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Abstract—Image segmentation is a crucial task in computer 

vision techniques, serving as a fundamental method for 

partitioning images into detailed segments that facilitate 

analysis and retrieval. This paper examines the performance 

of three YOLO models—particularly YOLOv5, YOLOv8, 

and YOLOv11—in nature image segmentation, specifically 

focusing on reptile images. The experiment evaluates 

accuracy, precision, recall, mean Average Precision (mAP), 

and computational efficiency using a diverse dataset of reptile 

images captured under varying environmental conditions. 

In the conducted experiments, we performed comparative 

tests involving the three models, yielding distinct outputs. 

Each of these models has its advantages, highlighting the best 

performance traits of each. YOLOv5 is user-friendly in 

implementation, YOLOv8 operates effectively without 

anchors, and YOLOv11 exhibits greater efficiency compared 

to the other two models. The results indicate that YOLOv11 

has made significant advancements in architecture and 

training methods, establishing it as a versatile option for a 

range of computer vision tasks. 

Keywords—computer vision, yolo, image segmentation, 

nature detection 

I. INTRODUCTION

Image segmentation is a computer technique that 

divides a digital image into pixels by breaking the visual 

data into specially shaped segments. Image segmentation 

is a further development of image categorization and 

object detection. The importance of image segmentation 

techniques is to speed up and improve image processing. 

This computer method locates the foreground of the 

image’s main object. Users will only analyze objects in the 

segmented image. Image segmentation is used to identify 

the foreground of the main object in the image, making it 

easier for users to study its location, identify curved lines, 

and more, and then display it in a single-color image. This 

ability is crucial in various fields; some examples are in 

health [1–4], autonomous vehicle [5], and analyzing 

natural images [6–11]. Analysis of natural images, such as 

identifying reptiles in their natural habitat, can support 

important efforts in biodiversity monitoring and 

conservation studies. However, segmenting animals in the 
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wild is a challenging task due to factors such as natural 

camouflage, complex backgrounds, varying lighting 

conditions, and partial occlusion of the subject.  

Over the years, image segmentation has been an active 

area of research, and many different methods have been 

developed to solve this difficult problem. Every year, 

researchers come up with new ways to improve accuracy 

and effectiveness. The You Only Look Once (YOLO) 

model family [12] has been a powerful solution known for 

its fast and accurate real-time object recognition. In recent 

years, this family has changed a lot. YOLOv5 is known for 

being easy to use and less space-consuming. YOLOv8, the 

next version of the YOLO series, introduced several 

improvements, including a detection system that does not 

require anchors. YOLOv11, the current generation, aims 

for better efficiency and accuracy by using a better 

architecture and training method. However, despite the 

many advances and praises for each model, there is no 

direct comparison of the performance of these three 

specific versions (YOLOv5, YOLOv8, and YOLOv11) for 

reptile segmentation in natural environments in the 

scientific literature. Although some studies have compared 

YOLO models, they often focus on different domains or 

fail to cover all three important iterations. It is unclear what 

the trade-offs are between accuracy, memory, and 

computational efficiency for this specific and complex 

wildlife analysis task. This study aims to conduct a 

comprehensive performance comparison of YOLOv5, 

YOLOv8, and YOLOv11 models, with a special emphasis 

on their application to reptile image segmentation. This 

analysis is done to address the research gap. This study will 

compare and evaluate key performance metrics such as 

accuracy, recall, and mean Average Precision (mAP) by 

training and testing these algorithms on a diverse reptile 

dataset in various natural contexts. The goal of this effort 

is to offer in-depth empirical information on the 

advantages and disadvantages of each modelling approach. 

Ultimately, this comparison will serve as a practical 

reference for researchers and practitioners in selecting the 

most appropriate model for wildlife image analysis and 

other comparable computer vision tasks. 
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II. LITERATURE REVIEW

Computer vision has transformed wildlife detection and 

monitoring by facilitating the automation of animal 

identification through camera traps and natural 

imagery [13–15]. Deep learning technology has 

demonstrated exceptional proficiency in accurately 

identifying diverse animal species. Automated wildlife 

monitoring systems employ sophisticated machine 

learning methodologies to enhance conservation efforts by 

diminishing manual labor and increasing identification 

precision. 

A. The Evolution and Comparative Application of

YOLO Models

Several researchers have discussed image segmentation 

methods, focusing on the YOLOv5, YOLOv8, and 

YOLOv11 models, each of which offers distinct 

advantages. YOLOv5, particularly its lightweight version 

YOLOv5s, is often used as a strong baseline but its 

performance on small or occluded objects can be limited. 

Addressing this limitation, a study by Zang et al. [16] 

proposed an enhancement by integrating attention modules, 

specifically the Efficient Channel Attention (ECA) and 

Global Attention Mechanism (GAM), into the YOLOv5s 

architecture. The improved model achieved an accuracy of 

71.61%, which is 4.95% higher than the standard 

YOLOv5s model. Following YOLOv5, the release of 

YOLOv8 introduced key architectural changes such as an 

anchor-free design. A study by Reis et al. showcased the 

capabilities of YOLOv8 in real-time flying object 

detection, confirming its high efficiency and performance. 

YOLOv8 achieves better mAP50 compared to YOLOv5 

across various categories in the RF100 dataset [17]. The 

evolution continues with YOLOv11, which is designed to 

further enhance efficiency. Recent research, such as the 

study by Alif [18], provides a detailed analysis of 

YOLOv11 for vehicle detection in intelligent 

transportation systems. This work demonstrates that 

YOLOv11 introduces architectural improvements such as 

advanced spatial attention mechanisms and optimized 

backbone structures that significantly boost detection 

accuracy and speed, especially for smaller and occluded 

vehicles, compared to previous YOLO versions [18]. 

YOLO11 achieved mAP50 of 76.8%, surpassing YOLOv8 

(73.9%) and YOLOv10 (74.3%). 

B. Deep Learning for Wildlife Image Segmentation

Deep learning techniques, especially Convolutional

Neural Networks (CNNs), have demonstrated promising 

outcomes in wildlife detection and species recognition [19, 

20]. Beginning with conventional CNN architectures with 

image processing [21], including AlexNet [22], VGG [23], 

ResNet [24], and progressing to more sophisticated models 

such as U-Net, and SegNet [20].  

A novel approach involves a two-stage method for 

wildlife instance segmentation that integrates object 

detection with contour estimation. This method enhances 

both species recognition and segmentation accuracy. It 

employs Few-Shot Object Detection (FSOD) for 

generating initial bounding boxes and identifying species. 

Additionally, a deep snake algorithm is utilized for contour 

estimation, refining the initial bounding box to better 

conform to the animal’s shape. This proposed method 

exhibits improved performance, particularly when dealing 

with challenging images [25]. 

Another technique is to use YOLOv5 with 

enhancements including the introduction of SPPF, 

improved feature pyramid structure, GSConv, and 

VoVGSCSP module, all of which are intended to improve 

detection speed and accuracy. The proposed enhancements 

have shown significant improvements in wildlife 

recognition, accuracy, and speed. The model is designed 

to be lightweight and can be used on mobile devices, 

making it practical for real-world applications [26]. 

C. Summary

From the literature, it is evident that while numerous 

studies have benchmarked YOLO models, most 

comparisons between YOLOv5, YOLOv8, and YOLOv11 

have been conducted in domains such as medical imaging 

or transportation. A specific, empirical study evaluating 

their trade-offs for the nuanced task of reptile 

segmentation in natural environments remains an open 

area for investigation. This study aims to fill that specific 

gap. 

III. MATERIALS AND METHODS

Fig. 1. Diagram of the Experimentation Method 

Based on Fig. 1, this research will be conducted in five 

stages: dataset collection, preprocessing, data splitting, 

modelling, and evaluation. The evaluation phase will 

involve assessing the model’s performance using various 

metrics to ensure its accuracy and reliability. This 

comprehensive approach aims to provide valuable insights 

and improve overall outcomes in the research process. 

A. Dataset

This work uses the publicly available reptile dataset

from Roboflow Universe, which consists of two classes: 

“abnormal of reptiles” and “normal of reptiles” [27]. This 

dataset offers a substantial and varied compilation of 

annotated images, making it suitable for training and 
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evaluating image segmentation algorithms. Next, we 

randomly select 200 images from the dataset. This dataset 

will provide a comprehensive evaluation of the robustness, 

accuracy, and flexibility of the YOLOv5, YOLOv8, and 

YOLOv11 algorithms in segmenting reptiles under various 

backgrounds, lighting conditions, and image qualities, 

despite the constraints imposed by the data volume. Fig. 2 

displays some example images from the dataset. The 

richness of the dataset ensures that our tests will accurately 

represent the real-world complexity, thus yielding 

important insights into the efficacy of these segmentation 

techniques.  

 

 

Fig. 2. Example image from dataset.   

B. Preprocessing 

To make an appropriate comparison of the accuracy of 

the three algorithms, we will apply the same preprocessing 

processes to the dataset input for each of the methods. 

Utilizing the same preprocessing ensures that any 

increases in accuracy are a result of the algorithms 

themselves, rather than being the result of variations in the 

way we prepared the data. The Roboflow picture resizing 

tool was utilized throughout the training phase to resize 

each image contained within the dataset to a resolution of 

1024 by 1024 pixels. 

C. Data Splitting 

After the preprocessing step, we separated the dataset 

into three sets: training, testing, and validation. We 

assigned 60% of the dataset to training, 20% to testing, and 

20% to validation. During the training phase, the testing 

set will be totally hidden from view, while the training and 

validation set will be used only for the purpose of training 

each of the models. With the help of the training and 

validation set, the models will be able to learn relevant 

features and patterns, while the testing set will serve as a 

benchmark to evaluate how well each algorithm performs 

under standardized conditions. With the help of this 

division, we can evaluate the models on data that they have 

never encountered before, which enables us to provide an 

objective assessment of the generalization performance of 

each technique. 

D. Modelling 

All models were trained using their respective 

Ultralytics frameworks. We utilized a transfer learning 

methodology by initializing the model with pre-trained 

weights derived from the COCO dataset. To provide an 

equitable comparison, identical training settings were 

uniformly implemented throughout the training of all 

models (YOLOv5L, YOLOv8L, and YOLOv11L). Each 

model underwent training for 200 epochs with a batch size 

of 8. All input images were scaled to a resolution of 

1024×1024 pixels. We employed the default training setup 

of the framework, which featured the AdamW optimizer 

and an initial learning rate of 0.01. All training procedures 

were conducted on an NVIDIA Tesla T4 GPU within the 

Google Colaboratory environment. 

E. Model Evaluation 

To evaluate the segmentation performance of each 

algorithm, we will use three key metrics: precision, recall, 

and mean Average Precision (mAP). These metrics 

provide a comprehensive view of each algorithm’s ability 

to detect objects accurately and consistently within the 

images. The terms used are True Positives (TP), False 

Positives (FP), and False Negatives (FN). 

• Precision is calculated as the ratio of TP to the total 

predicted positives (TP + FP). It quantifies how 

often the algorithm’s detections are correct when it 

labels an object as positive. This metric is 

represented by the formula: 

          Precision = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 () 

• Recall measures the ratio of TP to actual positives 

(TP + FN). This metric assesses how well the 

algorithm captures all relevant instances of the 

objects in the dataset. The formula for recall is: 

        Recall = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 () 

• Mean Average Precision (mAP) is a metric used to 

measure the performance of a model whose task is 

to detect an object and retrieve information from 

images. Mean Average Precision (mAP) itself is a 

performance metric that is often used in evaluating 

a machine learning model. Mean Average 

Precision (mAP) combines precision and recall 

across various threshold values to summarize the 

algorithm’s overall segmentation accuracy: 

mAP = 
1

𝑛
∑ 𝐴𝑃𝑖

𝑛
𝑖=1  () 

i = class of object being detected 

APi = Average Precision of class i 

n = the number of classes. 
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IV. RESULT AND DISCUSSION 

Different learning characteristics for each model are 

shown in Table I. As epochs progress, YOLOv5 exhibits a 

steady learning trajectory, with improvements in both 

precision and mAP metrics. There appears to be trouble 

maintaining performance balance, as evidenced by the 

recall metric’s instability, which dropped from 0.775 at 

epoch 100 to 0.625 at epoch 180 before slightly recovering. 

On the other hand, YOLOv8 exhibits quick convergence, 

reaching a high precision performance of 0.748 by the 

100th epoch. After this point, performance tends to plateau 

and, in some metrics, declines slightly, indicating that 

further training provides little benefit and that the model 

has reached its peak performance rather early. On the other 

hand, up to epoch 200, YOLOv11 shows the best training 

profile, with steady and consistent improvements in all 

metrics.  

TABLE I. PERFORMANCE OF YOLOV5, YOLOV8 AND YOLOV11 

DURING TRAINING 

Model 
Metrics 

Epoch Precision Recall mAP50 mAP95 

YOLOv5 

100 0.34301 0.775 0.4514 0.1643 

180 0.54135 0.625 0.57418 0.20731 

200 0.57232 0.675 0.63311 0.23331 

YOLOv8 

100 0.74838 0.7 0.66832 0.20179 

180 0.72704 0.75 0.6327 0.21612 

200 0.73458 0.725 0.60152 0.2058 

YOLOv11 

100 0.35694 0.6 0.47232 0.15011 

180 0.62134 0.65648 0.58909 0.20183 

200 0.68307 0.725 0.67871 0.25188 

 

More complex results are obtained by comparing peak 

performance at the end of training (epoch 200). With the 

highest mAP50 of 0.67871 and the highest mAP95 of 

0.25188, YOLOv11 showed exceptional performance. 

Interestingly, at epoch 200, YOLOv8 had the lowest 

mAP50 score (0.60152) out of the three models, despite 

having the highest precision (0.73458). The results show a 

clear trade-off: YOLOv8 has a low false positive rate and 

high detection accuracy, but it is not as good as YOLOv11 

at identifying all relevant objects. While YOLOv11 

requires more epochs to reach its superior peak potential, 

YOLOv8’s rapid convergence suggests that this model can 

achieve competitive performance more quickly. 

TABLE II. PERFORMANCE OF YOLOV5, YOLOV8 AND YOLOV11 

DURING TESTING 

Model 

Metrics 

Inference 

Time (ms) 
Precision Recall mAP50 mAP95 

YOLOv5 85.0 0.549 0.7 0.543 0.22 

YOLOv8 119.1 0.629 0.7 0.617 0.194 

YOLOv11 97.4 0.559 0.725 0.706 0.196 

 

Table II presents the outcomes of the testing conducted 

with the test data. YOLOv11 exhibits the highest mAP50 

accuracy, recorded at 0.706. Nonetheless, considerations 

of computational efficiency mitigate this elevated 

performance. YOLOv5 is the fastest model, exhibiting an 

inference time of 85.0 ms, though it has the lowest mAP50 

accuracy at 0.543. In contrast, the most accurate model, 

YOLOv11 (97.4 ms), exhibits slower performance than 

YOLOv5, yet is considerably faster than YOLOv8 (119.1 

ms), the slowest model in this evaluation. 

A trade-off exists between precision and recall. 

YOLOv8 demonstrates the highest precision at 0.629, 

indicating a low incidence of false detections. YOLOv11 

demonstrates the highest recall at 0.725, indicating its 

superior capability in detecting all objects. In the mAP95 

metric, YOLOv5 achieved the highest score of 0.22, 

indicating that when this model successfully detects an 

object, its prediction box localization is frequently 

accurate and closely aligned with the original object. 

This finding underscores that the selection of the 

optimal model is contingent upon the prioritization criteria 

specific to the application, including factors such as the 

importance of overall accuracy versus inference speed, or 

the need to minimize false positives versus achieving 

precise image localization.  

To further contextualise these findings, we compared 

them with results from a broader benchmark study. Jegham 

et al. (2024) [28] conducted a full benchmark test of 

several versions of YOLO, from YOLOv3 to YOLOv12, 

on various object recognition tasks, including tasks with 

objects of various sizes and aspect ratios. YOLOv11 was 

one of the most consistent models in this study in terms of 

balancing accuracy (mAP50 of 0.893 and mAP50-95 of 

0.795) and computational efficiency (inference time as low 

as 2.4 ms for model “m”). This conclusion is consistent 

with the results in Table II, which show that YOLOv11 has 

the largest mAP50, although its inference time is slightly 

longer than YOLOv5. 

A limitation of this study is that the model was only 

evaluated based on a single training run, consequently 

although the results show clear performance trends, we 

cannot formally claim statistical significance for the 

observed differences. Furthermore, the reliance on a 

relatively small dataset and focus on a single object class 

(reptiles), which may limit the ability to generalize the 

findings to a more diverse domain. Additionally, we did 

not perform hyperparameter optimization, which may 

affect the peak performance of each model due to the 

limited computing power available. Nevertheless, this 

study provides an initial basis for further research in this 

area.  

V. CONCLUSION 

This study has conducted a thorough performance 

evaluation of YOLOv5, YOLOv8, and YOLOv11 models 

in the context of reptile image segmentation inside a 

realistic setting. The primary findings indicate that no 

singular model outperforms in all criteria. YOLOv11 

demonstrated the highest overall accuracy (mAP50), 

although YOLOv8 excelled in precision, and YOLOv5 

provided the fastest inference speed. This study’s primary 

contribution is the validation of a distinct trade-off among 

accuracy, precision, and computing efficiency, providing 
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a realistic framework for researchers to select the design 

that optimally aligns with their application requirements. 

This investigation has many limitations that should be 

acknowledged. The primary restriction is that the 

assessment relies on a solitary training iteration, therefore 

precluding formal assertions regarding the statistical 

significance of the performance disparities. The utilization 

of a relatively limited dataset and concentration on a 

singular object class constrains the generalizability of 

these findings to a broader context. 

Subsequent study may investigate the efficacy of 

YOLOv11, YOLOv8, and YOLOv5 by evaluating their 

effectiveness across various factors, such as reduced 

epochs, differing learning rates, and larger, more intricate 

datasets. Such research can yield profound insights into the 

trade-offs among model efficiency, accuracy, and training 

duration. A possible avenue for research is to assess these 

models on datasets containing numerous objects for 

segmentation, which would evaluate their capacity to 

manage overlapping instances, intricate object interactions, 

and varied background conditions. Furthermore, 

evaluating these models on specialized datasets tailored for 

industries, such as medical imaging, autonomous driving, 

or agricultural analysis, helps elucidate their strengths and 

drawbacks in specific applications. Integrating criteria 

such as precision, recall, mean Average Precision (mAP), 

and computing efficiency might enhance the assessment of 

their effectiveness in practical applications. 
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