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Abstract—Arrhythmia is a condition characterised by
irregularities in heart rhythm, where the heartbeat may be
excessively fast, abnormally slow, or irregular, potentially
leading to severe complications such as heart attacks or
sudden cardiac death. Accurate diagnosis of Arrhythmia is
essential, but it has traditionally relied on Electrocardiogram
(ECG) analysis by medical experts, which can be time-
consuming and subject to variability. In recent years,
computational methods have gained prominence in
arrhythmia classification, improving diagnostic speed,
accuracy, and automation. This study investigates the
effectiveness of machine learning models, namely Random
Forest (RF), Support Vector Machine (SVM), and Adaptive
Boosting (AdaBoost), in classifying arrhythmias using
features extracted from ECG signals through Discrete
Wavelet Transform (DWT). The dataset was sourced from
the Massachusetts Institute of Technology—Beth Israel
Hospital Arrhythmia Database, and the research involved
several stages, including data collection, preprocessing,
feature extraction, model training, and performance
evaluation. The results indicate that RF achieves the highest
accuracy at 97.50%, SVM at 97.20%, and AdaBoost at
90.20%. These findings demonstrate the superior
performance of RF in handling arrhythmia classification
tasks, highlighting its potential for enhancing automated
ECG interpretation and assisting in early diagnosis and
clinical decision-making.

Keywords—Discrete Wavelet Transform (DWT), arrhythmia
database, Random Forest (RF), Support Vector Machine
(SVM), Adaptive Boosting (AdaBoost)

I. INTRODUCTION

Arrhythmia refers to irregularities in heart rhythm,
which may manifest as excessively fast, abnormally slow,
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or erratic heartbeats. It is considered a serious medical
condition that requires timely diagnosis and intervention.
Arrhythmia can lead to various complications, including
heart attack and sudden death [1]. Arrhythmia diagnosis is
an essential step in patient management and treatment.
However, diagnosing Arrhythmia often requires medical
experts to carefully interpret Electrocardiogram (ECQ)
signals. In recent years, computational methods for
arrhythmia classification have garnered attention as a
promising approach to enhance the speed and accuracy of
diagnosis [2].

One method used in arrhythmia -classification is
machine learning algorithms, especially Random Forest
(RF), Support Vector Machine (SVM), and Adaptive
Boosting (AdaBoost). Random Forest is a powerful
machine learning method often used in medical data
classification due to its ability to handle large and complex
data sets. Conversely, SVM offers a practical approach to
classification by maximizing the margin between different
classes. Meanwhile, AdaBoost is a boosting algorithm that
combines several simple models to improve prediction
accuracy. These three algorithms offer various approaches
to handling data complexity and can be optimised using
feature extraction techniques, such as the Discrete Wavelet
Transform (DWT) [3].

Additionally, DWT has been proven effective in
extracting features from time signals, such as ECG
signals [4]. DWT can produce a more compact signal
representation and retain critical information in varying
degrees of resolution [5]. Although many studies have
been conducted on the use of RF, SVM, and AdaBoost for
arrhythmia classification, few studies have specifically
explored the effect of DWT on the performance of the
three models. This study contributes to addressing this gap
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by systematically analysing the impact of DWT on these
machine-learning models. By incorporating DWT-based
feature extraction, this research aims to enhance the
classification accuracy and robustness of arrhythmia
detection models. The findings of this study may support
the development of automated ECG analysis systems,
potentially assisting medical professionals in making
timely and accurate diagnoses [6, 7]. Furthermore, the
results can be a reference for future research in improving
ECG signal processing techniques and optimising
classification algorithms for medical applications [8].

The contributions of the study are:

e Extracting ECG signals using DWT for feature
extraction and time-frequency analysis.
Evaluating and comparing RF, SVM,
AdaBoost  classification  performance
arrhythmia detection.

Demonstrating the impact of DWT on improving
machine learning model accuracy for ECG signal
classification.

Providing a benchmark for using DWT in
combination with machine learning models for
enhanced ECG interpretation and automated
arrhythmia diagnosis.

and
in

II. MATERIALS AND METHODS

A. Retrieval Dataset

The dataset used in this research was obtained from the
MIT-BIH Arrhythmia Database, a widely recognized and

validated dataset hosted on the official PhysioNet platform.

This database contains 48 half Hour recordings of two-
channel ambulatory ECG signals collected from 47
subjects, including a diverse range of standard and
abnormal heart rhythms [9]. The tapes were initially
selected to represent a variety of arrhythmias commonly
encountered in clinical practice. Fig. 1 illustrates a sample
ECG signal visualisation for Subject 100 on Google Colab,
demonstrating the raw waveform representation used in
this study.

ECG Raw
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0 100 200 300 400 500

Time (s)

Fig. 1. Raw ECG signal display subject.

In this study, only five individual records from the MIT-
BIH database (subjects 100, 101, 103, 105, and 106) were
utilized due to time and resource constraints. While this
subset does not fully represent the diversity of arrhythmia
cases in the complete dataset, it serves as an initial step in
evaluating the effectiveness of classical machine learning
models. Future research should expand this approach
to include a broader range of subjects and
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incorporate subject-independent validation to enhance
generalizability.

Each ECG recording was sampled at 360 Hz per channel
with 11-bit resolution over a 10-mV range, ensuring high-
fidelity signal representation [10]. The dataset was
annotated by at least two independent cardiologists, with
disagreements resolved through consensus, resulting in
approximately 110,000 annotated heartbeats. These
annotations serve as ground-truth labels for arrhythmia
classification tasks [11].

Table I summarises the key parameters of the dataset,
which include different classes of arrhythmias such as
Normal Sinus Rhythm (NSR), Atrial Fibrillation (AFib),
Premature Ventricular Contractions (PVC), Ventricular
Tachycardia (VTach), and Atrial Flutter. The dataset also
contains detailed metadata, including signal amplitude
range (10 mV), bandwidth (0.1-40 Hz), sampling
frequency (360 Hz per subject), and recording duration (30
Minutes per subject) [12].

TABLE I. RESEARCH DATASET PARAMETERS

No Parameters Total
1 Normal Sinus Rhythm (NSR) 18 Subject
2 Atrial Fibrillation (AFib) 1 Subject
3 Premature Ver(l{)ri;:él)ar Contraction 17 Subject
4 Ventricular Tachycardia (VTach) 3 Subject
5 Atrial Flutter 1 Subject
6 Amplitude Max, min 10 mV
7 Bandwidth 0.1-40 Hz
8 Sampling Frequency per subject 360 Hz
9 Interval Sampling 0.00278 s
10 Recording Time per patient 30 rl\e/lcl:)l:dtf;gper

B. Signal Preprocessing

Fig. 2 illustrates a signal preprocessing flow in which
the signal obtained initially is still in its raw form,
rendering the PQRST wave segments difficult to interpret
clearly. Therefore, the signal was filtered using a Bandpass
Filter to remove noise. The bandpass filter is composed of
a high pass filter in series with a low pass filter [13]. This
type of filter has been widely applied in ECG signal
denoising due to its ability to preserve signal morphology
while removing baseline wander and high-frequency
noise [14]. This BandPass Filter can pass signals in a
particular frequency band or “spread” or between specified
frequency limits. The Nyquist frequency, defined as half
of the sampling frequency (360 Hz), is therefore 180 Hz.
This frequency determines the maximum frequency
component that can be accurately captured in the ECG
signal. So, the frequency results can filter the frequency at
the lower and upper limits [15]. The preprocessing stages
on Google Colab were carried out as follows:

(1) Importing Raw Signal into Google Collab
pd.read_csv(). The signal is stored in a .csv file,
allowing it to be directly read in Google Colab.

(2) Preprocessing by giving input in the form of upper
and lower limit frequencies determined by using
this function to receive the signal, with a cutoff
frequency of 0.5 Hz, a sampling frequency of 360
Hz (standard MIT-BIH), and a filter order set at 5.
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The selection of these parameters follows common
standards in biomedical signal filtering, as
reported in previous ECG studies [16]. Nyq
frequency was calculated as half of the sampling
frequency, and the cutoff frequency was
normalised by dividing it by the new frequency.
Butterworth filters were then used to preserve the
integrity of the signal phase [17].
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Fig. 2. ECG signal preprocessing flow.

C. Signal Preprocessing

The preprocessing stages on Google Colab were carried
out following the stages presented in Fig. 3. The collected
dataset was subjected to signal denoising and feature
extraction to obtain the P-wave segment.

ECG Dataset Approximate
3-level .
after o and detailed
. Decomposition ..
preprocessing decomposition

DWT result
dataset

Fig. 3. Feature extraction process using Discrete Wavelet Transform
(DWT).

After preprocessing, DWT was applied to decompose
the ECG signal into multi-resolution frequency
components. We used the Daubechies-4 (db4) wavelet
function, commonly employed in ECG signal analysis due
to its compact support and similarity to QRS waveforms.
The signal was decomposed up to level 3, generating both
approximation and detail coefficients. From these
coefficients, statistical features such as energy, entropy,
mean, and standard deviation were extracted. These
features served as the input to the classifier. They captured
relevant frequency-domain characteristics across different
time windows, where the signal was divided into sub-band
components at various levels of resolution. The signal was
split into sub-bands, including four levels, to examine the
approximate signal produced. The db4 mother wavelet was
then applied to the signal to provide information about the
relevant frequency characteristics in the ECG
signal [18, 19]. By using db4, the signal will be divided
into more minor frequencies [20]. The extracted signal
output was then classified.

Furthermore, the windowing process occurred after the
feature extraction stage. The windowing technique used
was oversampling windowing. The signal extracted in 1
Hour of recording time was divided into several parts, with
each block being 2500 samples and the combined distance
between  blocks  being 100 samples 800
ms/window [21, 22].

D. Analysis of System Performance Results

The classification stage was carried out after extracting
the signal, as described by the flowchart in Fig. 4. The data
were divided into five classes: normal, Atrial Fibrillation,
Premature Ventricular Contraction, Ventricular
Tachycardia, and Atrial Flutter.

The ECG signal classification began by uploading the
data to a Google Drive account. The data was then divided
into training and test data in an 80:20 ratio. The training
data was used for the classification process using the
proposed method, while the test data was used to evaluate
the trained model. The data was uploaded in csv format to
facilitate processing. Next, the ECG data was categorised
into five classes based on the types of arrhythmias in the
dataset. Each dataset was labelled accordingly. 100.csv is
classified as Normal Sinus Rhythm (NSR), 101.csv as
Atrial Fibrillation (AFib), 105.csv as Premature
Ventricular Contraction (PVC), 103.csv as Ventricular
Tachycardia (VTach), and 106.csv as Atrial Flutter.
Although the dataset was limited to five labelled
recordings, the application of windowing and
segmentation techniques resulted in a large number of
training samples. This strategy partially mitigates the data
volume limitation, but we acknowledge that the lack of
subject variability remains a limitation. Addressing this
will be a focus in future work. After labelling, all datasets
were merged using the “concat” function from the pandas
library in Python, which is used to combine multiple
tabular data structures into a single unified dataset. This
allows for efficient processing and preparation for model
training [23].

The next stage involved defining functions for the
Random Forest, SVM, and AdaBoost architectures, which
were used to train the model. Once the model training was
complete, the classification algorithm was tested on the
test data to assess the model’s performance. The evaluation
employed an optimiser and loss function, with metrics
such as loss, accuracy, validation, and validation loss being
recorded. For RF classification, the model was initialised
with two key parameters to ensure consistent results:
n_estimators, set to 10, 50, 100, 200, 300, 400, and 500,
and random_state, set to 42. The n_estimators parameter
defined the number of decision trees in the RF, while the
RF Classifier was used for model training.

In the SVM model, several key parameters were set,
including kernel = ‘rbf” to utilise the Radial Basis Function
kernel, random_state = 42 to maintain result consistency,
C = 1.0 to balance classification margin and error, and
gamma = ‘scale’, to automatically adjust the gamma value
based on the number of features. This kernel has been
widely used in biomedical signal classification because it
handles nonlinear separation efficiently [24]. The training
process was accelerated using parallel threading with
joblib.parallel backend. After training, the model
predicted labels on the validation and test sets, with
accuracy and training time recorded for evaluation.

While the classifiers were implemented using
commonly accepted default parameters based on previous
studies, no exhaustive hyperparameter optimisation (e.g.,
GridSearchCV or RandomizedSearchCV) was conducted
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in this work. Initial tests with selected parameter values
(e.g., n_estimators = 100, C = 1.0) yielded satisfactory
results and served the purpose of establishing a
performance baseline. Future work may include a more
thorough parameter tuning process to maximise
performance and reliability.

For the AdaBoost model, the key parameters included
n_estimators, set to 10, 50, 100, 200, 300, 400, and 500,
and random_state, set to 42, to ensure consistency. The
n_estimators parameter determined the number of decision
trees in the model, while the classification algorithm was
implemented using the AdaBoostClassifier [25].

Finally, the trained classification models were tested
using the test data to evaluate their success rate. At this
stage, an optimiser and loss function were used for model
evaluation, with the results displayed in terms of loss,
accuracy, validation, and validation loss, as shown in
Fig. 4.

DWT Signal

1

Devide into §
class

]

Initialization
of Random
Forest Model
classifier

=

E.  Model Classification

After completing all stages, from signal preprocessing
to classification, the final step was the system performance
analysis to evaluate the model’s accuracy in classifying
ECG signals using various evaluation metrics. Fig. 5
illustrates the workflow of this analysis.

In this study, 40 patient samples were used, categorised
into Normal Sinus Rhythm (NSR), Atrial Fibrillation
(AFib), Premature Ventricular Contraction (PVC),
Ventricular Tachycardia (VTach), and Atrial Flutter. The
analysis was conducted through several stages. The first
stage was signal preprocessing, where noise was removed
using a denoising method to ensure cleaner signals for
feature extraction. This preprocessing step is essential, as
high-quality signal input significantly influences the
accuracy and reliability of classification in ECG
analysis [26]. Next, feature extraction was performed
using the DWT, which captures frequency variations in the
ECG signal and extracts essential features for
classification.

After extracting the features, the next step was to
classify the signals using three main machine-learning
algorithms: RF, SVM, and AdaBoost. The trained models
were then evaluated using several performance metrics,
including accuracy, precision, sensitivity (recall), and F1-
Score. Accuracy measures the overall frequency of correct
predictions made by the model, while precision identifies
how well the model avoids errors in classifying specific
arrhythmia conditions. Sensitivity assesses the model’s
ability to detect arrhythmias correctly, and the F1-Score is
a combined metric of precision and sensitivity that

Initialization of| | nitilization Add Specify hte . evaluates the balance between positive and negative class
SVM Model of Adaboost classification loss function, Training X X ! X N
classifier Mod layer optimazer, and model detection. These evaluation metrics are widely adopted in
classifier matrics . H o 1
) ECG-based arrhythmia detection studies for their
Fig. 4. Flowchart using RF, SVM, AdaBoost. effectiveness in assessing classifier robustness and
reliability [27]. The steps are illustrated in Fig. 5.
Classification .
with Random Atrial
Forest Fluter
. . Ventricular
Classification "
Training . (> Tachycardia |—
Data (0%) with SVM (VTach)
N
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("":‘Jﬁf"““ Training Evaluation | | | Ventricular | |
o [1{):};1 Adaboost Result Model ('o(nI::a/lzl)lun
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Atrial
> Fibrillation —
Testing (AFib)
Data (20%)
Normal
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Fig. 5. Flowchart of performance analysis.

III. RESULTS AND DISCUSSION

The expected research output is to be able to analyse
ECG signals for patients with cardiovascular disease,
especially Atrial Fibrillation, Premature Ventricular
Contraction, Ventricular Tachycardia, and Atrial Flutter,
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using the DWT method. Next, it can group or classify
patients with normal conditions, AFib, PVC, VTach, and
Atrial Flutter with RF, SVM, and AdaBoost methods.
Ultimately, it achieves good system performance, as
evidenced by its accuracy, precision, sensitivity, and F1-
Score.
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A. Data Reading Results on Google Colab

ECG signal data reading was done in Google
Colaboratory by downloading the .csv files on the ATM
PhysioBank page (physionet.org). Then, the files were
imported into Google Colab. The signal was displayed in
3600 Seconds or 1 Hour from 23 Hours of sampling on the
patient, with an annotation of N or Normal and in the
amplitude range of £6 mV. The 04015m.info file displayed
information related to signal recordings, such as the
number of samples and as many as 900,000 samples/signal
with a sampling interval of 0.004 s. Fig. 6 shows the raw
signal extracted from the file, illustrating the recorded
ECG waveform. The signal displayed in the image consists
of only one channel (Lead II), which records the atrial
activity of the heart, allowing for the diagnosis of common
conditions, such as AFib, PVC, VTach, and Atrial Flutter.

ECG Raw

0 20000 40000

Time (s)

Fig. 6. Raw ECG signal loaded from PhysioNet MIT-BIH dataset
(single channel).

60000 80000 100000

B.  Signal Preprocessing Result

The signal was displayed in 3600 Seconds or 1 Hour
from 23 Hours of sampling on the patient, with an
annotation of N or Normal. The signal preprocessing stage
was also conducted on Google collaboration by specifying
the upper and lower frequency limits, ensuring that the
signal was filtered only within a predetermined range. The
bandpass filter was configured with a lower cutoff of 0.5
Hz and an upper cutoff of 40 Hz, in line with typical ECG
preprocessing standards. The Nyquist frequency for the
360 Hz sampling rate was 180 Hz, ensuring the
preservation of relevant cardiac signal components.

ECG Filtered

[ 20000 40000

Time (s)

60000 80000 100000

Fig. 7. Signal after preprocessing.

Fig. 7 shows the signal display after filtering using
Bandpass filtering. After preprocessing, the resulting
signal exhibited significantly reduced noise, with the
amplitude range shrinking to +3 mV. This noise was
filtered by applying a bandpass filter, which removed
waves outside the designated frequency range. In addition
to denoising the noise in the signal, the bandpass filter was
also helpful in adjusting the signal’s shape, facilitating
more efficient computation during the feature extraction
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process. Although filtering did not remove 100% of the
noise, it substantially minimised the distortion in the signal
caused by measurement artefacts or errors in ECG
recording. Fig. 8 compares the raw and preprocessed
signals, clearly illustrating the effectiveness of the filtering
process in reducing noise and refining the waveform.
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Fig. 8. Signal comparison before and after preprocessing.

C. Discrete Wavelet Transform Feature Extraction

The feature extraction stage aims to reconstruct the
signal into a new form according to the selected mother
wavelet and examine the energy distribution closest to the
initial signal. The resulting signal was clearer, allowing the
difference in the PQRS wave to be seen, and the pattern
was more easily recognised by machine learning.

Fig. 9 shows that the signal was decomposed using the
db4 mother wavelet at level 3, enabling a good balance
between time and frequency localisation. The resulting
signal preserved important morphological features while
reducing noise and redundant information. The resulting
signal shape has a minor frequency and amplitude but still
represents each wave without addition or subtraction. The
reconstructed signal facilitates the input process for
machine learning models, as it has been standardised into
a uniform pattern suitable for pattern comparison. This
uniformity simplifies the classification task, allowing the
signal to be more effectively categorised into five distinct
classes. Statistical features such as energy, entropy, mean,
and standard deviation were derived from the detail
coefficients to serve as inputs to the classification models.

Signal after DWT

Amplitude

40 80

60
Time (s)

Fig. 9. Signal after extraction.

In addition, the selection of the decomposition level was
also based on the relativity of the resulting energy, as
shown in Fig. 10. This energy relativity aims to examine
how similar the signal reconstruction is to the initial signal.
Using the db4 mother wavelet, 3-level decomposition
produced the best energy relativity among several other
levels of 66.64%. However, the 100% energy relativity
also did not determine how well the signal was
reconstructed. Each mother wavelet had different
characteristics in displaying energy relativity. For
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example, Sym4, with five levels, produces an energy
relativity of 94%. Still, the resulting signal reconstruction
showed a similar pattern to the initial signal so that no new
patterns could be used as variations in machine learning
processing. Therefore, selecting db4 with three
decomposition levels is an appropriate choice for
extracting new signal patterns.
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Fig. 10. Signal after extraction.

D. Signal Windowing

The signal windowing technique was applied after the
feature extraction process to augment the data and increase
the amount of training data. The overlapping method
avoids missing information in the signal and produces a
variety of patterns in the training data. The windowing
process was done in Python software by exporting the
signal in .csv format. The difference resulting from this file
export lies in the X axis label, which changed from ‘time
(s)’ to ‘samples’, indicating that the signal reading graph
now represents the number of samples and amplitude of
the reconstructed signal.

Fig. 11 illustrates the overlapping windowing technique
applied to the signals. The windowing process involved
cutting the signal into pieces that overlap 50%. Fig. 11
shows the two initial cuts of the variable ‘filtered signal’,
where the signal in the second cut starts halfway at the end
of the signal in the first cut. This process is called
overlapping.

Window 1

Sample in Window

Fig. 11. Windowing overlapping signals.

In this study, windowing divided a single signal into
multiple chunks or samples. From a total of 900,000
samples (1 Hour), a windowing technique with a size of
200 samples (800 ms) and overlapping of 100 samples
(400 ms) per window slice was performed. From the
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windowing process, 89 chunks, or equal to 71.2 Seconds
(1.18 Minutes) for each signal labelled ‘NSR’, 50 chunks
or equal to 40 Seconds (0.67 Minutes) for the signal
labelled ‘AFib’, 62 chunks or equal to 49.6 Seconds (0.83
Minutes) for each signal labelled ‘PVC’, 77 chunks or
equal to 61.6 Seconds (1.03 Minutes) for each signal
labelled “VTach’, and 30 chunks or equal to 24 Seconds
(0.4 Minutes) for each signal labelled ‘Atrial Flutter’. The
results of this windowing technique were stored in the
‘window’ variable for the classification process, resulting
in 12,854 total signal data points.

E. Classification Results

The expected outcomes of the research are to analyse
ECG signals in patients with cardiovascular diseases,
specifically AFib, PVC, VTach, and Atrial Flutter, using
the DWT method. The research also aims to classify
patients based on these conditions using RF, SVM, and
AdaBoost methods and to achieve optimal system
performance, measured by accuracy, precision, sensitivity,
and F1-Score.

1) Classification parameters using Random Forest
(RF)

Model training aims to train the SVM to learn several
various signal types and distinguish the specific details
associated with each of the five classes. Fig. 12(a) shows
the accuracy graph with a C value of 100. It can be seen
that the accuracy has increased to 97.3%. The training
performed shows an accuracy of 97.3% and a validation
accuracy of 97.20%. The resulting loss from Fig. 12(b)
shows a significant decrease in log loss as the C value
increases. Initially, both the train loss and validation loss
were around 0.25 for low C values, and both continued to
drop significantly, reaching a log loss value of around 0.1
(C=100). This consistent decrease indicates that the SVM
model improves its ability to learn the data as the value of
C increases, providing greater flexibility in separating the
classes.

()

0.9755

Random Forest Accuracy vs. Number of Trees (b)  Random Forest Accuracy vs. Number of Trees

—e— Validation Loss
Train Loss

— <
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Fig. 12. Performance of RF with varying number of trees: (a) Accuracy
vs. n_estimators, (b) Log Loss vs. n_estimators.

2) Classification parameters using Support Vector
Machine (SVM)

The aim of model training is similar to that of the
Random Forest (RF) method. Fig. 13(a) shows the
accuracy graph with a C value of 100, indicating that the
accuracy has increased to 97.3%. The training performed
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shows an accuracy of 97.3% and a validation accuracy of
97.20%. The resulting loss from Fig. 13(b) shows a
significant decrease in log loss as the C value increases.
Initially, both the train loss and validation loss were around
0.25 for low C wvalues, and both continued to drop
significantly, reaching a log loss value of around 0.1
(C = 100). This consistent decrease also indicates that the
SVM model improves its ability to learn the data as the
value of C increases, allowing for greater flexibility in
separating the classes.

SVM Log Loss vs. C Value
—e— Validation Loss

SVM Training and Validation Accuracy (b)

@)
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Fig. 13. Performance of the SVM model with different C values: (a)
Accuracy vs. C, (b) Log Loss vs. C.
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3) Classification parameters using AdaBoost

Model training for Adaboost follows a similar objective
as in the RF and SVM methods. Fig. 14(a) shows the
accuracy graph with 10 n_estimators, achieving an
accuracy of 0.902 for both training and validation. The
resulting loss from Fig. 14(b) shows a significant increase
in 0 to 500, with train loss reaching around 1.57 and
validation loss around 1.59. Increasing n_estimators to 50
slightly raised training accuracy to 0.907, while validation
accuracy stayed at 0.902. At 100 n_estimators, the
validation accuracy dropped to 0.891, and the training
accuracy to 0.892. Further increases caused overfitting,
with both accuracies falling to 0.556 at 500 n_estimators.
The graph indicates that increasing the number of trees
beyond a certain point decreases accuracy and increases
log loss in the validation set.

(b) AdaBoost Log Loss vs. Number of Trees

AdaBoost Accuracy vs. Number of Trees
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Recent research has demonstrated the effectiveness of
machine learning techniques in classifying ECG signals.
Nasim et al. [6] proposed an evolutionary-neural
mechanism for arrhythmia classification using single-lead
ECG, achieving high accuracy by optimising feature
selection. Li ef al. [7] introduced a biased dropout strategy
combined with morphology-rhythm features,
demonstrating improved model generalisation. Alinsaif[8]
performed a comprehensive graph-based analysis of the
MIT-BIH dataset, emphasising the significance of data
representation in ECG classification.
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Fig. 15. Comparison of classification results using three methods: (a)
Random Forest, (b) SVM, and (c) AdaBoost.

After the testing stage, the models were saved and
evaluated using test data. Table II presents a comparative
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summary of performance metrics for the RF, SVM, and
AdaBoost classifiers, including accuracy, precision,
sensitivity, and F1-Score. The evaluation of the RF model
showed an accuracy of 97.50%, recall of 97.47%, F1-
Score of 97.38%, and precision of 97.50%, with accuracy
for NSR data at 98%, AFib at 97%, PVC at 95%, VTach
at 99%, and Atrial Flutter at 89%. The SVM model
achieved an accuracy of 97.20%, recall of 97.20%, F1-
Score of 97.20%, and precision of 97.10%, with accuracy
for NSR data at 96%, AFib at 98%, PVC at 94%, VTach
at 89%, and Atrial Flutter at 89%. The AdaBoost model
generated an accuracy of 90.20%, recall of 90.24%, F1-
Score of 88.22%, and precision of 88.95%, with accuracy
for NSR data at 91%, AFib at 92%, PVC at 90%, VTach
at 88%, and Atrial Flutter at 80%. These results are further
supported by the confusion matrix calculations, as shown
in Fig. 15.

TABLE II. COMPARISON OF EVALUATION MATRIX PARAMETERS

Parameter Random Forest SVM Adaboost
Accuracy 97.50% 97.20% 90.20%
Precision 97.50% 97.20% 88.95%

Sensitivity (Recall) 97.47% 97.2% 90.24%
F1-Score 97.38% 97.10% 89.22%

Benchmarking with previous studies reveals that deep
learning models consistently achieve higher accuracy in
ECG classification tasks. For example, Li et al. [28]
utilised a deep learning approach incorporating
Convolutional Neural Networks (CNN) and achieved an
accuracy of 98.5% on a multi-class arrhythmia
classification task. Similarly, Wang et al. [29] proposed a
deep multi-scale fusion neural network for arrhythmia
detection, reaching an accuracy of 98.2%. Moreover, Zou
et al. [30] implemented an RF model with novel context
features, achieving an accuracy of 98.0%.

Compared to these models, the RF model in this study
demonstrated competitive performance, reaching 97.50%
accuracy while maintaining interpretability and lower
computational complexity. Although deep learning
methods often outperform classical models in terms of raw
accuracy, they typically require complex training
pipelines, large annotated datasets, and high computational
resources. In contrast, classical machine learning models
such as RF and SVM offer lower computational demands
and better transparency in decision-making, which is
critical in clinical applications where explainability is
essential. Therefore, while deep learning continues to push
performance boundaries, interpretable models still provide
practical and efficient solutions, especially in resource-
constrained environments.

IV. CONCLUSION

Based on the results and discussion presented, the DWT
method, combined with an RF architecture, can improve
the efficiency of reading and analysing ECG signals. This
method performs best at a n_estimator of 100, achieving
97.50% accuracy, 97.50% precision, 97.47% sensitivity,
and 97.38% F1-Score. Additionally, the resulting
performance yields a training accuracy of 97.6% and a
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validation accuracy of 97.50%. Compared to other
methods, RF produced the highest accuracy (97.6%),
followed by SVM (97.20%) and AdaBoost (90.20%). The
results indicate that RF and SVM outperform AdaBoost in
terms of accuracy and robustness for ECG arrhythmia
classification.
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