensionality to encode richer feature 

representations. The convolutional kernels and stride 

values used in the four patch embedding layers are 

{7, 2, 2, 2} and {4, 2, 2, 2}, respectively, ensuring effective 

downsampling and feature encoding. In our experiments, 

the base channel dimension 𝐶  is set to 96. The SCA-

Transformer blocks, which serve as the primary 

computational units within each stage, are configured with 

a stage-specific number of blocks: {1, 1, 9, 1}. 
In detail, the core attention mechanism within the CSA-

Transformer block is realized through the integration of 

two specialized components: a spatial window attention 

block and a channel group attention block. Given the input 

feature representation, we first implement a spatial 

Transformer that leverages spatial window attention to 

capture spatial dependencies and relationships within the 

feature map. Subsequently, we proceed with a channel 

Transformer, which utilizes channel group attention to 

model inter-channel dependencies. Together, these two 

stages form the core of the SCA-Trans block. This block 

is designed to synergistically integrate spatial and channel-

wise contextual information, enhancing the expressive 

power and representational capability of the input features. 

Fig. 1(b) illustrates the architecture of the CSA-Trans 

block. 

Spatial window attention: Given a feature map 𝐹, we 

perform a window partitioning operation to divide 𝐹 into 

M local patches, with the feature representation of the 𝑚 −
𝑡ℎ patch denoted as 𝐹𝑚 . Let us assume that 𝐹𝑚 ∈ ℛ𝑃×𝐶 ,

where 𝑃 represents the number of tokens within each patch 

and 𝐶  denotes the total number of feature channels. To 

model the internal dependencies within each patch, we 

employ the standard Multi-Head Self-Attention (MHSA) 

mechanism. This mechanism is mathematically defined as 

follows: 

𝒜(𝐐,𝐊, 𝐕) = Concat (Head1, … , Head𝐻)      (1) 

where each attention head Headℎ is computed as:

Headℎ = Atention(𝐐𝐡, 𝐊ℎ, 𝐕ℎ)

= Softmax [
𝐐𝐡(𝐊ℎ)

𝑻

√𝐶ℎ
] 𝐕ℎ,  (2) 

where  𝒉,  𝒉, and  𝒉 are query, key, and value matrices 

of the ℎ − 𝑡ℎ  head, respectively. These matrices are 

defined as:  

𝐐𝒉 = 𝐅𝒎
𝒉  𝐖𝒉

 
, 𝐊𝒉 = 𝐅𝒎

𝒉  𝐖𝒉
 , and 𝐕𝒉 = 𝐅𝒎

𝒉  𝐖𝒉
   (3) 

where 𝑾𝒉
 

 , 𝑾𝒉
 , and 𝑾𝒉

  are learnable weight matrices,

and 𝑭𝒎
𝒉  refers to the input feature of the ℎ − 𝑡ℎ attention 

head derived from 𝑭𝑚. Each head processes a feature of

dimensionality ℛ𝑃×𝐶ℎ , where 𝐶ℎ  is the number of

channels per head. It is important to note that the total 

number of channels, 𝐶 , is related to 𝐶ℎ  by the equation

𝐶 = 𝐻 × 𝐶ℎ , where 𝐻  is the total number of attention

heads. After applying the MHSA operation independently 

to each patch, the resulting output features from all patches 

are aggregated to form the final feature representation. 

The spatial window attention block focuses on capturing 

local dependencies by partitioning the feature map into 

non-overlapping spatial windows, allowing the model to 

compute self-attention within each window efficiently. 

This approach ensures that spatial relationships are 

preserved while maintaining computational feasibility for 

high-resolution feature maps. 

Channel group attention: In computer vision, self-

attention mechanisms are commonly employed to capture 

relationships between image tokens, where tokens are 

typically defined as individual pixels or small patches. 

These methods primarily gather information across spatial 

dimensions to model spatial dependencies effectively. 

Expanding upon this, we incorporate an attention 

mechanism to model complementary dependencies in the 

channel domain. This approach treats each channel as a 

distinct token, reshaping the feature map of each channel 

into a single vector. These channel tokens are then 

processed to interact with global information along the 

channel dimension. Importantly, this interaction is 

achieved with linear complexity concerning spatial 

dimensions, making it computationally efficient. 

To further optimize computational efficiency, we group 

the channels into multiple subsets and perform self-

attention within each group independently. Formally, let 𝐺 

denote the number of groups and 𝐶𝑔  the number of

channels per group, such that the total number of channels 

is given by = 𝐺 × 𝐶𝑔. By structuring the attention in this

way, the channel group attention mechanism remains 

global, enabling image-level token interactions across a 
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specific group of channels. The mathematical formulation 

of the channel group attention mechanism is as follows: 

𝒜𝐶𝐻(𝐐,𝐊, 𝐕) = {𝒜𝑔(𝐐𝑔, 𝐊𝑔, 𝐕𝑔 )}𝑔=1
𝐺

        (4) 

where the attention operation for the g-th group, 𝒜𝑔 , is

defined as: 

𝒜𝑔(𝐐𝑔, 𝐊𝑔, 𝐕𝑔 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 [
𝐐𝐠(𝐊𝑔)

𝑻

√𝐶𝑔
] 𝐕𝑔  (5) 

where  𝒈 ,  𝒈 , and  𝒈  represent the channel-wised 

image-level query, key, and value matrices of the 𝑔 − 𝑡ℎ 

group, respectively. These matrices are derived from the 

feature representations of the channels in the 𝑔 − 𝑡ℎ group. 

This formulation ensures that the attention mechanism 

operates efficiently and effectively captures global channel 

interactions, while computational complexity is reduced 

by confining attention computations to individual channel 

groups. 

C. Cross-Scale Attrntion Module: CSAM

As previously introduced, the CSA-Transformer

backbone generates multi-scale feature maps through its 

four hierarchical stages. Each stage corresponds to 

progressively coarser spatial resolutions and captures 

increasingly rich semantic abstractions. Specifically, we 

use the feature map from stage 4 ( 4) for refining the 

features from all preceding stages because it captures high-

level, semantically rich information extracted from deeper 

layers. By interacting with intermediate features ( 𝑖),  4 

can provide global contextual cues that help to enhance 

important structures and suppress noise in earlier-stage 

features. This cross-scale interaction improves the overall 

discriminative capability of the network. In addition, since 

 4 has a much smaller spatial resolution compared to other 

 𝑖 , using it as the base Key and Value in CSFM 

significantly reduces the computational cost. Formally, 

let  𝑖 ∈ ℛ  ×𝐶  represent the feature map from the 𝑖 − 𝑡ℎ
stage, where  𝑖 denotes the number of spatial tokens and 

𝐶𝑖  represents the channel dimension. Similarly, let  4 ∈
ℛ 4×𝐶4  denote the feature map of the fourth stage. To 

facilitate the refinement of  𝑖, we extract the query, key 

and value representations from  𝑖  and  4 . These are 

defined as follows: 

𝐐 = 𝐗𝑖 𝑾
 , 𝐊 = 𝐗4 𝑾

 ,  𝐕 = 𝐗4 𝑾  (6) 

where 𝑾 , 𝑾 , and 𝑾  are learnable weight matrices 

used to project the input features into the query, key, and 

value spaces, respectively. To refine the feature  𝑖 , we 

compute Cross-Scale Attention (CSA) using the query  
from stage 𝑖 and the key-value pair (𝐊, 𝐕) from stage 4. 

The cross-scale attention is mathematically expressed as: 

𝒜𝐶𝑆𝐴(𝐐𝑖 , 𝐊, 𝐕 ) = softmax [
𝐐 (𝐊)

𝑻

√𝐶
] 𝐕      (7) 

where softmax applies a normalization operation to the 

attention scores, and the resulting weighted sum of   

provides a refined representation of the feature of the 𝑖 −
𝑡ℎ stage. 

Following the computation of cross-scale attention, we 

further process the refined feature using a Feed-Forward 

(FF) transformation, implemented via a simple Multi-

Layer Perceptron (MLP) subnetwork. The final refined 

feature   𝑖 is obtained as:  

  𝑖 = 𝑓𝐶𝑆𝐴𝑀( 𝑖 ,  4) = 𝐹𝐹(𝐿𝑀(𝒜𝐶𝑆𝐴 + 𝑖)) +  𝑖   (8)

where 𝐿𝑀 denotes a layer normalization operation, and the 

residual connection (+ 𝑖) ensures stability and preserves

the original feature information. The detailed architecture 

of the CSAM is demonstrated in Fig. 1(c). 

This refinement process enables effective integration of 

the rich semantic information from the fourth stage with 

the multi-scale feature maps from preceding stages, 

enhancing the overall representational capacity of the 

network. 

D. Multi-scale Feature Fusion Module: MSFM

To enhance the refined multi-scale feature 

representations, we introduce a simple yet effective fusion 

module called the Multi-Scale Feature Fusion Module 

(MSFM). This module is designed to integrate multi-scale 

features into a unified representation that combines 

detailed spatial information with rich semantic context. 

The detailed architecture of the MSFM is demonstrated in 

Fig. 1(d). 

Particularly, the MSFM operates on the hierarchical 

features   2 ,   3 ,   4 , which are characterized by 

progressively coarser spatial resolutions, with spatial sizes 

ranging from 
𝑊

8
×

𝐻

8
to 

𝑊

32
×

𝐻

32
. To enable effective fusion, 

it is essential to unify the spatial dimensions of these multi-

scale features. This is achieved using a simple up-sampling 

block, denoted as 𝑓𝑢𝑝, which standardizes all features to

the same spatial size of 
𝑊

4
×

𝐻

4
. The up-sampling block 𝑓𝑢𝑝

consists of two vanilla convolution layers followed by a 

transpose convolution layer. This architecture allows for a 

two-fold increase in the spatial dimensions of the input 

feature while simultaneously reducing its channel 

dimension by half. The transformation process for the 

multi-scale features is as: 1) The refined feature   4, with 

an initial spatial size of 
𝑊

32
×

𝐻

32
, undergoes the up-sampling

block three times to achieve the target spatial size of 
𝑊

4
×

𝐻

4
; 2)   3 , with an initial spatial size of 

𝑊

16
×

𝐻

16
, is 

processed through 𝑓𝑢𝑝  twice to reach 
𝑊

4
×

𝐻

4
; 3)   2 , 

initially sized 
𝑊

8
×

𝐻

8
, passes through the 𝑓𝑢𝑝  once to

achieve the desired spatial resolution. These 

transformations can be formally expressed as follows: 

4
𝑇𝑟𝑎𝑛 = 𝑓𝑢𝑝

3 (  4),   3
𝑇𝑟𝑎𝑛 = 𝑓𝑢𝑝

2 (  3), 2
𝑇𝑟𝑎𝑛 = 𝑓𝑢𝑝

1 (  2)   (9)

where 𝑓𝑢𝑝
𝑛  denotes the application of the up-sampling

block 𝑛 times. The resulting transformed features  2
𝑇𝑟𝑎𝑛 ,

3
𝑇𝑟𝑎𝑛, and  4

𝑇𝑟𝑎𝑛 share the same spatial size (
𝑊

4
×

𝐻

4
). 

Following the transformation of multi-scale features to 

a unified spatial resolution, we employ channel 

concatenation to integrate these features into a single 

comprehensive representation. This concatenated feature, 
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which aggregates information from multiple scales, serves 

as the foundation for subsequent predictions. Finally, we 

apply a pointwise convolution layer to reduce the channel 

dimensionality of the concatenated feature, ensuring 

computational efficiency while retaining essential 

information. The process of multi-scale feature fusion and 

dimensionality reduction can be mathematically expressed 

as: 

= 𝑓𝑐𝑎𝑡(  2
𝑇𝑟𝑎𝑛 , 3

𝑇𝑟𝑎𝑛,   4
𝑇𝑟𝑎𝑛)  (10) 

 ̃ = 𝑓𝑝𝑐(  )  (11) 

where 𝑓𝑐𝑎𝑡 represents the channel concatenation operation 

while 𝑓𝑝𝑐 denotes the pointwise convolution operation that 

transforms    into  ̃. The detailed structure of the MSFM is

shown in Fig. 1(d). 
The resulting fused feature  ̃ is subsequently utilized 

for generating wheat head detection outputs, i.e., the heat 

maps and bounding box predictions. 

IV. EXPERIMENTAL RESULT 

A. Experimental Settings

We evaluate the proposed method on the Global Wheat

Head Detection (GWHD) dataset, a benchmark dataset 

released in 2020 [56]. The GWHD dataset comprises 4700 

high-resolution RGB images collected from various 

countries worldwide, containing approximately 190,000 

annotated wheat head instances. 

For training and evaluation, the dataset was split 

randomly into two subsets: 80% of the images were 

selected as the training set, while the remaining 20% were 

reserved for testing purposes. To ensure compatibility with 

the detection model, the input images were resized to a 

spatial resolution of 512×512 pixels. These resized images 

were processed by the detection model, which predicted a 

center heat map and the object size on a feature map with 

a downsampled spatial resolution of 128×128. 

We implemented our proposed detection model using 

the PyTorch framework on the hardware environment: 

NVIDIA RTX 3070 GPU (11 GB of VRAM). The 

software depends on Python 3.8 and Cuda 11.8. The 

detection models were trained for 300 epochs using the 

Adam optimization algorithm with a learning rate of 

1×10−4. 

B. Evaluation Metrics

To evaluate the performance of the proposed detection

model, we employed the Average Precision (AP) metric, a 

standard measure widely used in object detection tasks and 

defined for the COCO dataset evaluation protocol. The AP 

metric quantifies the model’s overall detection efficacy by 

computing the area under the Precision–Recall curve (PR 

curve). This area represents the model’s performance 

across varying confidence thresholds, offering a 

comprehensive assessment of its accuracy throughout the 

dataset. 

The precision–recall curve captures the relationship 

between precision and recall, two critical measures in 

object detection. Therein, precision refers to the proportion 

of correctly identified wheat heads (True Positives, TP) out 

of all detections made by the model, including incorrect 

ones (False Positives, FP). It evaluates the model’s 

reliability in making positive predictions. Whilst recall 

represents the proportion of actual wheat heads correctly 

identified by the model (true positives) out of the total 

number of wheat spikes present in the dataset, including 

those missed by the model (False Negatives, FN). It 

assesses the model’s ability to identify all relevant objects. 

The formulas for these calculations are as follows: 

Precision =
TP

TP+FP
 (12) 

Recall =
TP

TP+FN
 (13) 

In object detection, the AP metric is derived by 

integrating the precision values at different levels of recall, 

summarizing the model’s performance in a single scalar 

value, which is computed as: 

𝐴𝑃 = ∫ Precision(𝑅𝑒𝑐𝑎𝑙𝑙)𝑑(𝑟𝑅𝑒𝑐𝑎𝑙𝑙)
1

0
 (14) 

In this study, we adopted mAP50 as the primary 

evaluation metric. AP50 measures the average precision 

when the Intersection over Union (IoU) threshold is set to 

0.5. An IoU threshold of 0.5 signifies that a detected 

bounding box is considered a true positive if it overlaps 

with the ground truth bounding box by at least 50% of their 

union. This metric reflects the model’s ability to accurately 

localize and classify wheat spikes within the dataset. 

Furthermore, we adjust IoU threshold to higher values (0.6, 

0.7 and 0.75) to rigorously evaluate and compare the 

precise localization performance of various models. This 

adjustment serves as a critical component of the ablation 

study, enabling a more in-depth analysis of how the 

proposed components influence the models’ ability to 

accurately delineate object boundaries. 

C. Comparison with the Evaluation Metrics

In this study, we present a thorough evaluation of the

CenterFormer model for the task of wheat head detection, 

comparing its performance against ten leading object 

detection algorithms that represent the state of the art in the 

field. The comparative analysis, summarized in Table I, 

encompasses a wide range of detection paradigms to 

ensure a comprehensive assessment. These include two-

stage anchor-based frameworks such as Faster R-

CNN [21] and Mask R-CNN [57], which are known for 

their region proposal mechanisms; one-stage anchor-based 

methods, including SSD [27], YOLOv3-v5 [24], and 

EfficientDet [58], which offer faster inference through 

direct bounding box regression; the anchor-free models 

like CenterNet [29] and an enhanced version of CenterNet 

integrated with Multi-Scale Feature Fusion (MSFF) [59]; 

two Transformer-based models: WheatFormer [53] and 

CETR [54]. In our experiments, we maintained the original 

input resolutions as reported in the respective papers to 

ensure a fair and consistent comparison with their 

officially published results. The hierarchical SCA-

Transformer backbone of our CenterFormer is configured 
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as ({1,1,9,1}, C=96). Moreover, since the source code for 

CETR [59] has not been released, we reimplemented 

CETR based on the description in [59], integrating 

ResNet18 for multi-scale feature extraction, Feature 

Pyramid Networks (FPN) [24] for multi-scale feature 

fusion, and ViT-L/16 for feature refinement, instead of 

ViT-H/16 as originally used in [59]. 

TABLE I. COMPARED DETECTION RESULTS WITH THE STATE-OF-THE-ART DEEP MODELS 

Methods mAP50 Input Resolution FLOPS (G) Param. (M) 

FasterRCNN [10] 0.540 600×600 162.4 42.1 

MaskRCNN [57] 0.659 600×600 170.1 74.7 

YOLOv3 [15] 0.581 608×608 59.1 59.1 

YOLOv4 [16] 0.639 608×608 53.8 63.9 

YOLOv5 [17] 0.667 608×608 45.3 21.2 

SSD300 [12] 0.649 300×300 35.2 36.1 

SSD512 [12] 0.648 512×512 99.5 36.1 

EfficientDet [58] 0.701 512×512 20.7 35.3 

CenterNet [26] 0.689 512×512 70.2 16.6 

CenterNet+MSFF [59] 0.789 512×512 179.5 56.5 

WheatFormer [53] 0.725 512×512 99.7 60.1 

CETR [54] 0.804 512×512 261.6 220.3 

Ours (Base) 0.842 512×512 82.9 47.1 

To quantitatively evaluate detection performance, we 

employed mAP50 to measure the trade-off between 

precision and recall. Our proposed CenterFormer model 

achieved a noteworthy mAP50 score of 0.837, surpassing 

all other evaluated models. This result underscores the 

model’s advanced detection capabilities, particularly in 

accurately localizing wheat heads across a variety of 

complex scenarios, including variations in density, scale, 

and environmental conditions. Specifically, compared to 

the recently proposed CenterNet with ViT refinement 

(CETR) [59], our proposed CenterFormer achieves about 

a 4% improvement in mAP50, while also having fewer 

parameters and lower FLOPs. These findings highlight the 

potential of CenterFormer as a robust and efficient solution 

for wheat head detection, with implications for advancing 

precision agriculture practices and automated crop 

monitoring systems. Fig. 2 manifests the visualization of 

detection results using our proposed method and six state-

of-the-art detection models on three representative 

samples. 

Fig. 2. Visualization of detection results using our proposed method and six state-of-the-art detection models. (Green: Ground-truth; Red: Detection). 

Furthermore, to verify potential bias in the dataset split, 

we divided the GWHD dataset into five groups and 

employed cross-validation to evaluate the detection 

performance across all groups. We achieved an average 

mAP50 of 0.844 with a standard deviation of 0.016 over the 

five runs, indicating that the detection performance is 

relatively stable across different dataset splits. 

Despite the great performance improvements achieved 

with our proposed CenterFormer, some wheat heads with 

unclear appearances or severe occlusion remain difficult to 

detect correctly. Fig. 3 presents examples of both 

successful and failed detection cases. In successful cases, 

the wheat heads are relatively distinct from the background 

and have clear visual boundaries, even under moderate 

variations in size, orientation, or lighting conditions. 

CenterFormer effectively captures the spatial patterns and 

distinguishes the wheat heads despite minor occlusions or 

overlaps. In the failed cases, detection errors mainly occur 

due to severe occlusions, or wheat heads with blurred or 

indistinct appearances. In such challenging conditions, the 

model struggles to differentiate wheat heads from 

surrounding noise, leading to missed detections. 
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Fig. 3. Examples of successful and failed cases (Green: Ground-truth; Red: Detection). Top: successful examples; Bottom: examples with different 

degrees of failure detection. 

D. Hyperparameter Sensitivity Analysis in SCA

Backbone

Following the experimental setup in [49], we fixed the

patch size and the channel number per head, obtaining 𝑃 =
49 and 𝐶ℎ = 32 in the spatial window attention while set

the channel number per group as 𝐶𝑔 = 32 in the channel

group attention for the micro SCA architecture. However, 

we varied the number of SCA-Transformer blocks and the 

overall channel dimensions per stage using three 

configurations: ({1, 1, 3, 1}, 𝐶 = 96) , ({1, 1, 9, 1}, 𝐶 =
96) and ({1, 1, 9, 1}, 𝐶 = 128). With the channel number

per head (𝐶ℎ = 32) and per group (𝐶𝑔 = 32) fixed, these

configurations result in different numbers of attention

heads and groups across the network stages. Accordingly,

the three settings correspond to three model variants:

Small-SCA, Base-SCA, and Large-SCA. We conducted

ablation experiments with these three variants, and the

results are summarized in Table II, highlighting their

impact on detection performance (AP), computational

complexity (FLOPs), and model size (number of

parameters). This analysis illustrates the trade-offs

between accuracy and efficiency, providing empirical

justification for the final model configuration adopted in

CenterFormer.

E. Ablation Experiments

As previously introduce, the primary objective of this

study is to explore the feasibility of substituting 

convolutional-based structures with transformer-based 

blocks in deep learning architectures. To evaluate the 

efficacy of the learned feature representations at various 

stages within the network, we utilized both the 

conventional ResNet50 model and our proposed SCA-

Transformer backbone. Features were extracted from these 

architectures at the second to fourth stages (blocks) of 

processing, denoted as S2, S3 and S4, respectively, and 

their impact on detection performance was assessed. The 

evaluation was conducted using IoU thresholds of 0.5, 0.6, 

0.7, and 0.75. The comparative detection results are 

presented in Table III(a). A detailed examination of 

Table III(a) reveals that the SCA-Transformer backbone 

demonstrates a remarkable improvement in detection 

performance across multiple scales of feature maps when 

compared to the ResNet50 backbone. These results 

underscore the potential of our proposed SCA-Trans 

backbones in enhancing feature representation and 

detection accuracy.  

TABLE II. ABLATION STUDY WITH DIFFERENT CONFIGURATIONS OF 

THE SCA-TRANSFORMER BACKBONE 

Backbones mAP50 FLOPS (G) Param. (M) 

Small-SCA 0.834 66.1 30.7 

Base-SCA 0.842 82.9 47.1 

Large-SCA 0.837 142.4 83.2 

TABLE III. ABLATION EXPERIMENTS 

Performance Comparisons Methods mAP50 mAP60 mAP70 mAP75 

The used feature maps at 

different stages 

ResNet50-S2 0.483 0.402 0.213 0.147 

SCA-Trans-S2 0.742 0.599 0.355 0.224 

ResNet50-S3 0.664 0.515 0.293 0.176 

SCA-Trans-S3 0.829 0.705 0.454 0.301 

ResNet50-S4 0.689 0.561 0.321 0.193 

SCA-Trans-S4 0.828 0.703 0.449 0.296 

The MSFM and CSAM 

ResNet50+MSFM34 0.775 0.646 0.392 0.245 

SCA-Trans+MSFM34 0.822 0.707 0.464 0.312 

ResNet50+MSFM234 0.761 0.643 0.408 0.255 

SCA-Trans+MSFM234 0.826 0.715 0.464 0.315 

SCA-Trans+MSFM234+CSAM 0.842 0.731 0.478 0.322 

Subsequently, we assess the effectiveness of the 

proposed Multi-Scale Fusion Module (MSFM) by 

combining the features from different stages of the 

network. Specifically, we aggregated the feature maps 

from stages 3 and 4, as well as from stages 2, 3, and 4, for 

both the ResNet50 and our SCA-Transformer backbones. 

The comparative results of these aggregations are 

presented in Table III(b), where the performance of each 
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method is evaluated across these different feature 

combinations. An analysis of the results presented in 

Table III(b) reveals that the aggregation of features usually 

enhances detection performance especially for the mAP 

with high IoU values. This improvement underscores the 

effectiveness of combining feature maps from multiple 

stages of the network. Furthermore, Table III(b) also 

highlights the impact of incorporating the CSFM for 

feature refinement, illustrating its contribution to further 

enhancing the detection accuracy. To evaluate the effect of 

the CSFM module, we visualize the feature maps:  2,  3 

and   4 before applying CSFM, and    2,   3 and   4 after 

applying CSFM, as shown in Fig. 4. These visualizations 

clearly highlight how CSAM enhances important regions 

while suppressing less informative areas. 

Fig. 4. Visualization of the feature maps before/after CSFM. 

F. Discussions

While our proposed CenterFormer demonstrates strong

performance on wheat head detection tasks, we 

acknowledge that computational efficiency 

(approximately twice the computational cost of YOLOv5) 

and deployability still require improvement, particularly 

for real-world applications on resource-constrained 

platforms such as edge devices. Our current 

implementation employs a hierarchical Transformer 

backbone combined with multi-scale feature processing, 

which, while effective, introduces a non-negligible 

computational overhead. In our experiments, the Small-

SCA configuration achieves comparable performance to 

the base setup while reducing computational cost by 

approximately 25%, suggesting that a smaller backbone 

may lead to more deployable detection models in real 

scenarios. To address deployment challenges, several 

potential optimization strategies such as model 

compression/acceleration, efficient backbone alternatives 

(e.g. MobileViT, EfficientFormer), edge-specific 

adaptation are anticipated in the future work.  

Although our work primarily focuses on wheat head 

detection, the architecture and principles of our approach 

hold significant promise for extension to a variety of other 

agricultural tasks. First, the ability to identify fine-grained 

spatial patterns makes our method particularly well-suited 

for plant disease detection, where subtle visual symptoms 

must be accurately recognized across varying scales and 

growth stages. Similarly, the multi-scale feature extraction 

and fusion strategies are applicable to crop yield 

estimation, where large-scale and heterogeneous spatial 

information needs to be processed efficiently. Moreover, 

the flexible and modular design of our approach allows for 

straightforward adaptation to other remote sensing-based 

agricultural tasks through fine-tuning on the relevant 

datasets. 

In future work, we plan to explore these extensions and 

systematically evaluate the generalization ability of our 

method across diverse agricultural scenarios. Such efforts 

will further highlight the versatility and practical value of 

our framework in advancing precision agriculture. 

V. CONCLUSION

In this study, we have proposed a novel approach, 

CenterFormer, for automatic wheat head detection that 

effectively addresses the challenges posed by dense object 

annotations. By treating the wheat head as a single point 

and leveraging the long-range dependency modeling 

capabilities of the Transformer architecture, our method 

can learn multi-scale features crucial for accurate head 

prediction. The hierarchical Transformer backbone with 

self-attention mechanisms in both spatial and channel 

domains, combined with window-based and group-wise 

attention strategies, ensures efficient feature extraction 

while maintaining linear complexity. Moreover, the 

introduction of a fusion block for multi-scale feature 

integration enhances both detailed spatial information and 

semantic context, significantly improving wheat head 

detection performance. Our extensive experiments on the 

Global Wheat Head Detection (GWHD) dataset 

demonstrate that CenterFormer outperforms existing state-

of-the-art detection models, highlighting its effectiveness 

and potential for real-world applications in precision 

agriculture. Future work will focus on further improving 

the scalability and robustness of the model across different 

environments and crop types. 
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