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Abstract—This study analyzes traditional and deep-
learning-based feature detectors and descriptors for
Unmanned Aerial Vehicle (UAV) image stitching under
perspective distortion. Traditional methods, including Scale-
Invariant Feature Transform (SIFT), Speeded-Up Robust
Features (SURF), and Accelerated-KAZE (AKAZE),
achieve high keypoint detection and matching accuracy but
struggle with geometric distortions, leading to artifacts such
as ghosting and misalignment in complex UAV scenes.
Deep-learning-based approaches, such as SuperPoint,
Adaptive and Lightweight Key Point Detector (ALIKED),
and Deep Image Structure Keypoints (DISK), offer superior
alignment accuracy and visual coherence by detecting fewer
but more robust keypoints. DISK and ALIKED
demonstrate high spatial consistency, reducing perceptual
artifacts as validated by Perceptual Image Quality
Evaluator (PIQE), Naturalness Image Quality Evaluator
(NIQE), and Blind/Referenceless Image Spatial Quality
Evaluator (BRISQUE) metrics. The results indicate that
deep-learning-based detectors outperform traditional
methods in UAV image stitching under perspective
distortions. Future work will explore hybrid models that
combine the strengths of both approaches to enhance
stitching accuracy and computational efficiency.

Keywords—stitching, feature detector and descriptor,
perspective distortion, Unmanned Aerial Vehicle (UAYV)
images, no-reference metrics

I. INTRODUCTION

In the realm of modern aerial imaging and remote
sensing, Unmanned Aerial Vehicles (UAVs) have
become indispensable tools for capturing high-resolution
imagery of landscapes and complex scenes. The rapid
expansion of UAV technology has led to an
unprecedented influx of image data, which necessitates
efficient and accurate image stitching methods to create
seamless, panoramic views that are crucial for a wide
range of applications. Image stitching, however, poses
significant challenges when working with UAV imagery
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due to perspective distortions, which arise from the
varying altitudes, angles, and flight trajectories at which
these images are captured [1]. These distortions, often
exacerbated by the dynamic and unpredictable movement
of UAVs, demand robust feature detection and matching
techniques capable of accommodating diverse image
transformations.

This study focuses on the critical task of feature-based
stitching for Unmanned Aerial Vehicle (UAV) images,
emphasizing a comparative analysis of various feature
detectors and descriptors, both low-level and deep
learning-based, see Table 1. As UAV technology
continues to evolve and its applications expand, the
findings from this study will be instrumental in
optimizing the quality and accuracy of stitched images.
This has broad implications for various real-world
applications, including environmental —monitoring,
disaster response, agriculture, and urban planning. The
insights gained will support the development of new
algorithms and techniques tailored to the unique
challenges of UAV-acquired imagery, especially in
scenarios with significant perspective scene distortions.

TABLE 1. FEATURE DETECTORS AND DESCRIPTORS

Algorithm Detector Descriptor Type
SIFT Yes Yes
SURF Yes Yes

MinEigen Yes Yes Traditional

BRISK Yes Yes
AKAZE Yes Yes
DISK Yes Yes

ALIKED Yes Yes Deep

Learning

SUPERPOINT Yes Yes

Feature descriptors play a crucial role in image
matching and alignment, forming the backbone of
numerous stitching algorithms [2]. An in-depth
understanding of the performance characteristics,
computational demands, and robustness of different
feature descriptors—such as Scale-Invariant Feature
Transform (SIFT), Speeded-Up Robust Features (SURF),
Oriented FAST and Rotated BRIEF (ORB),
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SUPERPOINT, and Adaptive and Lightweight Key Point
Detector (ALIKED)—is essential for optimizing the
accuracy, speed, and reliability of stitched panoramas,
particularly in the presence of challenging scene
distortions.

Feature-based stitching algorithms, particularly those
employing RANSAC for homography estimation and
bundle adjustment for error minimization, have been
widely validated in the literature [3, 4] and through
extensive experimental results in various datasets,
demonstrating their effectiveness in reconstructing
seamless mosaics from multiple overlapping images.
These algorithms play a pivotal role in compensating for
distortions and enhancing overall image quality by
aligning images with minimal ghosting and misalignment
artifacts. Through a detailed performance assessment of
feature descriptors within these stitching algorithms, this
research aims to advance the precision and computational
efficiency of image mosaicking for UAV applications.
Specifically, the study evaluates the effectiveness of
descriptors such as SIFT, SURF, ORB, and newer, deep
learning-based descriptors like SuperPoint, DISK, and
ALIKED. These descriptors are tested on their robustness
to various distortions, including scale, rotation, affine
transformations, and illumination changes, thereby
providing a comprehensive overview of each method’s
suitability for UAV imagery.

The primary objectives of this research are to explore
and evaluate feature descriptors utilized in stitching UAV
images, specifically in scenarios with perspective scene
distortions. However, the variations in altitude, pitch, roll,
and yaw introduce complex spatial transformations in the
captured images. These transformations not only
complicate image alignment but also challenge traditional
stitching methods, which are generally designed for
planar scenes with minimal perspective changes [5-7].

By conducting a rigorous performance analysis, this
study contributes to advancing image stitching techniques
applicable in the fields of aerial photography and remote
sensing. UAV-acquired images are often subject to
geometric and radiometric distortions due to factors such
as the interplay between the camera sensor, lens
characteristics, and three-dimensional scene
structure [8, 9]. UAVs, commonly referred to as drones,
are widely used in environmental monitoring, disaster
assessment, and precision agriculture due to their ability
to capture high-resolution aerial images with flexible
deployment [10, 11].

This paper is structured to offer an in-depth
understanding of the topic. Section II provides a detailed
literature  review, examining the state-of-the-art
techniques in feature descriptors for feature-based
stitching of UAV images with scene distortions.
Section III outlines the feature detectors and descriptors
applied to pairwise UAV image stitching, followed by an
evaluation of image quality using both subjective and
objective metrics, including metrics for geometric
alignment accuracy and perceptual quality. The findings
underscore the impact of each feature descriptor’s
strengths and limitations in dealing with the challenges
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unique to UAV-based image stitching, paving the way for
more robust and efficient solutions in this rapidly
evolving field.

II. LITERATURE REVIEW

In computer vision, feature descriptors are critical

components that enable the identification,
characterization, and comparison of key features within
images, facilitating robust image matching and

alignment. This section provides a detailed overview of
various feature descriptors, with a particular emphasis on
their applicability to UAV image stitching. Additionally,
the discussion focuses on the effectiveness of these
descriptors in addressing perspective distortions often
encountered in UAV-acquired imagery due to variations
in altitude, orientation, and camera angle.

A.  Low-Level Feature Detectors and Descriptors

Traditional feature descriptors form the foundation of
many computer vision and image processing applications,
including image stitching, object recognition, and scene
reconstruction. Their role is critical in detecting and
matching keypoints across images to ensure coherent
mosaicking. In UAV image stitching, where scene
distortion, illumination variation, and changes in scale
and viewpoint are common, selecting appropriate
descriptors is essential for accurate alignment and high-
quality results.

Among traditional descriptors, the Scale-Invariant
Feature Transform (SIFT) stands out for its robustness to
scale, rotation, and illumination changes. SIFT remains a
go-to solution for UAV image stitching in scenarios
involving varying altitudes and camera angles,
consistently delivering stable keypoint matches under
complex conditions [12], as illustrated in Fig. 1.

Fig. 1. Feature point matching using SIFT.

The Speeded-Up Robust Features (SURF) descriptor
offers a good balance between accuracy and
computational efficiency, making it well-suited for UAV
applications requiring real-time performance. Its
resilience to scale and transformation helps maintain
accurate matches across dynamic scenes [13], as
illustrated in Fig. 2.

The Minimum Eigenvalue (MinEigen) corner detector
provides a fast and efficient method for identifying
prominent image features, making it valuable for time-
sensitive UAV applications like aerial surveillance and
mapping. While simple, it enables scalable processing of
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large image sequences without significant computational
overhead, as illustrated in Fig. 3.

Fig. 3. Feature point matching using MinEigen.

Binary Robust Invariant Scalable Keypoints (BRISK)
offers strong performance in handling distortions due to
non-planar terrain in UAV-acquired imagery. Its binary
descriptors and circular sampling pattern ensure
resilience to geometric transformations while maintaining
efficiency, making it suitable for irregular landscapes and
topographic analysis [14], as illustrated in Fig. 4.

Fig. 4. Feature point matching using BRISK.

Accelerated-KAZE (AKAZE) leverages nonlinear
scale spaces to extract robust features across varying
resolutions and distortion levels. Its design balances
computational speed and descriptor richness, enabling
effective performance in applications like environmental
monitoring and agricultural assessment [15], as illustrated
in Fig. 5.

T e B

Fig. 5. Feature point matching using AKAZE.

Comparative  evaluations of these traditional
descriptors reveal their respective strengths: SIFT and
SURF excel in robustness, while BRISK and AKAZE

offer competitive accuracy with improved runtime.
However, limitations persist, particularly in managing
severe perspective distortions and rapidly changing
viewpoints. These challenges continue to motivate
improvements to traditional descriptors and the
exploration of alternative approaches, including hybrid
and learning-based strategies.

B.  Deep Learning-Based Feature Detectors and
Descriptors

Deep learning-based descriptors have redefined the
landscape of feature detection and matching by enabling
automatic learning of robust, highly discriminative
features from image data. In UAV image stitching—
where traditional descriptors often struggle with
significant distortions, deep learning approaches have
demonstrated considerable advantages.

Convolutional Neural Networks (CNNs) power
modern detectors like DISK, ALIKED, and SuperPoint,
which jointly detect keypoints and extract descriptors
using a learned feature representation. These methods
have proven effective in capturing complex image
structures while maintaining robustness to scale, rotation,
and lighting variations.

Deep Image Structure Keypoints (DISK), employs
CNN-based architecture to extract dense feature maps
F = F(I) from an input image I, from which keypoints
and descriptors are generated. Its primary strength lies in
its ability to robustly identify meaningful structures, even
in the presence of significant geometric distortion, as
illustrated in Fig. 6. In this work, we adopt the original
architecture and pre-trained model as proposed by
Tyszkiewicz et al. [16], without applying additional fine-
tuning or hyperparameter adjustments. Our objective is to
evaluate the baseline performance of these models on
UAYV image stitching under perspective distortion, using
their default configurations.

Fig. 6. Feature point matching using DISK.

Adaptive and Lightweight Key Point Detector
(ALIKED) introduces a computationally efficient method
that adapts its feature extraction complexity to image
content. It reduces redundancy in uniform regions and
focuses on textured areas, offering a balance between
speed and precision, as illustrated in Fig. 7.

In this work, we adopt the original architecture and
pre-trained model as proposed by Zhao et al. [17],
without applying additional fine-tuning or
hyperparameter adjustments. Our objective is to evaluate
the baseline performance of these models on UAV image
stitching under perspective distortion, using their default
configurations.
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Fig. 7. Feature point matching using ALIKED.

SuperPoint leverages self-supervised learning with
synthetic data to train a unified model that detects
keypoints and descriptors. Its dual-decoder architecture
handles keypoint localization and descriptor extraction,
making it effective for dense feature matching in aerial
scenes. In this work, we adopt the original architecture
and pre-trained model as proposed by DeTone et al. [18],
without applying additional fine-tuning or
hyperparameter adjustments. Our objective is to evaluate
the baseline performance of these models on UAV image
stitching under perspective distortion, using their default
configurations, as illustrated in Fig. 8.

S

Fig. 8. Feature point matching using SuperPoint.

Studies such as [19, 20] demonstrate the superior
performance of these CNN-based methods in extracting
stable and discriminative features, particularly in dynamic
environments. Beyond CNNs, Siamese and Triplet
networks have shown promise in learning fine-grained
feature embeddings for more precise matching under
challenging UAV conditions [21, 22].

Recent advancements have explored integrating deep
learning with traditional descriptors (e.g., SIFT, ORB),
producing hybrid models that combine the interpretability
and efficiency of hand-crafted features with the learning
capabilities of CNNs. This synergy improves matching
precision while maintaining practical runtime efficiency,
as shown in works like [23, 24].

Nevertheless, despite these advances, deep learning-
based methods are not yet universally adopted in UAV
stitching. Traditional descriptors continue to dominate
due to their computational simplicity, established
performance, and ease of deployment—particularly in
real-time, resource-constrained scenarios. Moreover,
techniques such as adaptive match filtering further
enhance the reliability of traditional methods by reducing
false matches and improving global alignment [25].

In summary, while deep learning-based feature
descriptors significantly improve matching robustness
and perceptual quality, practical deployment in UAV
stitching still demands careful consideration of their
computational cost and generalization ability under
diverse real-world conditions.
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III. MATERIALS AND METHODS

The focus of this research is to identify the optimal
feature detectors and descriptors for stitching UAV
images, considering perspective scene distortions and
their impact on the visual quality of the resulting mosaic.
The resulting mosaics will then be evaluated using
quantitative measurements to assess their effectiveness.

A. Dataset Description

The aerial photogrammetric survey was conducted
using a consumer-grade camera (SONY DSC-RX100M3,
20.1-megapixel sensor with approximately 2 cm spatial
resolution) with a 9 mm focal length (equivalent to 24
mm in 35 mm format) mounted on a UAV. The image in
Fig. 9 was captured at an altitude of approximately
260.64 Meters above ground level, as recorded in the
EXIF metadata. The GPS coordinates of the capture
location are 15°5'9.54" N and 120°50'31.69" E, situating
the survey over a predominantly agricultural area. The
camera settings, including auto white balance and manual
exposure, ensured consistent imaging conditions suitable
for feature-based stitching and alignment. Additional
datasets were provided by [25, 26] for ground-based
images. Table II provides detailed characteristics of the
test images used in this study.
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Fig. 9. Flight plan of data acquisition [4].

B. Feature-Refinement Technique

A major part of our proposed solution is based on the
work, titled “Parallax tolerant image stitching based on
Robust Elastic Warping (REW)” [25]. This method is
particularly valuable due to its refinement technique
applied to distinct detected image features. The Bayesian
model introduced by Li et al. [25] serves to iteratively
refine feature matches by probabilistically removing
incorrect local correspondences. Although this Bayesian
model was not initially tailored for UAV imagery, we
extend its application to UAV-specific image sequences
by exploring both low-level and deep learning-based
feature detectors and descriptors. This approach allows us
to evaluate a variety of feature detection techniques and
identify those that achieve the highest accuracy and
stability in the complex, perspective distorted imagery
typically acquired by UAVs. We examine the
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effectiveness of traditional feature descriptors and
detectors for capturing fine-grained, texture-based
features, as well as the capabilities of deep learning-based
algorithms like SuperPoint, DISK, and ALIKED. By
exploring the performance of these methods, we aim to

determine the most suitable approach for accommodating
the complex variations in perspective distortion
encountered in UAV imagery, ultimately enhancing the
overall quality of the stitched mosaics affected from such
type of distortion.

TABLE II. OVERVIEW OF THE DATASETS USED IN THIS STUDY, INCLUDING GENERAL CHARACTERISTICS RELEVANT TO IMAGE ACQUISITION
CONDITIONS AND SCENE DIVERSITY

Lightning Weather .
Dataset Image Source Conditions Conditions Camera View
General Dataset 1 General dataset Uniform lighting Ipdoor Uniform horizontal view
(Indoor) environment
General dataset . . .
General Dataset 2 (Outdoor) Natural daylight Clear Oblique view
Our UAV dataset (A) UAV-based Natural daylight Clear Vertical (nadir) view, slightly tilt
Our UAV dataset (B) UAV-based Natural daylight Clear Vertical (nadir) view, slightly tilt
Fig. 19-Our UAV UAV-based Sunny, shadowed Cloud presence Vertical (nadir) view, exFreme geometric
dataset transformation
Fig. 20-General General dataset . Non-uniform horizontal view, extreme geometric
Dataset (A) (Outdoor) Natural daylight Clear transformation
Fig. 20-General General dataset Natural davlieht Clear Non-uniform horizontal view, extreme geometric
Dataset (B) (Outdoor) yig transformation
keypoints serve as essential reference points for

To mathematically represent the Bayesian refinement
process inspired from [27, 28], we consider a set of
matched points {(x;, vi), (x;’, yi)} and model the posterior
probability of a match being correct as:

P(match |correct) o P(match |correct)P(correct) (1)

Assuming prior probabilities and a likelihood function
based on feature descriptor distance, we can define this
likelihood function as:

_||d(xi’yi) _d(x;’y;)||2

26

) @)

p(match|correct) = exp(

where d(:) represents the feature descriptor, and o is a
parameter that controls the standard deviation, effectively
influencing the sensitivity of the refinement process. The
Bayesian framework iteratively refines the match
probability, updating the set of matches to improve the
reliability of correspondences.

This refinement process is applied independently to the
results from each feature detection and description
method. By doing so, we can systematically evaluate the
effectiveness of various feature detectors and descriptors
under the unique conditions present in UAV imagery,
including challenges such as perspective distortion and
varying scales. Through this exploration, we seek to
identify the optimal feature refinement techniques that
yield high-quality, coherent image mosaics in UAV-
based applications.

C. Feature Detectors, Feature Descriptors, and Pair-
Wise Stitching

Feature detectors are fundamental algorithms in
computer vision, playing a pivotal role in identifying
significant points or regions within an image, often
referred to as keypoints or interest points [29, 30]. These

532

subsequent image analysis tasks, including feature
matching and alignment. One notable feature detector is
the Harris corner detector, which evaluates the
“cornerness” of each pixel in an image using the
following equation:

R = det(M)— k- (trace(M))’ 3)

where R represents the corner response function, M is the
structure tensor matrix, and:

oI

xTy

2
11, I

“4)

where, I, and [, are the partial derivatives of the image
intensity in the x and y directions, respectively. The term
det(M) is the determinant of M, calculated as
II}—(11,)*, and trace(M) is the trace of M, given by
L+1.

While feature detectors identify keypoints, feature
descriptors complement them by providing detailed
representations of the local image content surrounding
these keypoints. Descriptors encode both the appearance
and geometry of the region around a keypoint, making it
possible to match keypoints between different images
effectively. A prominent example of a feature descriptor
is the Scale-Invariant Feature Transform (SIFT), which
quantizes gradient orientations within a local region and
creates a histogram of gradient orientations. This results
in a descriptive feature vector:

SIFT Descriptor = [Hist,, Hist,,..., Hist, | (%)

where each Hist; in the vector represents a histogram bin,
capturing the distribution of gradient orientations within a
specific angular range.
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Feature descriptors like SIFT are crucial for
recognizing and aligning keypoints when stitching
images. Pairwise stitching is a crucial step in creating
seamless panoramic images, involving a series of
mathematical operations to ensure the alignment and
blending of two adjacent images. This process can be
broken down into several key components:

1) Keypoint matching

Pairwise stitching begins with matching keypoints
between two adjacent images based on their feature
descriptors. The process often employs a distance metric,
such as Euclidean distance, to determine the similarity
between keypoints in different images.

Matched Keypoints : {(p,.4,).(p,.9,).---(P,.4,)} (6)

where, p; and ¢q; represent placeholder key points in two
images that are matched and used to calculate
transformations during the stitching process.

2) Homography estimation

Once keypoints are matched, the next step is to
estimate a homography matrix (H) that represents the
transformation needed to align one image with the other.
This transformation can be determined using a least-
squares optimization approach that minimizes the
reprojection error of matched keypoints:

H =argmin}"d(p,, Hx(q,)) %)

where, H is the homography matrix, p; and ¢; are
corresponding keypoints, and d is the Euclidean distance
between the transformed point Hx(gq;) and the
corresponding point p;.

3) Image warping

With the homography matrix computed, one of the
images is warped to align with the other. The
transformation involves applying the homography matrix
to the pixel coordinates of one image to match the
perspective of the other.

4) Blending

After alignment, the two images are blended to create a
seamless transition between them. Various blending
techniques can be employed, such as feathering or multi-
band blending, which may involve weighted averages of
pixel values.

This structured approach, combining feature detection,
keypoint matching, homography estimation, warping, and
blending, is essential for constructing accurate and
visually appealing panoramic images from UAV-acquired
data.

By carefully selecting feature detectors and descriptors,
and optimizing the transformation and blending processes,
we aim to address the unique challenges posed by UAV
imagery, such as perspective distortion and scale
variation.

D. Image Quality Metrics

In this study, the researcher employed the Perceptual
Image Quality Evaluator (PIQE) to classify UAV-based
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image mosaics into five quality categories—Excellent
([0-20]), Good ([21-35]), Fair ([36-50]), Poor ([51-80]),
and Bad ([81-100])—based on local distortions and
artifacts in the image. As a no-reference quality
assessment metric, PIQE is particularly suitable for
evaluating mosaics where ground truth images are
unavailable, offering a perceptual score that aligns well
with human visual interpretation. Complementing PIQE,
the study also utilizes two additional no-reference image
quality metrics: the Naturalness Image Quality Evaluator
(NIQE) and the Blind/Referenceless Image Spatial
Quality Evaluator (BRISQUE), both of which assess
perceptual features to quantitatively evaluate image
quality in the absence of a reference image.

IV. EXPERIMENTS

This section presents experimental results evaluating
the effectiveness of various feature detectors and
descriptors within a feature-based stitching framework
for UAV images affected by perspective distortions. The
analysis highlights the strengths and limitations of each
method, providing technical validation of their suitability
for robust image alignment under challenging scene
variations.

A. Feature Detection and Matching

In this section, we evaluate the performance of various
feature detectors and descriptors by analyzing their ability
to detect and match keypoints across pairs of overlapping
images. Effective feature detection and matching are
essential for establishing accurate correspondences,
which form the foundation for robust image alignment.
By comparing traditional and deep learning-based
methods, we aim to determine which techniques are most
resilient to perspective distortions commonly present in
UAYV imagery, as illustrated in Fig. 10.

Fig. 10. Sample sequences of UAV images with perspective distortion.

Table III presents a comparative analysis of traditional
and deep learning-based feature detectors and descriptors
across general and UAV-specific datasets, evaluated
using three key metrics: number of detected keypoints,
matching accuracy (%), and average matching time (s).
Traditional detectors such as AKAZE, SURF, and BRISK
generally detect a larger number of keypoints and
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demonstrate strong matching accuracy, with AKAZE and
DISK reaching near-perfect values in specific cases.

TABLE III. SUMMARY OF FEATURE DETECTION AND MATCHING
RESULTS ACROSS DATASETS

Dataset Detector Keypoints Nr:g‘ Tgr)le
SIFT 3208.2 94.94 0.84
SURF 20632.4 91.45 1.43
Dataset 1 MINEIGEN 15943.0 99.70 0.77
(Zaragosa et al. BRISK 20875.2 99.93 1.34
[18]) AKAZE 24403.0 99.38 2.22
SUPERPOINT 4459.6 98.73 2.93
ALIKED 3834.6 99.92 1.37
DISK 8376.8 100.0 7.51
SIFT 3337.5 92.84 0.80
SURF 1259.2 96.31 0.01
MINEIGEN 3269.7 99.23 0.03
Dataset 2 (Chen BRISK 2766.8 98.82 0.02
etal [31]) AKAZE 5285.2 99.62 0.09
SUPERPOINT 2605.5 97.62 1.04
ALIKED 3768.2 99.47 1.28
DISK 8476.7 99.78 7.46
SIFT 3431.9 93.73 0.89
SURF 376.2 99.45 0.06
MINEIGEN 1155.0 99.63 0.01
UAV-Dataset BRISK 1024.9 100.0 0.01
(A) AKAZE 1608.9 100.0 0.01
SUPERPOINT 2372.9 97.21 0.90
ALIKED 2374.0 99.79 0.53
DISK 6974.7 99.98 5.08
SIFT 3487.4 81.05 0.94
SURF 113.6 99.44 0.01
MINEIGEN 625.61 99.13 0.01
UAV-Dataset BRISK 171.9 100.0 0.01
(B) AKAZE 764.8 100.0 0.01
SUPERPOINT 2620.4 94.56 1.07
ALIKED 1321.3 99.49 0.20
DISK 5696.6 99.90 3.51
Deep  learning-based = methods—SUPERPOINT,

ALIKED, and DISK—typically produce fewer but more
distinctive keypoints, achieving competitive matching
accuracy (often exceeding 94%) while offering favorable
runtime performance in many CPU-based configurations.
However, it is important to emphasize that these methods
are inherently optimized for GPU execution; thus, the

reported CPU runtimes may not fully reflect their
computational efficiency in real-time applications.

Our original CPU-based feature matching pipeline
lacked parallel processing capabilities and relied on
external libraries, limiting both efficiency and portability.
In contrast, the updated GPU-based implementation
leverages parallel computation to significantly accelerate
feature matching—particularly for large-scale keypoint
sets—while ecliminating the reliance on external
dependencies. Notably, this acceleration was achieved
without modifying the core architecture or fine-tuning the
pre-trained models of the deep learning-based detectors,
thereby preserving their original design and ensuring
consistency across evaluations.

These implementation choices provide a fair baseline
for comparing execution time between CPU-based results
(as presented in Table III) and GPU-accelerated outcomes
(as visually illustrated in Table IV). Although the
numerical differences in matching accuracy among the
detectors are relatively small, deep learning-based
methods consistently yield much better stitching results,
demonstrating increased robustness to perspective
distortions and producing smoother image transitions.
These qualitative advantages are especially apparent in
UAV imagery, both in pairwise and multiple image
mosaicking scenarios.

B. Pair-Wise Stitching Technique

Pair-wise stitching builds on feature detection and
matching by applying homography transformations to
align and blend two adjacent images. This process is
critical for creating seamless panoramic views from
individual frames. In this section, we assess the quality of
the stitched images using both perceptual metrics and
spatial coverage evaluations, allowing us to quantify each
method’s effectiveness in producing visually cohesive
mosaics under challenging conditions, see Table V.
Additionally, Figs. 11-14 provide qualitative evaluations
of the stitched images, showcasing the visual coherence
and alignment accuracy achieved by each method.

TABLE IV. SUMMARY OF DATASET AND THEIR CORRESPONDING GPU-BASED AND CPU-BASED IMPLEMENTATIONS

Dataset 1 (Zaragosa et al. [18])

Dataset 2 (Chen et al. [31])

UAV-Dataset (A) UAV-Dataset (B)

Algorithm CPU-based GPU-based CPU-based  GPU-based CPU-based GPU-based CPU-based GPU-based
*Measured in Seconds (s)
SUPERPOINT 2.93 0.44 1.04 0.13 0.90 0.11 1.07 0.12
ALIKED 1.37 0.25 1.28 0.25 0.53 0.10 0.20 0.04
DISK 7.51 3.27 7.46 4.87 5.08 1.29 3.51 0.58

Table V presents PIQE, NIQE, and BRISQUE scores
for stitched images across four datasets, comparing the
perceptual quality of different feature detectors. In
Dataset 1 [20], ALIKED achieves the lowest PIQE
(36.13), SUREF yields the best NIQE (2.41), and AKAZE
records the lowest BRISQUE score (21.81), indicating
fewer perceptual distortions. In Dataset 2 [21], ALIKED
leads in all metrics PIQE (44.27), MINEIGEN performs
best in NIQE (2.90), and SURF achieves the best
BRISQUE score (34.74). For UAV-Dataset A, BRISK
leads in all metrics PIQE (18.63), NIQE (2.96), and
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BRISQUE (27.66). In UAV-Dataset B, DISK leads in all
metrics PIQE (21.45), BRISQUE score (33.35), and
NIQE (2.62). Overall, deep-learning-based detectors
show competitive performance in PIQE, BRISQUE, and
NIQE across several datasets and metrics. While
detectors such as DISK, SUPERPOINT, and ALIKED
achieved lower scores in certain cases, the differences
were not statistically significant (p > 0.05). These results
suggest that although deep-learning-based methods are
visually competitive, their perceptual advantages are not
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consistently significant or generalizable across all
scenarios.
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Fig. 13. Pair-wise image stitching results using

our UAV Dataset (A).
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Fig. 12. Pair-wise image stitching results using general Dataset 2 [18].
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Fig. 14. Pair-wise image stitching results using our UAV Dataset (B).
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TABLE V. PIQE, NIQE, AND BRISQUE SCORES FOR PAIR WISE
STITCHED IMAGES ACROSS DATASETS. THE STITCHED IMAGES
ANALYZED HERE ARE DERIVED FROM FIGS [11-14].

(3.20). Overall, deep-learning-based detectors show
competitive performance in PIQE, BRISQUE, and NIQE
across several datasets and metrics. While detectors such

Dataset Detector PIQE NIQE  BRISQUE as DISK, SUPERPOINT, and ALIKED achieved lower
SSII;TF gg?i ;Z? ég'gg scores in certain cases, the differences were not
Dataset 1 MINEIGEN 36.58 580 2237 statistically significant (p > 0.05). These results suggest
(Jia et al. BRISK 38.71 271 22.54 that although deep-learning-based methods are visually
[21]),2 AKAZE 38.16 2.59 21.81 competitive, their perceptual advantages are not
imgs. SUPERPOINT 3745 2.82 22.49 : fomi :
ALIKED 3613 g 31 cons1st.ently significant or generalizable across all
DISK 37.22 2.49 2247 scenarios.
SIFT 45.69 3.02 36.80
SURF 46.07 3.32 34.74 Methods Error(s)
Dataset 2 MINEIGEN 4503  2.90 36.34 ; Bhosting
(Zaragosa et BRISK 46.65 3.12 38.13 REW with SIFT
al. [18]), 2 AKAZE 4632 296 35.13
imgs. SUPERPOINT 47.08 3.06 35.53 N
ALIKED 4427 3.04 36.28 W it SURF .
DISK 46.12 3.00 35.13
SIFT 29.12 5.23 36.36 ~ Ghosing
SURF 19.37 4.73 32.99 e Paraiiax
UAV- MINEIGEN 23.47 471 39.06 REW with MinEigen
Dataset (A) BRISK 18.36 2.96 27.66 _
. ’ AKAZE 24.98 448 38.13 * ‘Lnosting
21mgs. e e Parallax
SUPERPOINT  25.09 4.49 37.75 V with BRISK
ALIKED 24.61 474 35.85
DISK 24.73 4.56 37.11 -
SIFT 3030 426 36.63 e A .
SURF 29.77 4.07 38.07 T
UAV. MINEIGEN 2994  4.68 36.79 S
Dataset (B), BRISK 30.50 439 36.23 REW with DISK e Parallax
2 imgs. AKAZE 32.69 8.81 4478
SUPERPOINT 30.09 4.50 37.13
ALIKED 29.33 4.77 36.83 : E:S”‘;”xg
DISK 21.45 2.62 33.35 REW with ALIKED
C. Multiple Image Stitching Technique < Ghosting
e Parallax
Expanding beyond pair-wise stitching, this section qEw i

examines the scalability of feature detectors and
descriptors in the context of multiple image stitching. By
sequentially aligning a greater number of overlapping
images, we generate larger mosaics composed of multiple
input images, effectively simulating real-world UAV
imagery applications. Examples and quantitative results
are provided in Table VI. Additionally, Figs. 15-18
provide qualitative evaluations of the stitched images,
highlighting the visual coherence and alignment accuracy
achieved by each method. This assessment offers insights
into each method’s ability to maintain alignment quality
and spatial consistency as the complexity of the stitching
task increases.

Table VI presents PIQE, NIQE, and BRISQUE scores
for stitched images across four datasets, comparing the
perceptual quality of different feature detectors. In
Dataset 1 [20], SURF achieves the lowest PIQE (32.62),
SUPERPOINT yields the best NIQE (1.56), and DISK
records the lowest BRISQUE score (26.80), indicating
fewer perceptual distortions. In Dataset 2 [21], DISK
leads in PIQE (28.27), BRISK performs best in NIQE
(2.27), and SUPERPOINT achieves the best BRISQUE
score (36.12). For UAV-Dataset A, SIFT attains the
lowest PIQE (22.99), MINEIGEN shows the best
performance in NIQE (2.97), and SIFT also records the
lowest BRISQUE (32.06). In UAV-Dataset B, AKAZE
leads in PIQE (37.62), SIFT achieves the best BRISQUE
score (37.03), while BRISK records the lowest NIQE
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Fig. 15. Multiple image stitching results using Dataset 1 [18].
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Fig. 16. Multiple image stitching results using Dataset 2 [31].
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Fig. 17. Multiple

image stitching results using our UAV Dataset (A).
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Fig. 18. Multiple image stitching results using our UAV Dataset (B).

TABLE VI. PIQE, NIQE, AND BRISQUE SCORES FOR PAIR WISE
STITCHED IMAGES ACROSS DATASETS. THE STITCHED IMAGES
ANALYZED HERE ARE DERIVED FROM FIGS. 15-18.

Dataset Detector PIQE NIQE BRISQUE
SIFT 32.79 1.64 27.90
SURF 32.62 1.61 27.85
MINEIGEN 33.43 1.59 27.44
Dataset 1 (Zaragosa BRISK 33.16 1.58 27.40
et al. [18]), 5 imgs. AKAZE 33.08 1.60 27.31
SUPERPOINT  33.06 1.56 27.53
ALIKED 33.09 1.58 27.28
DISK 32.88 1.58 26.80
SIFT 28.98 2.72 36.48
SURF 28.92 2.70 37.29
MINEIGEN 29.46 2.73 36.99
Dataset 2 (Chen et BRISK 28.39 2.57 37.12
al. [31]), 6 imgs. AKAZE 28.57 2.70 36.98
SUPERPOINT  28.33 2.82 36.12
ALIKED 29.34 2.82 36.50
DISK 28.27 2.79 36.77
SIFT 22.99 2.98 32.06
SURF 44.81 4.84 49.32
MINEIGEN 3551 2.97 48.28
UAV-Dataset (A), BRISK 31.71 5.48 47.11
9 imgs. AKAZE 25.07 3.57 33.30
SUPERPOINT  25.06 3.78 32.54
ALIKED 28.74 3.35 33.43
DISK 31.51 8.50 47.01
SIFT 40.42 3.28 37.03
SURF 38.85 3.36 43.52
MINEIGEN 40.09 8.53 45.82
UAV-Dataset (B), BRISK 37.75 3.20 46.78
17 imgs. AKAZE 37.62 9.96 44.65
SUPERPOINT  55.86 591 52.21
ALIKED 47.05 431 39.66
DISK 58.85 7.51 45.36
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V. CONCLUSION

This study presents a comprehensive evaluation of
feature detectors and descriptors for UAV image stitching
under perspective distortion, leveraging the REW method
integrated with both traditional and deep learning-based
approaches. Results across multiple datasets demonstrate
that traditional detectors—such as SIFT, SURF,
MINEIGEN, BRISK, and AKAZE—typically yield high
keypoint counts and strong matching accuracy. However,
they often struggle with geometric distortions, leading to
artifacts such as ghosting, warping, and misalignment,
especially in complex urban and aerial UAV scenes.
Deep learning-based detectors—namely SUPERPOINT,
ALIKED, and DISK—tend to extract fewer but more
distinctive and robust keypoints, resulting in improved
alignment accuracy and visual coherence. DISK shows
strong spatial consistency, while ALIKED performs well
in multi-image stitching scenarios with smoother
transitions and fewer artifacts. Perceptual quality metrics
(PIQE, NIQE, BRISQUE) further support these findings,
with deep learning-based methods achieving lower scores
that reflect higher perceptual quality. However, these
methods are not universally robust. In cases involving
radiometric distortions, low-texture environments, or
extreme geometric transformations, even deep learning-
based approaches fail to produce coherent mosaics—
leading to structural misalignments and visible artifacts,
as illustrated in Fig. 19. Table VII summarizes the
primary sources of error and the corresponding global
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correction strategies applied across the evaluated datasets
for failed cases, providing insight into how each
distortion type is addressed in practice. The images
shown in Figs. 19 and 20 illustrate these error-
contributing factors—such as extreme geometric
transformations and cloud presence—which led to
noticeable artifacts and degraded visual quality in the
resulting mosaics.
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Fig. 19. Failed cases using deep learning-based feature detectors and
descriptors, caused by low-texture regions, radiometric distortions, and
extreme perspective transformations in the input images.

Single-Based Detectors and Descriptors
REW + Single Detector and Descriptor

brid Detectors and Descriptors
i ial Experiments)

Eigen - Initia

Fig. 20. Preliminary results of image stitching using hybrid feature
detectors and descriptors.

TABLE VII. SUMMARY OF DATASET ERROR SOURCES AND
CORRESPONDING CORRECTION STRATEGIES

I . lobal i
Dataset ™A prror Contribute Global Correction
Source Strategy
Camera calibration
Vertical (nadir) (resource-intensive),
Fig. 19- UAV view, extrema feature-based geometric
Our UAV based geometric correction methods,
dataset transformation statistical and model-
cloud presence based radiometric
correction methods
Fig. 20- Non-uniform Camera calibration
General ~ General . . . .
horizontal view, (resource-intensive),
Dataset Dataset : .
extreme geometric feature-based geometric
(A)-Left (Outdoor) . :
. transformation correction
side
Fig. 20- Non-uniform Camera calibration
General  General . . . .
horizontal view, (resource-intensive),
Dataset ~ Dataset : .
. extreme geometric feature-based geometric
(B)-Right (Outdoor) . :
. transformation correction
side
VI. FUTURE WORKS

In future work, exploring hybrid feature detectors and
descriptors that integrate the strengths of both traditional
and deep learning-based methods could further enhance
stitching quality in images affected by perspective
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distortions. By leveraging the robustness and efficiency
of traditional detectors alongside the adaptability and
precision of deep learning approaches, a hybrid model
may offer improved alignment and visual coherence as
part of our proposed feature-based geometric correction
technique—even in complex UAV imagery with
challenging perspectives, as demonstrated in our
preliminary experiments shown in Fig. 19. Table VIII
presents the average number of matched features across
different combinations of detectors and descriptors,
computed using Eq. (8), where |Miow| represents the total
number of keypoint matches for the i image pair, and n
denotes the total number of image pairs. The summation
aggregates match across all image pairs, and the result is
normalized by n to obtain the average number of matches
per pair. Results indicate that hybrid pairings of
traditional methods (e.g., SIFT+MinEigen,
SURF+KAZE) vyield the highest match counts,
suggesting strong compatibility in terms of keypoint
detection and descriptor robustness. Combinations
involving deep learning-based detectors (e.g., ALIKED,
SUPERPOINT) result in lower average matches, but may
still offer advantages in terms of precision or alignment
accuracy.

n

UM

i=1 total |; (8)

Average Matcher =
n

TABLE VIII. SUMMARY OF COMPATIBLE FEATURE DETECTOR AND
DESCRIPTOR WITH PROMISING RESULTS

No. Combined Features  Average Matcher
1 SIFT+MinEigen 312.89
2 SURF+KAZE 305.33
3 KAZE+MinEigen 292.22
4 ALIKED+SIFT 288.56
5 BRISK+KAZE 277.11
6  SUPERPOINT+SIFT 237.11
7 ALIKED+MinEigen 197.02
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