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Abstract—This study analyzes traditional and deep-
learning-based feature detectors and descriptors for 
Unmanned Aerial Vehicle (UAV) image stitching under 
perspective distortion. Traditional methods, including Scale-
Invariant Feature Transform (SIFT), Speeded-Up Robust 
Features (SURF), and Accelerated-KAZE (AKAZE), 
achieve high keypoint detection and matching accuracy but 
struggle with geometric distortions, leading to artifacts such 
as ghosting and misalignment in complex UAV scenes. 
Deep-learning-based approaches, such as SuperPoint, 
Adaptive and Lightweight Key Point Detector (ALIKED), 
and Deep Image Structure Keypoints (DISK), offer superior 
alignment accuracy and visual coherence by detecting fewer 
but more robust keypoints. DISK and ALIKED 
demonstrate high spatial consistency, reducing perceptual 
artifacts as validated by Perceptual Image Quality 
Evaluator (PIQE), Naturalness Image Quality Evaluator 
(NIQE), and Blind/Referenceless Image Spatial Quality 
Evaluator (BRISQUE) metrics. The results indicate that 
deep-learning-based detectors outperform traditional 
methods in UAV image stitching under perspective 
distortions. Future work will explore hybrid models that 
combine the strengths of both approaches to enhance 
stitching accuracy and computational efficiency. 

Keywords—stitching, feature detector and descriptor, 
perspective distortion, Unmanned Aerial Vehicle (UAV) 
images, no-reference metrics 


I. INTRODUCTION

In the realm of modern aerial imaging and remote 
sensing, Unmanned Aerial Vehicles (UAVs) have 
become indispensable tools for capturing high-resolution 
imagery of landscapes and complex scenes. The rapid 
expansion of UAV technology has led to an 
unprecedented influx of image data, which necessitates 
efficient and accurate image stitching methods to create 
seamless, panoramic views that are crucial for a wide 
range of applications. Image stitching, however, poses 
significant challenges when working with UAV imagery 
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due to perspective distortions, which arise from the 
varying altitudes, angles, and flight trajectories at which 
these images are captured [1]. These distortions, often 
exacerbated by the dynamic and unpredictable movement 
of UAVs, demand robust feature detection and matching 
techniques capable of accommodating diverse image 
transformations. 

This study focuses on the critical task of feature-based 
stitching for Unmanned Aerial Vehicle (UAV) images, 
emphasizing a comparative analysis of various feature 
detectors and descriptors, both low-level and deep 
learning-based, see Table I. As UAV technology 
continues to evolve and its applications expand, the 
findings from this study will be instrumental in 
optimizing the quality and accuracy of stitched images. 
This has broad implications for various real-world 
applications, including environmental monitoring, 
disaster response, agriculture, and urban planning. The 
insights gained will support the development of new 
algorithms and techniques tailored to the unique 
challenges of UAV-acquired imagery, especially in 
scenarios with significant perspective scene distortions. 

TABLE I. FEATURE DETECTORS AND DESCRIPTORS 

Algorithm Detector Descriptor Type 
SIFT Yes Yes

Traditional 
SURF Yes Yes

MinEigen Yes Yes 
BRISK Yes Yes
AKAZE Yes Yes

DISK Yes Yes
Deep 

Learning 
ALIKED Yes Yes

SUPERPOINT Yes Yes 

Feature descriptors play a crucial role in image 
matching and alignment, forming the backbone of 
numerous stitching algorithms [2]. An in-depth 
understanding of the performance characteristics, 
computational demands, and robustness of different 
feature descriptors—such as Scale-Invariant Feature 
Transform (SIFT), Speeded-Up Robust Features (SURF), 
Oriented FAST and Rotated BRIEF (ORB), 
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SUPERPOINT, and Adaptive and Lightweight Key Point 
Detector (ALIKED)—is essential for optimizing the 
accuracy, speed, and reliability of stitched panoramas, 
particularly in the presence of challenging scene 
distortions.  

Feature-based stitching algorithms, particularly those 
employing RANSAC for homography estimation and 
bundle adjustment for error minimization, have been 
widely validated in the literature [3, 4] and through 
extensive experimental results in various datasets, 
demonstrating their effectiveness in reconstructing 
seamless mosaics from multiple overlapping images. 
These algorithms play a pivotal role in compensating for 
distortions and enhancing overall image quality by 
aligning images with minimal ghosting and misalignment 
artifacts. Through a detailed performance assessment of 
feature descriptors within these stitching algorithms, this 
research aims to advance the precision and computational 
efficiency of image mosaicking for UAV applications. 
Specifically, the study evaluates the effectiveness of 
descriptors such as SIFT, SURF, ORB, and newer, deep 
learning-based descriptors like SuperPoint, DISK, and 
ALIKED. These descriptors are tested on their robustness 
to various distortions, including scale, rotation, affine 
transformations, and illumination changes, thereby 
providing a comprehensive overview of each method’s 
suitability for UAV imagery.  

The primary objectives of this research are to explore 
and evaluate feature descriptors utilized in stitching UAV 
images, specifically in scenarios with perspective scene 
distortions. However, the variations in altitude, pitch, roll, 
and yaw introduce complex spatial transformations in the 
captured images. These transformations not only 
complicate image alignment but also challenge traditional 
stitching methods, which are generally designed for 
planar scenes with minimal perspective changes [5–7]. 

By conducting a rigorous performance analysis, this 
study contributes to advancing image stitching techniques 
applicable in the fields of aerial photography and remote 
sensing. UAV-acquired images are often subject to 
geometric and radiometric distortions due to factors such 
as the interplay between the camera sensor, lens 
characteristics, and three-dimensional scene 
structure  [8,  9]. UAVs, commonly referred to as drones, 
are widely used in environmental monitoring, disaster 
assessment, and precision agriculture due to their ability 
to capture high-resolution aerial images with flexible 
deployment [10, 11].  

This paper is structured to offer an in-depth 
understanding of the topic. Section II provides a detailed 
literature review, examining the state-of-the-art 
techniques in feature descriptors for feature-based 
stitching of UAV images with scene distortions. 
Section III outlines the feature detectors and descriptors 
applied to pairwise UAV image stitching, followed by an 
evaluation of image quality using both subjective and 
objective metrics, including metrics for geometric 
alignment accuracy and perceptual quality. The findings 
underscore the impact of each feature descriptor’s 
strengths and limitations in dealing with the challenges 

unique to UAV-based image stitching, paving the way for 
more robust and efficient solutions in this rapidly 
evolving field. 

II. LITERATURE REVIEW

In computer vision, feature descriptors are critical 
components that enable the identification, 
characterization, and comparison of key features within 
images, facilitating robust image matching and 
alignment. This section provides a detailed overview of 
various feature descriptors, with a particular emphasis on 
their applicability to UAV image stitching. Additionally, 
the discussion focuses on the effectiveness of these 
descriptors in addressing perspective distortions often 
encountered in UAV-acquired imagery due to variations 
in altitude, orientation, and camera angle. 

A. Low-Level Feature Detectors and Descriptors

Traditional feature descriptors form the foundation of
many computer vision and image processing applications, 
including image stitching, object recognition, and scene 
reconstruction. Their role is critical in detecting and 
matching keypoints across images to ensure coherent 
mosaicking. In UAV image stitching, where scene 
distortion, illumination variation, and changes in scale 
and viewpoint are common, selecting appropriate 
descriptors is essential for accurate alignment and high-
quality results.  

Among traditional descriptors, the Scale-Invariant 
Feature Transform (SIFT) stands out for its robustness to 
scale, rotation, and illumination changes. SIFT remains a 
go-to solution for UAV image stitching in scenarios 
involving varying altitudes and camera angles, 
consistently delivering stable keypoint matches under 
complex conditions [12], as illustrated in Fig. 1. 

Fig. 1. Feature point matching using SIFT. 

The Speeded-Up Robust Features (SURF) descriptor 
offers a good balance between accuracy and 
computational efficiency, making it well-suited for UAV 
applications requiring real-time performance. Its 
resilience to scale and transformation helps maintain 
accurate matches across dynamic scenes [13], as 
illustrated in Fig. 2. 

The Minimum Eigenvalue (MinEigen) corner detector 
provides a fast and efficient method for identifying 
prominent image features, making it valuable for time-
sensitive UAV applications like aerial surveillance and 
mapping. While simple, it enables scalable processing of 
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large image sequences without significant computational 
overhead, as illustrated in Fig. 3. 

 

 

Fig. 2. Feature point matching using SURF. 

 

Fig. 3. Feature point matching using MinEigen. 

Binary Robust Invariant Scalable Keypoints (BRISK) 
offers strong performance in handling distortions due to 
non-planar terrain in UAV-acquired imagery. Its binary 
descriptors and circular sampling pattern ensure 
resilience to geometric transformations while maintaining 
efficiency, making it suitable for irregular landscapes and 
topographic analysis [14], as illustrated in Fig. 4. 

 

 

Fig. 4. Feature point matching using BRISK. 

Accelerated-KAZE (AKAZE) leverages nonlinear 
scale spaces to extract robust features across varying 
resolutions and distortion levels. Its design balances 
computational speed and descriptor richness, enabling 
effective performance in applications like environmental 
monitoring and agricultural assessment [15], as illustrated 
in Fig. 5. 

 

 

Fig. 5. Feature point matching using AKAZE. 

Comparative evaluations of these traditional 
descriptors reveal their respective strengths: SIFT and 
SURF excel in robustness, while BRISK and AKAZE 

offer competitive accuracy with improved runtime. 
However, limitations persist, particularly in managing 
severe perspective distortions and rapidly changing 
viewpoints. These challenges continue to motivate 
improvements to traditional descriptors and the 
exploration of alternative approaches, including hybrid 
and learning-based strategies.  

B. Deep Learning-Based Feature Detectors and 
Descriptors 

Deep learning-based descriptors have redefined the 
landscape of feature detection and matching by enabling 
automatic learning of robust, highly discriminative 
features from image data. In UAV image stitching—
where traditional descriptors often struggle with 
significant distortions, deep learning approaches have 
demonstrated considerable advantages.  

Convolutional Neural Networks (CNNs) power 
modern detectors like DISK, ALIKED, and SuperPoint, 
which jointly detect keypoints and extract descriptors 
using a learned feature representation. These methods 
have proven effective in capturing complex image 
structures while maintaining robustness to scale, rotation, 
and lighting variations. 

Deep Image Structure Keypoints (DISK), employs 
CNN-based architecture to extract dense feature maps 
F  = F(I) from an input image I, from which keypoints 
and descriptors are generated. Its primary strength lies in 
its ability to robustly identify meaningful structures, even 
in the presence of significant geometric distortion, as 
illustrated in Fig. 6. In this work, we adopt the original 
architecture and pre-trained model as proposed by 
Tyszkiewicz et al. [16], without applying additional fine-
tuning or hyperparameter adjustments. Our objective is to 
evaluate the baseline performance of these models on 
UAV image stitching under perspective distortion, using 
their default configurations. 

 

 

Fig. 6. Feature point matching using DISK. 

Adaptive and Lightweight Key Point Detector 
(ALIKED) introduces a computationally efficient method 
that adapts its feature extraction complexity to image 
content. It reduces redundancy in uniform regions and 
focuses on textured areas, offering a balance between 
speed and precision, as illustrated in Fig. 7. 

In this work, we adopt the original architecture and 
pre-trained model as proposed by Zhao et al. [17], 
without applying additional fine-tuning or 
hyperparameter adjustments. Our objective is to evaluate 
the baseline performance of these models on UAV image 
stitching under perspective distortion, using their default 
configurations. 
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Fig. 7. Feature point matching using ALIKED. 

SuperPoint leverages self-supervised learning with 
synthetic data to train a unified model that detects 
keypoints and descriptors. Its dual-decoder architecture 
handles keypoint localization and descriptor extraction, 
making it effective for dense feature matching in aerial 
scenes. In this work, we adopt the original architecture 
and pre-trained model as proposed by DeTone et al. [18], 
without applying additional fine-tuning or 
hyperparameter adjustments. Our objective is to evaluate 
the baseline performance of these models on UAV image 
stitching under perspective distortion, using their default 
configurations, as illustrated in Fig. 8. 
 

 

Fig. 8. Feature point matching using SuperPoint. 

Studies such as [19, 20] demonstrate the superior 
performance of these CNN-based methods in extracting 
stable and discriminative features, particularly in dynamic 
environments. Beyond CNNs, Siamese and Triplet 
networks have shown promise in learning fine-grained 
feature embeddings for more precise matching under 
challenging UAV conditions [21, 22]. 

Recent advancements have explored integrating deep 
learning with traditional descriptors (e.g., SIFT, ORB), 
producing hybrid models that combine the interpretability 
and efficiency of hand-crafted features with the learning 
capabilities of CNNs. This synergy improves matching 
precision while maintaining practical runtime efficiency, 
as shown in works like [23, 24]. 

Nevertheless, despite these advances, deep learning-
based methods are not yet universally adopted in UAV 
stitching. Traditional descriptors continue to dominate 
due to their computational simplicity, established 
performance, and ease of deployment—particularly in 
real-time, resource-constrained scenarios. Moreover, 
techniques such as adaptive match filtering further 
enhance the reliability of traditional methods by reducing 
false matches and improving global alignment [25]. 

In summary, while deep learning-based feature 
descriptors significantly improve matching robustness 
and perceptual quality, practical deployment in UAV 
stitching still demands careful consideration of their 
computational cost and generalization ability under 
diverse real-world conditions. 

III. MATERIALS AND METHODS 

The focus of this research is to identify the optimal 
feature detectors and descriptors for stitching UAV 
images, considering perspective scene distortions and 
their impact on the visual quality of the resulting mosaic. 
The resulting mosaics will then be evaluated using 
quantitative measurements to assess their effectiveness.  

A. Dataset Description 

The aerial photogrammetric survey was conducted 
using a consumer-grade camera (SONY DSC-RX100M3, 
20.1-megapixel sensor with approximately 2 cm spatial 
resolution) with a 9 mm focal length (equivalent to 24 
mm in 35 mm format) mounted on a UAV. The image in 
Fig. 9 was captured at an altitude of approximately 
260.64 Meters above ground level, as recorded in the 
EXIF metadata. The GPS coordinates of the capture 
location are 15°5′9.54″ N and 120°50′31.69″ E, situating 
the survey over a predominantly agricultural area. The 
camera settings, including auto white balance and manual 
exposure, ensured consistent imaging conditions suitable 
for feature-based stitching and alignment. Additional 
datasets were provided by [25, 26] for ground-based 
images. Table II provides detailed characteristics of the 
test images used in this study. 
 

 
Fig. 9. Flight plan of data acquisition [4]. 

B. Feature-Refinement Technique 

A major part of our proposed solution is based on the 
work, titled “Parallax tolerant image stitching based on 
Robust Elastic Warping (REW)” [25]. This method is 
particularly valuable due to its refinement technique 
applied to distinct detected image features. The Bayesian 
model introduced by Li et al. [25] serves to iteratively 
refine feature matches by probabilistically removing 
incorrect local correspondences. Although this Bayesian 
model was not initially tailored for UAV imagery, we 
extend its application to UAV-specific image sequences 
by exploring both low-level and deep learning-based 
feature detectors and descriptors. This approach allows us 
to evaluate a variety of feature detection techniques and 
identify those that achieve the highest accuracy and 
stability in the complex, perspective distorted imagery 
typically acquired by UAVs. We examine the 
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effectiveness of traditional feature descriptors and 
detectors for capturing fine-grained, texture-based 
features, as well as the capabilities of deep learning-based 
algorithms like SuperPoint, DISK, and ALIKED. By 
exploring the performance of these methods, we aim to 

determine the most suitable approach for accommodating 
the complex variations in perspective distortion 
encountered in UAV imagery, ultimately enhancing the 
overall quality of the stitched mosaics affected from such 
type of distortion. 

TABLE II. OVERVIEW OF THE DATASETS USED IN THIS STUDY, INCLUDING GENERAL CHARACTERISTICS RELEVANT TO IMAGE ACQUISITION 

CONDITIONS AND SCENE DIVERSITY 

Dataset Image Source 
Lightning 
Conditions 

Weather 
Conditions 

Camera View 

General Dataset 1 
General dataset 

(Indoor) 
Uniform lighting 

Indoor 
environment 

Uniform horizontal view 

General Dataset 2 
General dataset 

(Outdoor) 
Natural daylight Clear Oblique view 

Our UAV dataset (A) UAV-based Natural daylight Clear Vertical (nadir) view, slightly tilt 
Our UAV dataset (B) UAV-based Natural daylight Clear Vertical (nadir) view, slightly tilt 

Fig. 19-Our UAV 
dataset 

UAV-based Sunny, shadowed Cloud presence 
Vertical (nadir) view, extreme geometric 

transformation 
Fig. 20-General 

Dataset (A) 
General dataset 

(Outdoor) 
Natural daylight Clear 

Non-uniform horizontal view, extreme geometric 
transformation 

Fig. 20-General 
Dataset (B) 

General dataset 
(Outdoor) 

Natural daylight Clear 
Non-uniform horizontal view, extreme geometric 

transformation 
 

 

To mathematically represent the Bayesian refinement 
process inspired from [27, 28], we consider a set of 
matched points {(xi, yi), (xi’, yi’)} and model the posterior 
probability of a match being correct as: 

    (match correct) (match correct) (correct)P P Pµ       (1) 

Assuming prior probabilities and a likelihood function 
based on feature descriptor distance, we can define this 
likelihood function as: 

     

2' '

2

( , ) ( , )
(match correct) exp( )

2

i i i id x y d x y
p

σ

- -
=    (2) 

where d(·) represents the feature descriptor, and σ is a 
parameter that controls the standard deviation, effectively 
influencing the sensitivity of the refinement process. The 
Bayesian framework iteratively refines the match 
probability, updating the set of matches to improve the 
reliability of correspondences.  

This refinement process is applied independently to the 
results from each feature detection and description 
method. By doing so, we can systematically evaluate the 
effectiveness of various feature detectors and descriptors 
under the unique conditions present in UAV imagery, 
including challenges such as perspective distortion and 
varying scales. Through this exploration, we seek to 
identify the optimal feature refinement techniques that 
yield high-quality, coherent image mosaics in UAV-
based applications. 

C. Feature Detectors, Feature Descriptors, and Pair-
Wise Stitching 

Feature detectors are fundamental algorithms in 
computer vision, playing a pivotal role in identifying 
significant points or regions within an image, often 
referred to as keypoints or interest points [29, 30]. These 

keypoints serve as essential reference points for 
subsequent image analysis tasks, including feature 
matching and alignment. One notable feature detector is 
the Harris corner detector, which evaluates the 
“cornerness” of each pixel in an image using the 
following equation: 

                    2det( ) (trace( ))R M k M= - ⋅                      (3) 

where R represents the corner response function, M is the 
structure tensor matrix, and: 

                           
2

2
x x y

x y y

I I I
M

I I I

é ù
ê ú= ê ú
ê úë û

                               (4) 

where, Ix and Iy are the partial derivatives of the image 
intensity in the x and y directions, respectively. The term 
det(M) is the determinant of M, calculated as 

2 2 2( )x y x yI I I I- , and trace(M) is the trace of M, given by 
2 2
x yI I+ .  

While feature detectors identify keypoints, feature 
descriptors complement them by providing detailed 
representations of the local image content surrounding 
these keypoints. Descriptors encode both the appearance 
and geometry of the region around a keypoint, making it 
possible to match keypoints between different images 
effectively. A prominent example of a feature descriptor 
is the Scale-Invariant Feature Transform (SIFT), which 
quantizes gradient orientations within a local region and 
creates a histogram of gradient orientations. This results 
in a descriptive feature vector: 

           [ ]1 2SIFT Descriptor Hist ,Hist ,..., Histn=           (5) 

where each Histi in the vector represents a histogram bin, 
capturing the distribution of gradient orientations within a 
specific angular range.  
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Feature descriptors like SIFT are crucial for 
recognizing and aligning keypoints when stitching 
images. Pairwise stitching is a crucial step in creating 
seamless panoramic images, involving a series of 
mathematical operations to ensure the alignment and 
blending of two adjacent images. This process can be 
broken down into several key components: 

1) Keypoint matching 
Pairwise stitching begins with matching keypoints 

between two adjacent images based on their feature 
descriptors. The process often employs a distance metric, 
such as Euclidean distance, to determine the similarity 
between keypoints in different images. 

        { }1 1 2 2Matched Keypoints : ( , ), ( , ),..., ( , )n np q p q p q       (6) 

where, pi and qi represent placeholder key points in two 
images that are matched and used to calculate 
transformations during the stitching process. 

2) Homography estimation 
Once keypoints are matched, the next step is to 

estimate a homography matrix (H) that represents the 
transformation needed to align one image with the other. 
This transformation can be determined using a least-
squares optimization approach that minimizes the 
reprojection error of matched keypoints: 

                2arg min ( , ( ))i i
i

H d p H q= ´å                    (7) 

where, H is the homography matrix, pi and qi are 
corresponding keypoints, and d is the Euclidean distance 
between the transformed point H(qi) and the 
corresponding point pi. 

3) Image warping 
With the homography matrix computed, one of the 

images is warped to align with the other. The 
transformation involves applying the homography matrix 
to the pixel coordinates of one image to match the 
perspective of the other. 

4) Blending 
After alignment, the two images are blended to create a 

seamless transition between them. Various blending 
techniques can be employed, such as feathering or multi-
band blending, which may involve weighted averages of 
pixel values. 

This structured approach, combining feature detection, 
keypoint matching, homography estimation, warping, and 
blending, is essential for constructing accurate and 
visually appealing panoramic images from UAV-acquired 
data.  

By carefully selecting feature detectors and descriptors, 
and optimizing the transformation and blending processes, 
we aim to address the unique challenges posed by UAV 
imagery, such as perspective distortion and scale 
variation. 

D. Image Quality Metrics 

In this study, the researcher employed the Perceptual 
Image Quality Evaluator (PIQE) to classify UAV-based 

image mosaics into five quality categories—Excellent 
([0–20]), Good ([21–35]), Fair ([36–50]), Poor ([51–80]), 
and Bad ([81–100])—based on local distortions and 
artifacts in the image. As a no-reference quality 
assessment metric, PIQE is particularly suitable for 
evaluating mosaics where ground truth images are 
unavailable, offering a perceptual score that aligns well 
with human visual interpretation. Complementing PIQE, 
the study also utilizes two additional no-reference image 
quality metrics: the Naturalness Image Quality Evaluator 
(NIQE) and the Blind/Referenceless Image Spatial 
Quality Evaluator (BRISQUE), both of which assess 
perceptual features to quantitatively evaluate image 
quality in the absence of a reference image. 

IV. EXPERIMENTS 

This section presents experimental results evaluating 
the effectiveness of various feature detectors and 
descriptors within a feature-based stitching framework 
for UAV images affected by perspective distortions. The 
analysis highlights the strengths and limitations of each 
method, providing technical validation of their suitability 
for robust image alignment under challenging scene 
variations. 

A. Feature Detection and Matching 

In this section, we evaluate the performance of various 
feature detectors and descriptors by analyzing their ability 
to detect and match keypoints across pairs of overlapping 
images. Effective feature detection and matching are 
essential for establishing accurate correspondences, 
which form the foundation for robust image alignment. 
By comparing traditional and deep learning-based 
methods, we aim to determine which techniques are most 
resilient to perspective distortions commonly present in 
UAV imagery, as illustrated in Fig. 10.  

 

 

Fig. 10. Sample sequences of UAV images with perspective distortion. 

Table III presents a comparative analysis of traditional 
and deep learning-based feature detectors and descriptors 
across general and UAV-specific datasets, evaluated 
using three key metrics: number of detected keypoints, 
matching accuracy (%), and average matching time (s). 
Traditional detectors such as AKAZE, SURF, and BRISK 
generally detect a larger number of keypoints and 
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demonstrate strong matching accuracy, with AKAZE and 
DISK reaching near-perfect values in specific cases.  

TABLE III. SUMMARY OF FEATURE DETECTION AND MATCHING 

RESULTS ACROSS DATASETS 

Dataset Detector Keypoints 
Match 
Acc. 

Time 
(s) 

Dataset 1 
(Zaragosa et al. 

[18]) 

SIFT 3208.2 94.94 0.84 
SURF 20632.4 91.45 1.43 

MINEIGEN 15943.0 99.70 0.77 
BRISK 20875.2 99.93 1.34 
AKAZE 24403.0 99.38 2.22 

SUPERPOINT 4459.6 98.73 2.93 
ALIKED 3834.6 99.92 1.37 

DISK 8376.8 100.0 7.51 

Dataset 2 (Chen 
et al. [31]) 

SIFT 3337.5 92.84 0.80 
SURF 1259.2 96.31 0.01 

MINEIGEN 3269.7 99.23 0.03 
BRISK 2766.8 98.82 0.02 
AKAZE 5285.2 99.62 0.09 

SUPERPOINT 2605.5 97.62 1.04 
ALIKED 3768.2 99.47 1.28 

DISK 8476.7 99.78 7.46 

UAV-Dataset 
(A) 

SIFT 3431.9 93.73 0.89 
SURF 376.2 99.45 0.06 

MINEIGEN 1155.0 99.63 0.01 
BRISK 1024.9 100.0 0.01 
AKAZE 1608.9 100.0 0.01 

SUPERPOINT 2372.9 97.21 0.90 
ALIKED 2374.0 99.79 0.53 

DISK 6974.7 99.98 5.08 

UAV-Dataset 
(B) 

SIFT 3487.4 81.05 0.94 
SURF 113.6 99.44 0.01 

MINEIGEN 625.61 99.13 0.01 
BRISK 171.9 100.0 0.01 
AKAZE 764.8 100.0 0.01 

SUPERPOINT 2620.4 94.56 1.07 
ALIKED 1321.3 99.49 0.20 

DISK 5696.6 99.90 3.51 

 
Deep learning-based methods—SUPERPOINT, 

ALIKED, and DISK—typically produce fewer but more 
distinctive keypoints, achieving competitive matching 
accuracy (often exceeding 94%) while offering favorable 
runtime performance in many CPU-based configurations. 
However, it is important to emphasize that these methods 
are inherently optimized for GPU execution; thus, the 

reported CPU runtimes may not fully reflect their 
computational efficiency in real-time applications. 

Our original CPU-based feature matching pipeline 
lacked parallel processing capabilities and relied on 
external libraries, limiting both efficiency and portability. 
In contrast, the updated GPU-based implementation 
leverages parallel computation to significantly accelerate 
feature matching—particularly for large-scale keypoint 
sets—while eliminating the reliance on external 
dependencies. Notably, this acceleration was achieved 
without modifying the core architecture or fine-tuning the 
pre-trained models of the deep learning-based detectors, 
thereby preserving their original design and ensuring 
consistency across evaluations.  

These implementation choices provide a fair baseline 
for comparing execution time between CPU-based results 
(as presented in Table III) and GPU-accelerated outcomes 
(as visually illustrated in Table IV). Although the 
numerical differences in matching accuracy among the 
detectors are relatively small, deep learning-based 
methods consistently yield much better stitching results, 
demonstrating increased robustness to perspective 
distortions and producing smoother image transitions. 
These qualitative advantages are especially apparent in 
UAV imagery, both in pairwise and multiple image 
mosaicking scenarios. 

B. Pair-Wise Stitching Technique 

Pair-wise stitching builds on feature detection and 
matching by applying homography transformations to 
align and blend two adjacent images. This process is 
critical for creating seamless panoramic views from 
individual frames. In this section, we assess the quality of 
the stitched images using both perceptual metrics and 
spatial coverage evaluations, allowing us to quantify each 
method’s effectiveness in producing visually cohesive 
mosaics under challenging conditions, see Table V. 
Additionally, Figs. 11–14 provide qualitative evaluations 
of the stitched images, showcasing the visual coherence 
and alignment accuracy achieved by each method. 

TABLE IV. SUMMARY OF DATASET AND THEIR CORRESPONDING GPU-BASED AND CPU-BASED IMPLEMENTATIONS 

Algorithm 
Dataset 1 (Zaragosa et al. [18]) Dataset 2 (Chen et al. [31]) UAV-Dataset (A) UAV-Dataset (B) 
CPU-based GPU-based CPU-based GPU-based CPU-based GPU-based CPU-based GPU-based 

*Measured in Seconds (s) 
SUPERPOINT 2.93 0.44 1.04 0.13 0.90 0.11 1.07 0.12 

ALIKED 1.37 0.25 1.28 0.25 0.53 0.10 0.20 0.04 
DISK 7.51 3.27 7.46 4.87 5.08 1.29 3.51 0.58 

 
Table V presents PIQE, NIQE, and BRISQUE scores 

for stitched images across four datasets, comparing the 
perceptual quality of different feature detectors. In 
Dataset 1 [20], ALIKED achieves the lowest PIQE 
(36.13), SURF yields the best NIQE (2.41), and AKAZE 
records the lowest BRISQUE score (21.81), indicating 
fewer perceptual distortions. In Dataset 2 [21], ALIKED 
leads in all metrics PIQE (44.27), MINEIGEN performs 
best in NIQE (2.90), and SURF achieves the best 
BRISQUE score (34.74). For UAV-Dataset A, BRISK 
leads in all metrics PIQE (18.63), NIQE (2.96), and 

BRISQUE (27.66). In UAV-Dataset B, DISK leads in all 
metrics PIQE (21.45), BRISQUE score (33.35), and 
NIQE (2.62). Overall, deep-learning-based detectors 
show competitive performance in PIQE, BRISQUE, and 
NIQE across several datasets and metrics. While 
detectors such as DISK, SUPERPOINT, and ALIKED 
achieved lower scores in certain cases, the differences 
were not statistically significant (p > 0.05). These results 
suggest that although deep-learning-based methods are 
visually competitive, their perceptual advantages are not 
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consistently significant or generalizable across all 
scenarios. 
 

 
Fig. 11. Pair-wise image stitching results using general Dataset 1 [21]. 

 

 
Fig. 12. Pair-wise image stitching results using general Dataset 2 [18]. 

 

 
Fig. 13. Pair-wise image stitching results using our UAV Dataset (A). 

 
Fig. 14. Pair-wise image stitching results using our UAV Dataset (B). 
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TABLE V. PIQE, NIQE, AND BRISQUE SCORES FOR PAIR WISE 

STITCHED IMAGES ACROSS DATASETS. THE STITCHED IMAGES 

ANALYZED HERE ARE DERIVED FROM FIGS [11–14]. 

Dataset Detector PIQE NIQE BRISQUE 

Dataset 1 
(Jia et al. 
[21]), 2 
imgs. 

SIFT 38.23 2.73 22.06 
SURF 39.54 2.41 22.90 

MINEIGEN 36.58 2.80 22.37 
BRISK 38.71 2.71 22.54 
AKAZE 38.16 2.59 21.81 

SUPERPOINT 37.45 2.82 22.49 
ALIKED 36.13 2.77 22.31 

DISK 37.22 2.49 22.47 

Dataset 2 
(Zaragosa et 
al. [18]), 2 

imgs. 

SIFT 45.69 3.02 36.80 
SURF 46.07 3.32 34.74 

MINEIGEN 45.03 2.90 36.34 
BRISK 46.65 3.12 38.13 
AKAZE 46.32 2.96 35.13 

SUPERPOINT 47.08 3.06 35.53 
ALIKED 44.27 3.04 36.28 

DISK 46.12 3.00 35.13 

UAV-
Dataset (A), 

2 imgs. 

SIFT 29.12 5.23 36.36 
SURF 19.37 4.73 32.99 

MINEIGEN 23.47 4.71 39.06 
BRISK 18.36 2.96 27.66 
AKAZE 24.98 4.48 38.13 

SUPERPOINT 25.09 4.49 37.75 
ALIKED 24.61 4.74 35.85 

DISK 24.73 4.56 37.11 

UAV-
Dataset (B), 

2 imgs. 

SIFT 30.30 4.26 36.63 
SURF 29.77 4.07 38.07 

MINEIGEN 29.94 4.68 36.79 
BRISK 30.50 4.39 36.23 
AKAZE 32.69 8.81 44.78 

SUPERPOINT 30.09 4.50 37.13 
ALIKED 29.33 4.77 36.83 

DISK 21.45 2.62 33.35 

C. Multiple Image Stitching Technique 

Expanding beyond pair-wise stitching, this section 
examines the scalability of feature detectors and 
descriptors in the context of multiple image stitching. By 
sequentially aligning a greater number of overlapping 
images, we generate larger mosaics composed of multiple 
input images, effectively simulating real-world UAV 
imagery applications. Examples and quantitative results 
are provided in Table VI. Additionally, Figs. 15–18 
provide qualitative evaluations of the stitched images, 
highlighting the visual coherence and alignment accuracy 
achieved by each method. This assessment offers insights 
into each method’s ability to maintain alignment quality 
and spatial consistency as the complexity of the stitching 
task increases. 

Table VI presents PIQE, NIQE, and BRISQUE scores 
for stitched images across four datasets, comparing the 
perceptual quality of different feature detectors. In 
Dataset 1 [20], SURF achieves the lowest PIQE (32.62), 
SUPERPOINT yields the best NIQE (1.56), and DISK 
records the lowest BRISQUE score (26.80), indicating 
fewer perceptual distortions. In Dataset 2 [21], DISK 
leads in PIQE (28.27), BRISK performs best in NIQE 
(2.27), and SUPERPOINT achieves the best BRISQUE 
score (36.12). For UAV-Dataset A, SIFT attains the 
lowest PIQE (22.99), MINEIGEN shows the best 
performance in NIQE (2.97), and SIFT also records the 
lowest BRISQUE (32.06). In UAV-Dataset B, AKAZE 
leads in PIQE (37.62), SIFT achieves the best BRISQUE 
score (37.03), while BRISK records the lowest NIQE 

(3.20). Overall, deep-learning-based detectors show 
competitive performance in PIQE, BRISQUE, and NIQE 
across several datasets and metrics. While detectors such 
as DISK, SUPERPOINT, and ALIKED achieved lower 
scores in certain cases, the differences were not 
statistically significant (p > 0.05). These results suggest 
that although deep-learning-based methods are visually 
competitive, their perceptual advantages are not 
consistently significant or generalizable across all 
scenarios. 
 

 
Fig. 15. Multiple image stitching results using Dataset 1 [18]. 

 
Fig. 16. Multiple image stitching results using Dataset 2 [31]. 
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Fig. 17. Multiple image stitching results using our UAV Dataset (A). 

 
Fig. 18. Multiple image stitching results using our UAV Dataset (B). 

TABLE VI. PIQE, NIQE, AND BRISQUE SCORES FOR PAIR WISE 

STITCHED IMAGES ACROSS DATASETS. THE STITCHED IMAGES 

ANALYZED HERE ARE DERIVED FROM FIGS. 15–18. 

Dataset Detector PIQE NIQE BRISQUE 

Dataset 1 (Zaragosa 
et al. [18]), 5 imgs. 

SIFT 32.79 1.64 27.90 
SURF 32.62 1.61 27.85 

MINEIGEN 33.43 1.59 27.44 
BRISK 33.16 1.58 27.40 
AKAZE 33.08 1.60 27.31 

SUPERPOINT 33.06 1.56 27.53 
ALIKED 33.09 1.58 27.28 

DISK 32.88 1.58 26.80 

Dataset 2 (Chen et 
al. [31]), 6 imgs. 

SIFT 28.98 2.72 36.48 
SURF 28.92 2.70 37.29 

MINEIGEN 29.46 2.73 36.99 
BRISK 28.39 2.57 37.12 
AKAZE 28.57 2.70 36.98 

SUPERPOINT 28.33 2.82 36.12 
ALIKED 29.34 2.82 36.50 

DISK 28.27 2.79 36.77 

UAV-Dataset (A), 
9 imgs. 

SIFT 22.99 2.98 32.06 
SURF 44.81 4.84 49.32 

MINEIGEN 35.51 2.97 48.28 
BRISK 31.71 5.48 47.11 
AKAZE 25.07 3.57 33.30 

SUPERPOINT 25.06 3.78 32.54 
ALIKED 28.74 3.35 33.43 

DISK 31.51 8.50 47.01 

UAV-Dataset (B), 
17 imgs. 

SIFT 40.42 3.28 37.03 
SURF 38.85 3.36 43.52 

MINEIGEN 40.09 8.53 45.82 
BRISK 37.75 3.20 46.78 
AKAZE 37.62 9.96 44.65 

SUPERPOINT 55.86 5.91 52.21 
ALIKED 47.05 4.31 39.66 

DISK 58.85 7.51 45.36 

V. CONCLUSION 

This study presents a comprehensive evaluation of 
feature detectors and descriptors for UAV image stitching 
under perspective distortion, leveraging the REW method 
integrated with both traditional and deep learning-based 
approaches. Results across multiple datasets demonstrate 
that traditional detectors—such as SIFT, SURF, 
MINEIGEN, BRISK, and AKAZE—typically yield high 
keypoint counts and strong matching accuracy. However, 
they often struggle with geometric distortions, leading to 
artifacts such as ghosting, warping, and misalignment, 
especially in complex urban and aerial UAV scenes. 
Deep learning-based detectors—namely SUPERPOINT, 
ALIKED, and DISK—tend to extract fewer but more 
distinctive and robust keypoints, resulting in improved 
alignment accuracy and visual coherence. DISK shows 
strong spatial consistency, while ALIKED performs well 
in multi-image stitching scenarios with smoother 
transitions and fewer artifacts. Perceptual quality metrics 
(PIQE, NIQE, BRISQUE) further support these findings, 
with deep learning-based methods achieving lower scores 
that reflect higher perceptual quality. However, these 
methods are not universally robust. In cases involving 
radiometric distortions, low-texture environments, or 
extreme geometric transformations, even deep learning-
based approaches fail to produce coherent mosaics—
leading to structural misalignments and visible artifacts, 
as illustrated in Fig. 19. Table VII summarizes the 
primary sources of error and the corresponding global 
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correction strategies applied across the evaluated datasets 
for failed cases, providing insight into how each 
distortion type is addressed in practice. The images 
shown in Figs. 19 and 20 illustrate these error-
contributing factors—such as extreme geometric 
transformations and cloud presence—which led to 
noticeable artifacts and degraded visual quality in the 
resulting mosaics. 

 

 
Fig. 19. Failed cases using deep learning-based feature detectors and 
descriptors, caused by low-texture regions, radiometric distortions, and 
extreme perspective transformations in the input images. 

 

Fig. 20. Preliminary results of image stitching using hybrid feature 
detectors and descriptors. 

TABLE VII. SUMMARY OF DATASET ERROR SOURCES AND 

CORRESPONDING CORRECTION STRATEGIES 

Dataset 
Image 
Source 

Error Contribute 
Global Correction 

Strategy 

Fig. 19-
Our UAV 

dataset 

UAV-
based 

Vertical (nadir) 
view, extrema 

geometric 
transformation 
cloud presence 

Camera calibration 
(resource-intensive), 

feature-based geometric 
correction methods, 

statistical and model-
based radiometric 

correction methods 
Fig. 20-
General 
Dataset 
(A)-Left 

side 

General 
Dataset 

(Outdoor) 

Non-uniform 
horizontal view, 

extreme geometric 
transformation 

Camera calibration 
(resource-intensive), 

feature-based geometric 
correction 

Fig. 20-
General 
Dataset 

(B)-Right 
side 

General 
Dataset 

(Outdoor) 

Non-uniform 
horizontal view, 

extreme geometric 
transformation 

Camera calibration 
(resource-intensive), 

feature-based geometric 
correction 

VI. FUTURE WORKS 

In future work, exploring hybrid feature detectors and 
descriptors that integrate the strengths of both traditional 
and deep learning-based methods could further enhance 
stitching quality in images affected by perspective 

distortions. By leveraging the robustness and efficiency 
of traditional detectors alongside the adaptability and 
precision of deep learning approaches, a hybrid model 
may offer improved alignment and visual coherence as 
part of our proposed feature-based geometric correction 
technique—even in complex UAV imagery with 
challenging perspectives, as demonstrated in our 
preliminary experiments shown in Fig. 19. Table VIII 
presents the average number of matched features across 
different combinations of detectors and descriptors, 
computed using Eq. (8), where |Mtotal| represents the total 
number of keypoint matches for the ith image pair, and n 
denotes the total number of image pairs. The summation 
aggregates match across all image pairs, and the result is 
normalized by n to obtain the average number of matches 
per pair. Results indicate that hybrid pairings of 
traditional methods (e.g., SIFT+MinEigen, 
SURF+KAZE) yield the highest match counts, 
suggesting strong compatibility in terms of keypoint 
detection and descriptor robustness. Combinations 
involving deep learning-based detectors (e.g., ALIKED, 
SUPERPOINT) result in lower average matches, but may 
still offer advantages in terms of precision or alignment 
accuracy. 

 

              1Average Matcher

n

total ii
M

n
==

å
                   (8) 

TABLE VIII. SUMMARY OF COMPATIBLE FEATURE DETECTOR AND 

DESCRIPTOR WITH PROMISING RESULTS 

No. Combined Features Average Matcher 
1 SIFT+MinEigen 312.89 
2 SURF+KAZE 305.33 
3 KAZE+MinEigen 292.22 
4 ALIKED+SIFT 288.56 
5 BRISK+KAZE 277.11 
6 SUPERPOINT+SIFT 237.11 
7 ALIKED+MinEigen 197.02 
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