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Abstract—Arrhythmia is a condition characterised by 
irregularities in heart rhythm, where the heartbeat may be 
excessively fast, abnormally slow, or irregular, potentially 
leading to severe complications such as heart attacks or 
sudden cardiac death. Accurate diagnosis of Arrhythmia is 
essential, but it has traditionally relied on Electrocardiogram 
(ECG) analysis by medical experts, which can be time-
consuming and subject to variability. In recent years, 
computational methods have gained prominence in 
arrhythmia classification, improving diagnostic speed, 
accuracy, and automation. This study investigates the 
effectiveness of machine learning models, namely Random 
Forest (RF), Support Vector Machine (SVM), and Adaptive 
Boosting (AdaBoost), in classifying arrhythmias using 
features extracted from ECG signals through Discrete 
Wavelet Transform (DWT). The dataset was sourced from 
the Massachusetts Institute of Technology—Beth Israel 
Hospital Arrhythmia Database, and the research involved 
several stages, including data collection, preprocessing, 
feature extraction, model training, and performance 
evaluation. The results indicate that RF achieves the highest 
accuracy at 97.50%, SVM at 97.20%, and AdaBoost at 
90.20%. These findings demonstrate the superior 
performance of RF in handling arrhythmia classification 
tasks, highlighting its potential for enhancing automated 
ECG interpretation and assisting in early diagnosis and 
clinical decision-making. 

Keywords—Discrete Wavelet Transform (DWT), arrhythmia 
database, Random Forest (RF), Support Vector Machine 
(SVM), Adaptive Boosting (AdaBoost) 

I. INTRODUCTION

Arrhythmia refers to irregularities in heart rhythm, 
which may manifest as excessively fast, abnormally slow, 
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or erratic heartbeats. It is considered a serious medical 
condition that requires timely diagnosis and intervention. 
Arrhythmia can lead to various complications, including 
heart attack and sudden death [1]. Arrhythmia diagnosis is 
an essential step in patient management and treatment. 
However, diagnosing Arrhythmia often requires medical 
experts to carefully interpret Electrocardiogram (ECG) 
signals. In recent years, computational methods for 
arrhythmia classification have garnered attention as a 
promising approach to enhance the speed and accuracy of 
diagnosis [2]. 

One method used in arrhythmia classification is 
machine learning algorithms, especially Random Forest 
(RF), Support Vector Machine (SVM), and Adaptive 
Boosting (AdaBoost). Random Forest is a powerful 
machine learning method often used in medical data 
classification due to its ability to handle large and complex 
data sets. Conversely, SVM offers a practical approach to 
classification by maximizing the margin between different 
classes. Meanwhile, AdaBoost is a boosting algorithm that 
combines several simple models to improve prediction 
accuracy. These three algorithms offer various approaches 
to handling data complexity and can be optimised using 
feature extraction techniques, such as the Discrete Wavelet 
Transform (DWT) [3]. 

Additionally, DWT has been proven effective in 
extracting features from time signals, such as ECG 
signals [4]. DWT can produce a more compact signal 
representation and retain critical information in varying 
degrees of resolution [5]. Although many studies have 
been conducted on the use of RF, SVM, and AdaBoost for 
arrhythmia classification, few studies have specifically 
explored the effect of DWT on the performance of the 
three models. This study contributes to addressing this gap 
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by systematically analysing the impact of DWT on these 
machine-learning models. By incorporating DWT-based 
feature extraction, this research aims to enhance the 
classification accuracy and robustness of arrhythmia 
detection models. The findings of this study may support 
the development of automated ECG analysis systems, 
potentially assisting medical professionals in making 
timely and accurate diagnoses [6, 7]. Furthermore, the 
results can be a reference for future research in improving 
ECG signal processing techniques and optimising 
classification algorithms for medical applications [8]. 

The contributions of the study are: 
 Extracting ECG signals using DWT for feature

extraction and time-frequency analysis.
 Evaluating and comparing RF, SVM, and

AdaBoost classification performance in 
arrhythmia detection.

 Demonstrating the impact of DWT on improving
machine learning model accuracy for ECG signal
classification.

 Providing a benchmark for using DWT in
combination with machine learning models for
enhanced ECG interpretation and automated
arrhythmia diagnosis.

II. MATERIALS AND METHODS

A. Retrieval Dataset

The dataset used in this research was obtained from the
MIT-BIH Arrhythmia Database, a widely recognized and 
validated dataset hosted on the official PhysioNet platform. 
This database contains 48 half Hour recordings of two-
channel ambulatory ECG signals collected from 47 
subjects, including a diverse range of standard and 
abnormal heart rhythms [9]. The tapes were initially 
selected to represent a variety of arrhythmias commonly 
encountered in clinical practice. Fig. 1 illustrates a sample 
ECG signal visualisation for Subject 100 on Google Colab, 
demonstrating the raw waveform representation used in 
this study.  

Fig. 1. Raw ECG signal display subject. 

In this study, only five individual records from the MIT-
BIH database (subjects 100, 101, 103, 105, and 106) were 
utilized due to time and resource constraints. While this 
subset does not fully represent the diversity of arrhythmia 
cases in the complete dataset, it serves as an initial step in 
evaluating the effectiveness of classical machine learning 
models. Future research should expand this approach 
to include a broader range of subjects and 

incorporate subject-independent validation to enhance 
generalizability. 

Each ECG recording was sampled at 360 Hz per channel 
with 11-bit resolution over a 10-mV range, ensuring high-
fidelity signal representation [10]. The dataset was 
annotated by at least two independent cardiologists, with 
disagreements resolved through consensus, resulting in 
approximately 110,000 annotated heartbeats. These 
annotations serve as ground-truth labels for arrhythmia 
classification tasks [11]. 

Table I summarises the key parameters of the dataset, 
which include different classes of arrhythmias such as 
Normal Sinus Rhythm (NSR), Atrial Fibrillation (AFib), 
Premature Ventricular Contractions (PVC), Ventricular 
Tachycardia (VTach), and Atrial Flutter. The dataset also 
contains detailed metadata, including signal amplitude 
range (10 mV), bandwidth (0.1–40 Hz), sampling 
frequency (360 Hz per subject), and recording duration (30 
Minutes per subject) [12]. 

TABLE I. RESEARCH DATASET PARAMETERS 

No Parameters Total
1 Normal Sinus Rhythm (NSR) 18 Subject 
2 Atrial Fibrillation (AFib) 1 Subject 

3 
Premature Ventricular Contraction 

(PVC) 
17 Subject 

4 Ventricular Tachycardia (VTach) 3 Subject 
5 Atrial Flutter 1 Subject 
6 Amplitude Max, min 10 mV 
7 Bandwidth 0.1–40 Hz 
8 Sampling Frequency per subject 360 Hz
9 Interval Sampling 0.00278 s 

10 Recording Time per patient 
30 Minutes per 

recording 

B. Signal Preprocessing

Fig. 2 illustrates a signal preprocessing flow in which
the signal obtained initially is still in its raw form, 
rendering the PQRST wave segments difficult to interpret 
clearly. Therefore, the signal was filtered using a Bandpass 
Filter to remove noise. The bandpass filter is composed of 
a high pass filter in series with a low pass filter [13]. This 
type of filter has been widely applied in ECG signal 
denoising due to its ability to preserve signal morphology 
while removing baseline wander and high-frequency 
noise [14]. This BandPass Filter can pass signals in a 
particular frequency band or “spread” or between specified 
frequency limits. The Nyquist frequency, defined as half 
of the sampling frequency (360 Hz), is therefore 180 Hz. 
This frequency determines the maximum frequency 
component that can be accurately captured in the ECG 
signal. So, the frequency results can filter the frequency at 
the lower and upper limits [15]. The preprocessing stages 
on Google Colab were carried out as follows: 

(1) Importing Raw Signal into Google Collab
pd.read_csv(). The signal is stored in a .csv file,
allowing it to be directly read in Google Colab.

(2) Preprocessing by giving input in the form of upper
and lower limit frequencies determined by using
this function to receive the signal, with a cutoff
frequency of 0.5 Hz, a sampling frequency of 360
Hz (standard MIT-BIH), and a filter order set at 5.
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The selection of these parameters follows common 
standards in biomedical signal filtering, as 
reported in previous ECG studies [16]. Nyq 
frequency was calculated as half of the sampling 
frequency, and the cutoff frequency was 
normalised by dividing it by the new frequency. 
Butterworth filters were then used to preserve the 
integrity of the signal phase [17]. 

Fig. 2. ECG signal preprocessing flow. 

C. Signal Preprocessing

The preprocessing stages on Google Colab were carried
out following the stages presented in Fig. 3. The collected 
dataset was subjected to signal denoising and feature 
extraction to obtain the P-wave segment. 

Fig. 3. Feature extraction process using Discrete Wavelet Transform 
(DWT). 

After preprocessing, DWT was applied to decompose 
the ECG signal into multi-resolution frequency 
components. We used the Daubechies-4 (db4) wavelet 
function, commonly employed in ECG signal analysis due 
to its compact support and similarity to QRS waveforms. 
The signal was decomposed up to level 3, generating both 
approximation and detail coefficients. From these 
coefficients, statistical features such as energy, entropy, 
mean, and standard deviation were extracted. These 
features served as the input to the classifier. They captured 
relevant frequency-domain characteristics across different 
time windows, where the signal was divided into sub-band 
components at various levels of resolution. The signal was 
split into sub-bands, including four levels, to examine the 
approximate signal produced. The db4 mother wavelet was 
then applied to the signal to provide information about the 
relevant frequency characteristics in the ECG 
signal [18, 19]. By using db4, the signal will be divided 
into more minor frequencies [20]. The extracted signal 
output was then classified. 

Furthermore, the windowing process occurred after the 
feature extraction stage. The windowing technique used 
was oversampling windowing. The signal extracted in 1 
Hour of recording time was divided into several parts, with 
each block being 2500 samples and the combined distance 
between blocks being 100 samples 800 
ms/window [21, 22]. 

D. Analysis of System Performance Results

The classification stage was carried out after extracting
the signal, as described by the flowchart in Fig. 4. The data 
were divided into five classes: normal, Atrial Fibrillation, 
Premature Ventricular Contraction, Ventricular 
Tachycardia, and Atrial Flutter. 

The ECG signal classification began by uploading the 
data to a Google Drive account. The data was then divided 
into training and test data in an 80:20 ratio. The training 
data was used for the classification process using the 
proposed method, while the test data was used to evaluate 
the trained model. The data was uploaded in csv format to 
facilitate processing. Next, the ECG data was categorised 
into five classes based on the types of arrhythmias in the 
dataset. Each dataset was labelled accordingly. 100.csv is 
classified as Normal Sinus Rhythm (NSR), 101.csv as 
Atrial Fibrillation (AFib), 105.csv as Premature 
Ventricular Contraction (PVC), 103.csv as Ventricular 
Tachycardia (VTach), and 106.csv as Atrial Flutter. 
Although the dataset was limited to five labelled 
recordings, the application of windowing and 
segmentation techniques resulted in a large number of 
training samples. This strategy partially mitigates the data 
volume limitation, but we acknowledge that the lack of 
subject variability remains a limitation. Addressing this 
will be a focus in future work. After labelling, all datasets 
were merged using the “concat” function from the pandas 
library in Python, which is used to combine multiple 
tabular data structures into a single unified dataset. This 
allows for efficient processing and preparation for model 
training [23]. 

The next stage involved defining functions for the 
Random Forest, SVM, and AdaBoost architectures, which 
were used to train the model. Once the model training was 
complete, the classification algorithm was tested on the 
test data to assess the model’s performance. The evaluation 
employed an optimiser and loss function, with metrics 
such as loss, accuracy, validation, and validation loss being 
recorded. For RF classification, the model was initialised 
with two key parameters to ensure consistent results: 
n_estimators, set to 10, 50, 100, 200, 300, 400, and 500, 
and random_state, set to 42. The n_estimators parameter 
defined the number of decision trees in the RF, while the 
RF Classifier was used for model training. 

In the SVM model, several key parameters were set, 
including kernel = ‘rbf’ to utilise the Radial Basis Function 
kernel, random_state = 42 to maintain result consistency, 
C = 1.0 to balance classification margin and error, and 
gamma = ‘scale’, to automatically adjust the gamma value 
based on the number of features. This kernel has been 
widely used in biomedical signal classification because it 
handles nonlinear separation efficiently [24]. The training 
process was accelerated using parallel threading with 
joblib.parallel_backend. After training, the model 
predicted labels on the validation and test sets, with 
accuracy and training time recorded for evaluation. 

While the classifiers were implemented using 
commonly accepted default parameters based on previous 
studies, no exhaustive hyperparameter optimisation (e.g., 
GridSearchCV or RandomizedSearchCV) was conducted 
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in this work. Initial tests with selected parameter values 
(e.g., n_estimators = 100, C = 1.0) yielded satisfactory 
results and served the purpose of establishing a 
performance baseline. Future work may include a more 
thorough parameter tuning process to maximise 
performance and reliability. 

For the AdaBoost model, the key parameters included 
n_estimators, set to 10, 50, 100, 200, 300, 400, and 500, 
and random_state, set to 42, to ensure consistency. The 
n_estimators parameter determined the number of decision 
trees in the model, while the classification algorithm was 
implemented using the AdaBoostClassifier [25]. 

Finally, the trained classification models were tested 
using the test data to evaluate their success rate. At this 
stage, an optimiser and loss function were used for model 
evaluation, with the results displayed in terms of loss, 
accuracy, validation, and validation loss, as shown in 
Fig. 4. 

Fig. 4. Flowchart using RF, SVM, AdaBoost. 

E. Model Classification

After completing all stages, from signal preprocessing
to classification, the final step was the system performance 
analysis to evaluate the model’s accuracy in classifying 
ECG signals using various evaluation metrics. Fig. 5 
illustrates the workflow of this analysis. 

In this study, 40 patient samples were used, categorised 
into Normal Sinus Rhythm (NSR), Atrial Fibrillation 
(AFib), Premature Ventricular Contraction (PVC), 
Ventricular Tachycardia (VTach), and Atrial Flutter. The 
analysis was conducted through several stages. The first 
stage was signal preprocessing, where noise was removed 
using a denoising method to ensure cleaner signals for 
feature extraction. This preprocessing step is essential, as 
high-quality signal input significantly influences the 
accuracy and reliability of classification in ECG 
analysis [26]. Next, feature extraction was performed 
using the DWT, which captures frequency variations in the 
ECG signal and extracts essential features for 
classification. 

After extracting the features, the next step was to 
classify the signals using three main machine-learning 
algorithms: RF, SVM, and AdaBoost. The trained models 
were then evaluated using several performance metrics, 
including accuracy, precision, sensitivity (recall), and F1-
Score. Accuracy measures the overall frequency of correct 
predictions made by the model, while precision identifies 
how well the model avoids errors in classifying specific 
arrhythmia conditions. Sensitivity assesses the model’s 
ability to detect arrhythmias correctly, and the F1-Score is 
a combined metric of precision and sensitivity that 
evaluates the balance between positive and negative class 
detection. These evaluation metrics are widely adopted in 
ECG-based arrhythmia detection studies for their 
effectiveness in assessing classifier robustness and 
reliability [27]. The steps are illustrated in Fig. 5. 

Fig. 5. Flowchart of performance analysis. 

III. RESULTS AND DISCUSSION

The expected research output is to be able to analyse 
ECG signals for patients with cardiovascular disease, 
especially Atrial Fibrillation, Premature Ventricular 
Contraction, Ventricular Tachycardia, and Atrial Flutter, 

using the DWT method. Next, it can group or classify 
patients with normal conditions, AFib, PVC, VTach, and 
Atrial Flutter with RF, SVM, and AdaBoost methods. 
Ultimately, it achieves good system performance, as 
evidenced by its accuracy, precision, sensitivity, and F1-
Score. 
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A. Data Reading Results on Google Colab

ECG signal data reading was done in Google
Colaboratory by downloading the .csv files on the ATM 
PhysioBank page (physionet.org). Then, the files were 
imported into Google Colab. The signal was displayed in 
3600 Seconds or 1 Hour from 23 Hours of sampling on the 
patient, with an annotation of N or Normal and in the 
amplitude range of ±6 mV. The 04015m.info file displayed 
information related to signal recordings, such as the 
number of samples and as many as 900,000 samples/signal 
with a sampling interval of 0.004 s. Fig. 6 shows the raw 
signal extracted from the file, illustrating the recorded 
ECG waveform. The signal displayed in the image consists 
of only one channel (Lead II), which records the atrial 
activity of the heart, allowing for the diagnosis of common 
conditions, such as AFib, PVC, VTach, and Atrial Flutter. 

Fig. 6. Raw ECG signal loaded from PhysioNet MIT-BIH dataset 
(single channel). 

B. Signal Preprocessing Result

The signal was displayed in 3600 Seconds or 1 Hour
from 23 Hours of sampling on the patient, with an 
annotation of N or Normal. The signal preprocessing stage 
was also conducted on Google collaboration by specifying 
the upper and lower frequency limits, ensuring that the 
signal was filtered only within a predetermined range. The 
bandpass filter was configured with a lower cutoff of 0.5 
Hz and an upper cutoff of 40 Hz, in line with typical ECG 
preprocessing standards. The Nyquist frequency for the 
360 Hz sampling rate was 180 Hz, ensuring the 
preservation of relevant cardiac signal components. 

Fig. 7. Signal after preprocessing. 

Fig. 7 shows the signal display after filtering using 
Bandpass filtering. After preprocessing, the resulting 
signal exhibited significantly reduced noise, with the 
amplitude range shrinking to ±3 mV. This noise was 
filtered by applying a bandpass filter, which removed 
waves outside the designated frequency range. In addition 
to denoising the noise in the signal, the bandpass filter was 
also helpful in adjusting the signal’s shape, facilitating 
more efficient computation during the feature extraction 

process. Although filtering did not remove 100% of the 
noise, it substantially minimised the distortion in the signal 
caused by measurement artefacts or errors in ECG 
recording. Fig. 8 compares the raw and preprocessed 
signals, clearly illustrating the effectiveness of the filtering 
process in reducing noise and refining the waveform. 

Fig. 8. Signal comparison before and after preprocessing. 

C. Discrete Wavelet Transform Feature Extraction

The feature extraction stage aims to reconstruct the
signal into a new form according to the selected mother 
wavelet and examine the energy distribution closest to the 
initial signal. The resulting signal was clearer, allowing the 
difference in the PQRS wave to be seen, and the pattern 
was more easily recognised by machine learning. 

Fig. 9 shows that the signal was decomposed using the 
db4 mother wavelet at level 3, enabling a good balance 
between time and frequency localisation. The resulting 
signal preserved important morphological features while 
reducing noise and redundant information. The resulting 
signal shape has a minor frequency and amplitude but still 
represents each wave without addition or subtraction. The 
reconstructed signal facilitates the input process for 
machine learning models, as it has been standardised into 
a uniform pattern suitable for pattern comparison. This 
uniformity simplifies the classification task, allowing the 
signal to be more effectively categorised into five distinct 
classes. Statistical features such as energy, entropy, mean, 
and standard deviation were derived from the detail 
coefficients to serve as inputs to the classification models. 

Fig. 9. Signal after extraction. 

In addition, the selection of the decomposition level was 
also based on the relativity of the resulting energy, as 
shown in Fig. 10. This energy relativity aims to examine 
how similar the signal reconstruction is to the initial signal. 
Using the db4 mother wavelet, 3-level decomposition 
produced the best energy relativity among several other 
levels of 66.64%. However, the 100% energy relativity 
also did not determine how well the signal was 
reconstructed. Each mother wavelet had different 
characteristics in displaying energy relativity. For 
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example, Sym4, with five levels, produces an energy 
relativity of 94%. Still, the resulting signal reconstruction 
showed a similar pattern to the initial signal so that no new 
patterns could be used as variations in machine learning 
processing. Therefore, selecting db4 with three 
decomposition levels is an appropriate choice for 
extracting new signal patterns.  

Fig. 10. Signal after extraction. 

D. Signal Windowing

The signal windowing technique was applied after the
feature extraction process to augment the data and increase 
the amount of training data. The overlapping method 
avoids missing information in the signal and produces a 
variety of patterns in the training data. The windowing 
process was done in Python software by exporting the 
signal in .csv format. The difference resulting from this file 
export lies in the X axis label, which changed from ‘time 
(s)’ to ‘samples’, indicating that the signal reading graph 
now represents the number of samples and amplitude of 
the reconstructed signal. 

Fig. 11 illustrates the overlapping windowing technique 
applied to the signals. The windowing process involved 
cutting the signal into pieces that overlap 50%. Fig. 11 
shows the two initial cuts of the variable ‘filtered_signal’, 
where the signal in the second cut starts halfway at the end 
of the signal in the first cut. This process is called 
overlapping. 

Fig. 11. Windowing overlapping signals. 

In this study, windowing divided a single signal into 
multiple chunks or samples. From a total of 900,000 
samples (1 Hour), a windowing technique with a size of 
200 samples (800 ms) and overlapping of 100 samples 
(400 ms) per window slice was performed. From the 

windowing process, 89 chunks, or equal to 71.2 Seconds 
(1.18 Minutes) for each signal labelled ‘NSR’, 50 chunks 
or equal to 40 Seconds (0.67 Minutes) for the signal 
labelled ‘AFib’, 62 chunks or equal to 49.6 Seconds (0.83 
Minutes) for each signal labelled ‘PVC’, 77 chunks or 
equal to 61.6 Seconds (1.03 Minutes) for each signal 
labelled ‘VTach’, and 30 chunks or equal to 24 Seconds 
(0.4 Minutes) for each signal labelled ‘Atrial Flutter’. The 
results of this windowing technique were stored in the 
‘window’ variable for the classification process, resulting 
in 12,854 total signal data points. 

E. Classification Results

The expected outcomes of the research are to analyse
ECG signals in patients with cardiovascular diseases, 
specifically AFib, PVC, VTach, and Atrial Flutter, using 
the DWT method. The research also aims to classify 
patients based on these conditions using RF, SVM, and 
AdaBoost methods and to achieve optimal system 
performance, measured by accuracy, precision, sensitivity, 
and F1-Score. 

1) Classification parameters using Random Forest
(RF) 

Model training aims to train the SVM to learn several 
various signal types and distinguish the specific details 
associated with each of the five classes. Fig. 12(a) shows 
the accuracy graph with a C value of 100. It can be seen 
that the accuracy has increased to 97.3%. The training 
performed shows an accuracy of 97.3% and a validation 
accuracy of 97.20%. The resulting loss from Fig. 12(b) 
shows a significant decrease in log loss as the C value 
increases. Initially, both the train loss and validation loss 
were around 0.25 for low C values, and both continued to 
drop significantly, reaching a log loss value of around 0.1 
(C = 100). This consistent decrease indicates that the SVM 
model improves its ability to learn the data as the value of 
C increases, providing greater flexibility in separating the 
classes.  

Fig. 12. Performance of RF with varying number of trees: (a) Accuracy 
vs. n_estimators, (b) Log Loss vs. n_estimators. 

2) Classification parameters using Support Vector
Machine (SVM) 

The aim of model training is similar to that of the 
Random Forest (RF) method. Fig. 13(a) shows the 
accuracy graph with a C value of 100, indicating that the 
accuracy has increased to 97.3%. The training performed 
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shows an accuracy of 97.3% and a validation accuracy of 
97.20%. The resulting loss from Fig. 13(b) shows a 
significant decrease in log loss as the C value increases. 
Initially, both the train loss and validation loss were around 
0.25 for low C values, and both continued to drop 
significantly, reaching a log loss value of around 0.1 
(C  =  100). This consistent decrease also indicates that the 
SVM model improves its ability to learn the data as the 
value of C increases, allowing for greater flexibility in 
separating the classes. 

Fig. 13. Performance of the SVM model with different C values: (a) 
Accuracy vs. C, (b) Log Loss vs. C. 

3) Classification parameters using AdaBoost
Model training for Adaboost follows a similar objective

as in the RF and SVM methods. Fig. 14(a) shows the 
accuracy graph with 10 n_estimators, achieving an 
accuracy of 0.902 for both training and validation. The 
resulting loss from Fig. 14(b) shows a significant increase 
in 0 to 500, with train loss reaching around 1.57 and 
validation loss around 1.59. Increasing n_estimators to 50 
slightly raised training accuracy to 0.907, while validation 
accuracy stayed at 0.902. At 100 n_estimators, the 
validation accuracy dropped to 0.891, and the training 
accuracy to 0.892. Further increases caused overfitting, 
with both accuracies falling to 0.556 at 500 n_estimators. 
The graph indicates that increasing the number of trees 
beyond a certain point decreases accuracy and increases 
log loss in the validation set. 

Fig. 14. Performance of the AdaBoost model with varying numbers of 
estimators: (a) Accuracy vs. n_estimators, (b) Log Loss vs. n_estimators. 

4) Evaluation of classification results using confusion
matrix 

Recent research has demonstrated the effectiveness of 
machine learning techniques in classifying ECG signals. 
Nasim et al. [6] proposed an evolutionary-neural 
mechanism for arrhythmia classification using single-lead 
ECG, achieving high accuracy by optimising feature 
selection. Li et al. [7] introduced a biased dropout strategy 
combined with morphology-rhythm features, 
demonstrating improved model generalisation. Alinsaif [8] 
performed a comprehensive graph-based analysis of the 
MIT-BIH dataset, emphasising the significance of data 
representation in ECG classification. 

(a) 

(b) 

(c) 

Fig. 15. Comparison of classification results using three methods: (a) 
Random Forest, (b) SVM, and (c) AdaBoost. 

After the testing stage, the models were saved and 
evaluated using test data. Table II presents a comparative 
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summary of performance metrics for the RF, SVM, and 
AdaBoost classifiers, including accuracy, precision, 
sensitivity, and F1-Score. The evaluation of the RF model 
showed an accuracy of 97.50%, recall of 97.47%, F1-
Score of 97.38%, and precision of 97.50%, with accuracy 
for NSR data at 98%, AFib at 97%, PVC at 95%, VTach 
at 99%, and Atrial Flutter at 89%. The SVM model 
achieved an accuracy of 97.20%, recall of 97.20%, F1-
Score of 97.20%, and precision of 97.10%, with accuracy 
for NSR data at 96%, AFib at 98%, PVC at 94%, VTach 
at 89%, and Atrial Flutter at 89%. The AdaBoost model 
generated an accuracy of 90.20%, recall of 90.24%, F1-
Score of 88.22%, and precision of 88.95%, with accuracy 
for NSR data at 91%, AFib at 92%, PVC at 90%, VTach 
at 88%, and Atrial Flutter at 80%. These results are further 
supported by the confusion matrix calculations, as shown 
in Fig. 15. 

TABLE II. COMPARISON OF EVALUATION MATRIX PARAMETERS 

Parameter Random Forest SVM Adaboost 
Accuracy 97.50% 97.20% 90.20%
Precision 97.50% 97.20% 88.95%

Sensitivity (Recall) 97.47% 97.2% 90.24% 
F1-Score 97.38% 97.10% 89.22%

Benchmarking with previous studies reveals that deep 
learning models consistently achieve higher accuracy in 
ECG classification tasks. For example, Li et al. [28] 
utilised a deep learning approach incorporating 
Convolutional Neural Networks (CNN) and achieved an 
accuracy of 98.5% on a multi-class arrhythmia 
classification task. Similarly, Wang et al. [29] proposed a 
deep multi-scale fusion neural network for arrhythmia 
detection, reaching an accuracy of 98.2%. Moreover, Zou 
et al. [30] implemented an RF model with novel context 
features, achieving an accuracy of 98.0%. 

Compared to these models, the RF model in this study 
demonstrated competitive performance, reaching 97.50% 
accuracy while maintaining interpretability and lower 
computational complexity. Although deep learning 
methods often outperform classical models in terms of raw 
accuracy, they typically require complex training 
pipelines, large annotated datasets, and high computational 
resources. In contrast, classical machine learning models 
such as RF and SVM offer lower computational demands 
and better transparency in decision-making, which is 
critical in clinical applications where explainability is 
essential. Therefore, while deep learning continues to push 
performance boundaries, interpretable models still provide 
practical and efficient solutions, especially in resource-
constrained environments. 

IV. CONCLUSION

Based on the results and discussion presented, the DWT 
method, combined with an RF architecture, can improve 
the efficiency of reading and analysing ECG signals. This 
method performs best at a n_estimator of 100, achieving 
97.50% accuracy, 97.50% precision, 97.47% sensitivity, 
and 97.38% F1-Score. Additionally, the resulting 
performance yields a training accuracy of 97.6% and a 

validation accuracy of 97.50%. Compared to other 
methods, RF produced the highest accuracy (97.6%), 
followed by SVM (97.20%) and AdaBoost (90.20%). The 
results indicate that RF and SVM outperform AdaBoost in 
terms of accuracy and robustness for ECG arrhythmia 
classification. 
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