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Abstract—The development of technology improves the early
detection of disease and diagnosis in the field of medical.
Most of the people suffer with heart disease depending on the
age factor and is millions of death cases are recorded due to
heart attacks. In this paper Heart Rate Variability (HRV) is
measured for early detection of Cardio Vascular Disease
(CVD). HRYV analyse the heartbeats and evaluated the time
intervals between the consecutive heart beats. The CPSC
2018 dataset is considered in this paper to evaluate the
Electrocardiogram (ECG) signals. Initially the R-R intervals
are evaluated. The key features of the HRV like spatial,
frequency, Poincare are extracted. Further features are
extracted using deep learning model Efficient-Net b0 (ENb0)
and classified for identification of heart disease. A
Transformer Encoder (TE) layer is added to ENbO to
improve the performance. The Receiver Operating
Characteristic (ROC) curve and confusion matrix is achieved
using the deep learning classification model. The parameters
like accuracy, precision, recall and F1-Score are evaluated
using the proposed deep learning model and compared with
other techniques. The ENb0O model achieves better efficiency
in parameters evaluated and is effective in early detection of
CVD and helps to support the research in the field of medical.

Keywords—cardiovascular  disease, Electrocardiogram
(ECG) signals, R-peak detection, Heart Rate Variability
(HRYV) analysis, Efficient-Net b0

I. INTRODUCTION

One of the physiological systems of the human body,
the cardiovascular system is distinguished by the intricate
interactions between several organs and tissues, such as
the heart and blood vessels [1]. A World Health
Organisation (WHO) study states that Cardio Vascular
Disease (CVD) is the world’s biggest cause of
mortality [2]. It is estimated that CVDs claim the lives of
around 17 million individuals each year. Furthermore,
middle-income, and low-income nations account for 75%
of all CVD mortality [3]. By 2030, it is anticipated that
there would be 23 million fatalities from CVD. In addition,
the expense of treating CVD, including the cost of
diagnosis and medication, is quite high. An estimated 3.8
trillion dollars will be spent on treatment in low-income
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and middle-income nations between 2011 and 2025 [4].
One of the leading causes of mortality for people is heart
disease. The WHO estimates that heart disease accounts
for around 18 million deaths globally, or one-third of all
fatalities [5]. The risk of heart disease, which can show up
as symptoms like obesity and high blood pressure, is
increased by factors including alcohol and tobacco use,
poor diets, and insufficient exercise [6]. Getting a proper
diagnosis is essential to lowering the risk of death because
these symptoms might mimic those of other illnesses.
ECG uses non-invasive skin electrodes placed on the chest
to record the bioelectric potential produced by the
electrical activity of the hearts. As a result, the recorded
data regarding cardiac status is represented in terms of
amplitude and duration as waves called P-QRS-T (Fig. 1).
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Fig. 1. ECG signal with P-QRS-T points.

Significant information on the state of the heart and the
types of illnesses that affect it may be found in this
waveform. In a clinical care context, Electrocardiogram
(ECG)-based monitoring can be used to identify
complicated conditions like arrhythmias or to interpret the
heart’s fundamental rhythm. Any irregularity in the heart’s
rhythm or variations in the P-QRS-T wave patterns are
signs of cardiac arrhythmia, which may be detected by
analysing the signal that was captured.

Cardiovascular illnesses are diagnosed and evaluated
by doctors using electrocardiography procedures. Experts
use this approach to visually evaluate the ECG signal.
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Because ECG signals are non-stationary, abnormalities
might not always show up during recording. Therefore, it
takes a lot of time to observe and analyse the recording to
correctly diagnose a heart condition from the ECG signal.
However, it is exhausting and time-consuming to examine
an ECG for an extended period since it requires a lot of
data. Furthermore, there is a very significant chance of
missing data because of the volume of data employed in
the research. Therefore, to help physicians easily and
correctly identify cardiac arrhythmias, an automated
system that can differentiate between aberrant and normal
ECG signals is needed. One potential approach to the
diagnosis and prognosis of cardiac disease is machine
learning.

Using a variety of techniques, Das et al. [ 7] investigated
the identification of cardiac illness. Extreme Gradient
Boosting (XGBoost) machine, bagging, random forest,
decision tree, K-nearest neighbour, and naive bayes were
among the techniques used. The findings were compared
using several assessment criteria, including as Area Under
the Curve (AUC), F1-Score, accuracy, sensitivity, and
precision. Although just 14 characteristics were used in
their analysis, the Cleveland dataset, which has 76 features,
was used by Gangadhar et al. [8]. Age, gender, chest pain,
cholesterol, and resting blood pressure were all considered
in their study. Artificial Neural Networks (ANN), Support
Vector Machines (SVM), Random Forest, decision trees,
and K-Nearest Neighbourhood (KNN) were among the
techniques used in their investigation. The neural network
approach produced the greatest accuracy result, 84.44%.

Sk et al. [9] used hybrid machine learning methods,
particularly the Adaptive Boosting (AdaBoost) algorithm
and Decision Trees. They made use of a subset of the
Framingham Heart Study (FHS) dataset called the
Framingham Heart Laboratory dataset. Long-term
research, the Framingham study examines how
environmental factors and genetics affect CVD in both
men and women. There are 16 features in the dataset; 70%
of the data is used for training, while the remaining
percentage is used for testing. Random Forest, K-nearest
neighbours, Decision Trees, Logistic Regression, Naive
Bayes, and Ensemble Learning were all used by Chopra et
al. [10]. Additionally, Principal Component Analysis
(PCA) was used to lower the data’s dimensionality. The
study showed that using PCA improves the detection rate
by comparing results obtained with and without its
application. Their study made use of the Cleveland dataset,
which had 14 characteristics and 303 cases. To assess the
accuracy, precision, and recall of each model, Jahed et
al. [11] investigates several machine learning techniques
and data splits. The algorithms forecast heart disease based
on individual key markers. Machine learning is used in the
identification of heart disease.

In this paper a deep learning concept is proposed for
identification of heart disease using 12 lead ECG signal.
Though study is still needed to fully utilise Heart Rate
Variability (HRV) signals and enhance heart disease
diagnosis across a wider range of cardiovascular disorders,
the integration of HRV and ECG signals is being examined
for heart disease detection. The utilization of deep learning
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concept on HRV in ECG signals more effectively improve
heart disease identification. The model designed
summarised as:

i. Developing a deep learning concept for detection
of heart disease.
CPSC 2018 dataset model is considered for
evaluating the model.
Heart rate variability features are extracted which
is a key role for disease detection in early stage.
The features of signals are extracted and classified
using ENbO-Transform encoder model.

The paper presents about the introduction of the study
and emergence of machine learning algorithms in
Section 1. Section II gives deep discussion on existing
methods in detection of heart disease. Section III discuss
about the proposed model in detection of heart disease
followed by the experimental results in Section IV. The
summary of the paper is given in Section V.

ii.
iii.

iv.

II. RELATED WORK

Several researchers developed diverse, intelligent
systems for the analysis of ECG signals for automatic
detection of heart disease. The related work on various
techniques is discussed in this section. The electrical
activity of human hearts is represented by
Electrocardiogram (ECG) data, which come in a variety of
waveforms with a points P, QPS, and T. The diagnosis of
heart is measured by the length, form, and spacing
between each waveform’s peaks.

The analysis of ECG signal is performed using the
algorithms like Two-Event Related Moving-Averages
(TERMA) and Fractional-Fourier-Transform (FrFT) [12].
The utilization of these two algorithms together identifies
the peaks accurately near different locations. The peak
identification is the initial stage in detection of peak. The
disease detection needs to be performed. Wasimuddin et
al. [13] utilized ECG signals and processed with concept
of convolutional neural network classification.
Myocardial Infraction (MI) is diagnosed in this work by
identifying multiple arrhythmias with the help of 2D
image of ECG wave.

The diagnosis of CVD is supported by machine learning
algorithms. Smigiel et al. [14] proposed deep neural
network for classification of ECG signals in detection of
CVD. The PTB-XL database is used to evaluate the
performance of proposed deep learning model. An initial
convolutional network-based neural network design, a
second SincNet-based neural network architecture, and a
third convolutional network-based neural network
architecture with extra entropy-based characteristics were
all put forth. The heart disease like atrial fibrillation is
predicted with the implementation of automated deep
learning algorithm [15]. The F1-Score and accuracy
achieved are 88.2% and 97.3% respectively. Although it is
a serious problem, cardiologists and other medical experts
find it to be a challenging and time-consuming task. The
following restrictions are all removed by the suggested
classifier. Moral violations are decreased by machine
learning in medical equipment. The main goal of this work
is to determine the R-R interval and analyse the blockage
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using straightforward methods and algorithms that provide
excellent accuracy. The data may be rebuilt using the MIT-
BIH dataset [16].

Fall is a major problem since it may have serious bodily
and psychological effects. Research on fall detection and
prevention is essential because it can help older adults live
and move more independently and rely less on carers. In
this study, a unique method for fall detection and activity
categorisation is the independent use of Electrocardiogram
(ECG) data. An approach that classifies ECG data into fall
and no fall situations using pre-trained convolutional
neural networks AlexNet and GoogleNet has been
suggested [17]. The study used eight volunteers to acquire
the ECGs for both falling and no falling situations. An
elliptical filter is used to pre-process the data to remove
signal disturbances such baseline drift and power-line
interface. After the work on fall detection, the diagnosis
and detection of heart disease need to be studied and
improved. One recent successful development of Deep
Learning (DL) methods in the field of artificial
intelligence is the adaption of DL architecture. Based on
the ANSI-AAMI standard, Bhatia et al. [18] created a
novel deep Convolutional Neural Network (CNN) and
Bidirectional Long-term Short-Term Memory network
(BLSTM) model in this study to automatically categorise
ECG heartbeats into five classes.

Internet of Things (IoT) based health monitoring
systems are becoming more and more well-liked and
accepted for ongoing observation and the ability to
identify health anomalies based on the data gathered.
Signals from Electrocardiograms (ECGs) are frequently
utilised to detect cardiac conditions. In this study, a unique
approach to ECG monitoring with IoT technology has
been suggested. A two-stage method is used by Karthiga
et al. [19]. For effective data collection, a routing protocol
based on Dynamic Source Routing (DSR) and Routing by
Energy and Link quality (REL) is proposed in the first
stage for the IoT healthcare platform. In the second stage,
an ECG classification for arrhythmia is made. Additionally,
this study has assessed methods for classifying ECG
signals based on Support Vector Machines (SVM),
Artificial Neural Networks (ANN), and Convolution
Neural Networks (CNNGs).

Hybrid model gaining more acute results in the
respective fields. CNN- Long Short-Term Memory
(LTSM) using is designed for automatic detection and
classification of heart disease [20]. The use of 1D ECG
signals and are transformed to 2D scalogram images for
extraction of features. The results achieved used this
model is improved. Later, the combination of deep
learning and machine learning is discussed [21]. The
detection of heart failure from ECG signals is performed
using CNN and SVM. Further the hybrid model trend
improves the detection rate. MobileNet V2 and BiLTSM
model is developed [22]. The ECG signal is developed
over a short period of time and achieved good rate of
accuracy in detection of arrhythmia. The accuracy
obtained is 91.7%. Arrhythmias diagnosis is performed
with the help of ECG signal data as input and processed
using 1D-CNN for classification [23].
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The Heart Rate Variability (HRV) analysis is gaining
more importance which can effectively measure the
heartbeats and reflects the functioning of nervous system.
Siecinski et al. [24] analysed time domain, frequency
domain and nonlinear HRV’s on ECG. The analysis of
HRYV is performed on 29 healthy male and 30 unhealthy
patients. Further the research of HRV analysis is
performed in people with mid age adults [25]. The data
collected for analysis is from the people who were kept
under different stress levels. The research aim is to assess
the ANS dysfunction utilizing the HRV. Li et al. [26]
evaluated the HRV monitoring capabilities of several
wearable devices and talk about how they might be utilised
for tracking HRV. Further examined the latest
developments in wearable HRV tracking and its
applications in illness diagnosis and health monitoring.
HRV tracking with wearable technology is a promising
technique that may be utilised to enhance personal health,
even though there are still numerous obstacles to
overcome.

HRV for heart disease is studied. Wang et al. [27]
utilized HRV analysis for emotion recognition by applying
amplitude level quantization technique for extraction of
features. The local information in each frequency band of
the HRV signal using the ALQ approach to extract rich
local information characteristics. A Logistic Regression
(LR) classification technique, which may produce reliable
and efficient emotion identification, is then used to
classify the retrieved features. The HRV assessment is
performed for extracting the high contextual information
from the ECG sequence [28]. To generate multi-scale ECG
representations and model the long-range relationships of
ECG time series, the hierarchical transformer framework
was created. HRV analysis will improve the detection of
heart disease. In this section the focus is to identify the
effective models in detection of CVD using HRV and deep
learning technique to enhance the proposed work by
improving identification accuracy. The understanding of
various techniques and analysis help us to improve the
working process on the ECG signals. The proposed model
concentrates on HRV feature extraction and Efficient-Net
b0 deep learning feature extraction and classification
technique for identification of heart disease.

III. METHODOLOGY

The main aim of the work is to help patients and
medical professionals. This study attempts to forecast the
likelihood of heart illness using computerised heart
disease prediction. To achieve this objective, we employed
various deep learning algorithms on a dataset and present
the results in this study report. To elevate the designed
model, the ECG signal dataset need to pre-processed for
removing the noise, evaluated for detection of R-peak,
extraction of features and finally classification is
performed using deep learning to identify the heart
disease. The entire model is tested using explainable
Artificial Intelligence (AI) approach. The methodology
designed is improve the detection of CVD and achieved
improved results. The designed process flow is shown in
Fig. 2.



Journal of Image and Graphics, Vol. 13, No. 5, 2025

Preprocessing

R-Peak
Detection

Prediction of output
(Normal, AF, I-AVB,
PAC, PVC, STD, STE,
RBBB, LBBB)

Metric Evaluation
(Accuracy, Recall,
Precision, F1-Score)

Fig. 2. Framework of proposed model.

A. Preprocessing

The input CPSC 2018 dataset [29] which contains 12
lead ECG signals with 6877 (male: 3699; female: 3178) in
size and the signal length varies from 6s to 60 s. The
sampling rate at which the signals collected is 500 Hz. The
data available in each class are: Normal-2302, AF-526, I-
AVB-368, LBBB-236, RBBB-500, PAC-277, PVC-336,
STD-332, STE-308 and other recordings of 1692. Nine
diagnostic classes are identified on these ECG signals.
These signals are pre-processed before performing further
state of action.

In  accordance  with the = AHA/ACC/HRS
recommendations for ECG acquisition [30] and
established signal processing literature [31, 32], a Finite
Impulse Response (FIR) bandpass filter with a 0.5-45 Hz
cutoff was applied. This range effectively removes
baseline wander (<0.5 Hz) and high-frequency noise
(>45 Hz) while preserving the essential diagnostic content
of the QRS complex and P-T waves [33], making it
suitable for HRV feature extraction.

Time-Frequency Representation of ECG Signal

Frequency (Hz)

Fig. 3. Time frequency representation of ECG signal.

In this stage the input signal is denoised and removed
unwanted artefacts. The signals are passed through a band
pass filter for removal of signal noise, and the range is set
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to 0.5 to 45 Hz. The artefacts like muscle noise and
baseline wander are removed to detect the R peaks
perfectly.

Further the ECG signal is converted to time frequency
representation and is shown in Fig. 3. This is performed to
improve the process of feature extraction and HRV
analysis can be improved for identification of heart
disease. The importance of TFR is to improve the
classification process when fetched to the proposed deep
learning model.

B. Detection of R Peak

The ECG signal after pre-processing, detection of R
peak is performed. The use of R peak detection is to
perform HRV analysis. In this paper, a wavelet transform
method is used for detection of R peak. The wavelet
transform decomposes the ECG signal and finds the

detailed coefficients near the QRS wave of the ECG signal.

Finally, a threshold is utilized for detection of R peak. The
said detection of R peak is shown in Fig. 4.

Using the Wavelet Transform, R-peak detection makes
use of the QRS complex’s high frequency content and
steep slope, particularly the R-peak, the tallest and most
noticeable component in an ECG.

1 T T T T T T T

Filtered ECG
®  Estimated R peaks
== == ampthresh

ECG

Difference between R peaks (s)

5 6
Time (s)

Fig. 4. R peak detection.
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C. Evaluation of RR Interval

The RR interval evaluation is step for the assessment of
heart rate variability. This RR interval is evaluated after
achieving the array of R peaks and calculating the
difference between the consecutive R peaks. The RR
interval is measured in milliseconds. The graphical

D —
R T RR interval TR

RR interval

(@)

0.9 T T T T T T T T T

0.74 |-

representation of RR interval with anomalies is shown in
Fig. 5.
The RRI is given as Eq. (1),
RR; =1, 1, O]

where, #; and #+; are the time of i and (i + 1)%" peak.

RRI with anomalies

= == +Qutput RRI with anomalies removed | 4

Fig. 5. (a) RR Intervals, (b) RRI anomalies.

D. Heart Rate Variability (HRV) Feature Extraction

Feature extraction is one of the important steps for
diagnosis the heart disease. Different features are extracted
for the given ECG signal. The following is the detailed
expression of HRV analysis of ECG signal. HRV analysis
is widely utilized in identification of CVD. This HRV
extracts various genre of features which includes Short-
Time Fourier Transform (STFT), Temporal, Frequency,
fragmentation, Poincare plots. The HRV analysis is based
on the variation of time intervals in the heartbeats in which
RRI is considered for its analysis. These are evaluated for
the given input signals. The values of the extracted
features are tabulated in Tables I-VI.

1)  Sample entropy

The value of sample entropy needs to obtained which
helps in predicting the level of complexity and range of
predicting the echo signals. If the sample entropy value is
low, then the ECG signal is clean and stable with minimum
variations in the heartbeat, whereas the higher entropy
value indicates high complexity and the heartbeat is
irregular.

2)  Short-Time Fourier Transform (STFT) features

The STFT features are extracted by converting the ECG
signal to time frequency domain. The STFT divides the
signal into an overlapping time window. Late a Fourier
transform is applied by which a 2D representation is done
by showing the spectral content changes over time. The
extracted features and its values are presented in Table 1.

TABLE I. STFT FEATURE VALUES

Features Total energy  STFT energy  Low band energy Mid band energy
Value 1.677e+05 10.452 1.645¢+05 3059.8
Features ~ Mean STFT  Variance STFT =~ Mean Peak Freq STD peak Freq
Value 0.153 0.292 1.063 2.181
3)  Temporal features

These features focus on the timing, shape, and duration
of the signal components which are derived from the time
domain signal. These features describe the timing intervals
and amplitudes of ECG signal with components like P,
QRS, and T. The temporal features and its values are
shown in Table II.

TABLE II. TEMPORAL FEATURE VALUES

Std
0.179

Kurtosis
11.84

Skewness
—0.539

Mean
2.107¢1®

Features
Value

4)  Frequency features

The frequency features are achieved by analysing the
ECG signal in different frequency bands. These features
suggest how the ECG signal in frequency domain have its
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energy, power, and the signal distribution. The extracted
main features and its values is shown in Table III.

TABLE III. FREQUENCY FEATURE VALUES

Mean Peak Spectral
Features
frequency frequency entropy
Value 0.1425 0.893 0.02

5)  Heart Rate Variability (HRV) frequency domain

In this domain the analysis is done to evaluate the values
of very low frequency, low frequency, high frequency, and
the ratio of low frequency by high frequency. The power
of ECG signal in these bands are evaluated and is shown
in Table IV.

TABLE IV. HRV FREQUENCY DOMAIN FEATURE VALUES

VLF
0.167

LF
0.276

HF
0.0069

LF/HF
39.55

Features
Value

6) Heart Rate Variability (HRV) fragmentation
features

The irregular beat to beat in HRV indicates the HRV
fragmentation features. The sudden change in the series of
RR interval is noticed which indicates abnormal
functioning of heart leads to CVD. The features like
Poincaré Index of Phase (PIP), Index of Average Length
of Segments (IALS), Percentage of Short Segments (PSS),
Percentage of Alternation Segments (PAS) are evaluated
and is shown in Table V. The switching patter of heart rate
and the frequency of switching is observed with the help
of these features.

7)  Poincaré plot features

These features are achieved by showcasing the scatter
plot of every RR interval. The Poincare plot is shown in
Fig. 6. The shape and the region of spreading in the plot
offers the functioning of heart. The features values like
SD1, SD2, entropy, and Detrended Fluctuation Analysis
are evaluated and shown in Table VI.

All the feature values evaluated utilize recurrence plots
to transform 1D HRV feature sequences into 2D images,

which were then fed to EfficientNet-b0. This method
preserves the temporal dynamics of HRV features while
making them compatible with 2D CNN architectures.

TABLE V. HRV FRAGMENTATION FEATURE VALUES

PIP
26.76

IALS
3.64

PSS
26.76

PAS
0.02

Features
Value

TABLE VI. HRV NON-LINEAR FEATURE VALUES

Features SD1 SD2  SampEn  DFA
Value 0.1425 0.893 0.02 0.0713
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Fig. 6. Poincare plot.

E. Feature Extraction and Classification

The features are extracted and classification of data is
performed using ENbO model. The working of ENbO is
discussed below. The time frequency representation of
input ECG signal is fetched to the deep learning model.
The ENbO have 9 layers and process of proposed model is
shown in Fig. 7.

Dense
Layer S
. (@)
TFR of ECG Efficient- o . fF)
signal Net b0 s o T
@ M 8
i A
> L L ox T
P
Dense A U
Y L
Layer A T
HRV Index O E Y
HRV O R
O 15
Parameters O R
Q
o I

Fig. 7. Process of ENbO model.

Initially the input is passed through the input layer in
which image is normalized and fetched to the network.
The feature extraction starts from the second layer i.e.,
convolutional layer. The Efficient-Net b0 utilizes Mobile

Inverted Bottleneck Convolutional blocks (MB Conv),
which are efficient and powerful in processing the desired
output. In ENbO seventeen number of MB Conv blocks are
utilized and grouped into different stages by increasing the
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depth and reducing the resolution in spatial region. The
Transform Encoder (TE) layer is added to boost the
performance of the proposed model. In this transform
encoder two layers are involved i.e., multi-head self-
attention and feed forward MLP. This TE layer captures
the temporal and contextual relationships in the features
extracted by Efficient-Net b0.

All the details are fetched to fully connected dense
layers and softmax layer is applied to achieve the class
probability. Finally, the class with high probability is the
output label that is predicted. The layers and its size
utilized is shown in Table VII.

TABLE VII. LAYERS AND SIZE UTILIZED IN ENBO

Layer and . Number of Number of
Stage . Size
kernel size channels layers
1 Conv3x3  224x224 32 1
2 MB Convl, 115112 16 1
3x3
3 MB Convé, 15115 24 2
3x3
4 MB Conv6, 56,56 40 2
5x5
s MBConv6, 5008 80 3
3x3
6 MB Conv6, 1414 112 3
5x5
7 MB Conv6, 14x14 192 4
5x5
3 MB Conv 6, 77 320 1
3x3
Conv 1x1,
9 pooling, FC 7x7 1280 1

After building the efficient net b0 model, the data is split
into training set, validation set and testing set. 70% of data
is used to train the model, 10% for validation set for tuning
the parameters and avoid overfitting, 20% of data is used
for testing which evaluate the final model performance.

The Binary Cross Entropy (BCE) loss is calculated at
the output layer and gradients are backpropagated through
both the Transformer and Efficient-Net, updating their
weights during training.

The loss function is given as,

1 «w A A
Lyey = _Nzizl[yi -10g(yl.)+(1—y,.)~10g(1—y,.)] (2)

where,
y, €{0,1} is the ground truth (0 is no disease and 1 is

disease)

9, €[0,1] is the predicted probability, N is the size of
the batch.

The main goal is to minimize the loss during the process
of training.

After performing classification, the output class is
predicted. Parameters are used to evaluate how well
EfficientNet-b0 predicts heart disease. The results
evaluated is discussed in Section IV of the paper.

IV. RESULTS AND DISCUSSION
The CPSC 2018 dataset [29] is processed using matlab
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tool. The implementation of proposed model is performed
on windows 11 OS with intel 110 processor. The design
utilizes all the neural network tools which are inbuilt in
Matlab version 2024. A large system space with 1 TB is
utilized for storage and processing of large data. To speed
up the processing speed of system a 64 GB RAM is
installed. All the system environments help in developing
an automatic system for detecting of heart disease by
utilizing the ECG signals. The metrics evaluated and the
experimental findings are discussed in this section.

The metrics are calculated to find the efficiency of the
proposed model in identification of heart disease. Some of
the commonly utilized for evaluating the performance is
accuracy, precision, recall, F1-Score and hamming loss.
The mathematical formulation of the metrics depends on
the True Positive (TP), False Positive (FP), True Negative
(TN), False Negative (FN) respectively. Here TP, TN, FP
and FN denote the classification process done correctly or
incorrectly. The metric and its formula are shown in
Table VIII.

TABLE VIII. METRICS AND ITS FORMULA

Parameter Formula
.. TP
Precision e =
TP + FP
Recall Re= Ui
TP+ FN
F1-Score F1:2XM
Pe+Re
TP+TN
Accuracy Acc=————
TP+TN + FP+ FN

Hanming Loss H, =130 3., (1 <HE) @1, <)

The hyperparameters utilized in this work is shown in
Table IX. The experimental findings of proposed model
are shown and discussed below. The parameters evaluated
are shown in Table X. The proposed model parameters
achieved higher values when compared to VGG-16 model.

TABLE IX. UTILIZED HYPERPARAMETERS

Number of epochs 50
Batch size 32
Learning rate 0.0001
Image Size 224x224x3
Data split 70% train, 10% validation, 20% test

TABLE X. COMPARISON OF METRIC EVALUATED

Parameter/ Method Modified VGG-16  Efficient-Netb(
Accuracy 96.61 98.71
Recall 95.49 98.98
Precision 95.99 98.76
F1-Score 95.45 98.86
Hamming Loss 0.27 0.088

The confusion matrix shows the effectiveness and
efficiency of the proposed model in classifying nine types
of diagnosis classes in detection of heart disease. The
confusion matrix using ENbO is shown in Fig. 8.

The matrix provides a visual and numerical summary of

how well the model is performing in terms of true and false
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predictions. From Fig. 8 it is shown that the true prediction
of STD is 97% in which 1.8% is falsely predicted as
normal, 0.6% is falsely predicted as AF and Right Bundle
Branch Block (RBBB). In case of AF the true prediction is
98.9% in which 0.6% is falsely predicted as normal and

0.2% is predicted as STD. The class-wise analysis using
the confusion matrix, highlighting the model’s robustness
across nine diagnostic categories, and discuss activation
maps to interpret class-specific performance.

Accuracy using SF-HRV-Effb0-Transformerlayer : 98.71%

0.6%

Nomal 3 2 3 5 5 6 2
AR 0.4% 00% 03% 03% 06% 0.6%
0 1 0 1 1 2 2
0.0% 02% 03% 00% 00% 0.0%
FAVB | Ty 0 1 1 0 0 0
0.0% 0.0% 0.0% 0.3% 0.0% 0.0%
[)]
& LBBB| 7y 0 1 1 0 0
O Rpgp | 00% 04% 0.0% 06% 06% 0.6%
3 1 2 0 2 2 2
3 0.0% 00% 0.0% 0.2%
O PAC| ™, 0 0 0 1
0.1% 00% 03% 0.0% 0.0%
PVe| T 0 1 0 0
01% 02% 03% 0.0% 0.0%
S| 7y 1 1 0 0
0.0% 00% 00% 04% 0.2%
STE| 7 0 0 1 1
A 3 © @ (@
LN LA T ol

Target Class
Fig. 8. Confusion matrix using HRV-ENbO-TE.

In processing of ECG signal nine different classes are
considered and the plots obtained using different class
when performed deep learning are shown individually.
The classes considered are Atrial Fibrillation (AF), First
order Atrioventricular Block (I-AVB), Left Bundle Brunch
Block (LBBB), Premature Atrial Contraction (PAC),
normal signal, ST segment depression, ST segment
elevation, RBBB, and Premature Ventricular Contraction
(PVC). The validation of results is performed using the
explainable AI. The results achieved using the deep
learning ENbO model for each class is shown from
Figs. 9-17.

Fig. 9 shows the behaviour of activation of ECG sample
w.r.t AF. The end of beat is observed near 400 ms. The
ECG points with AF is identified by the deep learning
model. The highest peak of activation is observed at
0.55 mv.
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Fig. 9. AF- ECG signal activation compared to DL activated samples.
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Fig. 10 shows the behaviour of activation of ECG
sample w.r.t I-AVB. The end of beat is observed near 400
ms. The ECG points with AF is identified by the deep
learning model. The highest peak of activation is observed
at 0.6 mv. The deep learning is perfectly activated in the
prolonged region of P wave.
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Fig. 10. I-AVB-ECG signal activation compared to DL activated
samples.

The average activations across the beat space of an ECG
samples with LBBB class is shown in Fig. 11. The peak
activation is observed at 4.5 mv and the end beat observed
at 400 ms. The activation of DL model is well in advance
compared to actual ECG signal.

The QRS complex and T wave of an ECG signal with
PAC are normally normal, but the P wave is aberrant. The
average activations throughout the beat space of an ECG
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data using PAC are displayed in Fig. 12. The traits of PAC
are correctly activated while performing DL model in case

of P-wave, normal QRS and a normal T-wave as shown in
Fig. 12.
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Fig. 11. LBBB-ECG signal activation compared to DL activated
samples.
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Fig. 12. PAC- ECG signal activation compared to DL activated sample.

In case of normal condition of heart, the ECG signal
have a normal P, QRS and T waves. The activation of beat
space shown in Fig. 13 is for normal ECG signal and the
model performance is also shown good.
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Fig. 13. Normal-ECG signal activation compared to DL activated
samples.
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For any ST segment depression class, the ECG signal
have a normal P and T wave. A depressed trait is found in
the ECG signal in the ST segment. The Fig. 14 shows the
activation of signal using DL model which is pretty
accurate and set to the conditions of ST segment
depression, as the ST segment depression is clearly shown
in Fig. 14.
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Fig. 14. ST segment depression- ECG signal activation compared to DL
activated samples.

In the class of ST segment elevation, the signal traits
have a normal QRS and normal T wave and an elevated
ST segment. The model performance shown in Fig. 15
have an activation of right features and classifying the
ECG signal.
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Fig. 15. ST segment elevation- ECG signal activation compared to DL

activated samples.

In case of RBBB class the features considered are wide
S wave, I, V5 and V6. The average activation of beat space
of ECG sample with RBBB is shown in Fig. 16. The
performance of model activation is wide in S wave region
which shows the classification accuracy is good.

Let us consider the case of PVC and evaluate the beat
space activation of ECG sample with PVC and is shown
in Fig. 17. The PVC of ECG signal have abnormal
condition of QRS. The DL model is activated in the QRS
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complex region which gives the better classification
performance.
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Fig. 16. RBBB- ECG signal activation compared to DL activated
samples.
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Fig. 17. PVC-ECG signal activation compared to DL activated samples.

The two major metrics used for comparison of existing
results with our proposed work is accuracy and F1-Score.
Most of the authors evaluate these two metrics to find out
the efficiency of the model designed. The comparison
results of accuracy and F1-Score with existing models is
shown in Figs. 18 and 19.

The analysis observed from Fig. 18 is proposed
approach having a highest accuracy of 98.71% when
compared to existing models suggested by different
authors. The ECG signals are processed and performed
voting model to achieve 93.25% accuracy [34], using
harmonic phase distribution [35] accuracy achieved is
95.6%, combination of CNN and RNN [36] achieved
94.6% accuracy, deep learning [37] achieved a lower
accuracy with 81%, deep convolutional neural
network [38] having an accuracy of 95%, artificial
intelligence [39] achieved an accuracy of 94%, transferred
deep learning CNN [40] achieved an accuracy of 95.6%.

From Figs. 18 and 19, proposed model performance is
better when compared to other existing techniques. The

model of HRV-Deep learning gives promising results and
is helpful for diagnosis of heart disease.

Finally, the novel contribution of work is stated as: HRV
analysis and CNN-based ECG classification have been
individually explored, our work integrated handcrafted
HRV features (spatial, frequency, Poincaré,
fragmentation) with a hybrid ENbO-Transformer Encoder
(TE) model trained on recurrence plots of HRV features.
The use of recurrence plots to convert 1D HRV features
into 2D representations for CNN-based feature extraction
is a novel methodological step that enables the fusion of
physiological signal variability and deep learning feature
hierarchies. The inclusion of a Transformer Encoder on
top of EfficientNet-b0 is a unique architectural
enhancement to capture long-range dependencies in ECG
derived features an innovation for HRV-ECG works.

M Accuracy (%)

Fig. 18. Comparison of accuracy parameter.

M F1 Score (%)

Fig. 19. Comparison of F1-Score parameter.

V. ABLATION STUDY

The study aims to identify how every technique is
useful in improving the detection accuracy. In this study
the experiment conducted on different cases and evaluated
the accuracy result.

Casel. Accuracy in detection of heart disease without
using Transformer Encoder (TE) and tested the
contribution of TE. The accuracy obtained is 97.3%.
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Case2. No Efficient net b0. Directly utilized raw HRV
features with transform encoder. The rate of accuracy
achieved is 88.6%.

Case3. No HRV features. The model designed without
extracting HRV features, utilized only ENbO and TE
model for detection of heart disease. The rate of accuracy
obtained is 97.4%.

The importance of HRV features is studies by
performed controlled ablation experiments by retraining
the classifier after removing: (i) each HRV feature group
(time-domain, frequency-domain, Poincaré, LF/HF).

¢ Removing time-domain features (all) the accuracy
achieved is 95.5%.

e Removing frequency-domain features (all) the
accuracy achieved is 95.99%.

e Removing Poincaré features (all) the accuracy
achieved is 96.8%.

e Removing LF/HF the accuracy achieved is 97.7%.

From this study the combination of HRV-ENbO-TE
provides better detection accuracy with 98.7%.

VI. CONCLUSION

In this work, the ECG signal database is gathered and
pre-processed. The RR intervals in the 12-lead ECG signal
is identified which helps in notifying the cardiac activity.
The patterns of RR are irregular denotes the irregular
activity of heart. The HRV analysis is performed by
extracting features like STFT, temporal, frequency domain,
Poincare plots. All these features help in identifying the
nature of ECG signal. A pretrained deep convolutional
neural network model efficientNet-b0 is proposed and
evaluated for the task of classification in identification of
heart disease. The transformer encoder layer added with
ENDO gives better results in training and performing
validation of results when compared to VGG-16 model.
The efficiency of ENDO is shown by evaluating parameters
like accuracy, recall, precision and F1-Score. The overall
accuracy achieved in identification of heart disease is
98.71% and is better compared to other existing models.
These results boost medical field and doctors to utilize the
model for early diagnosis of heart disease. The work in
future need to concentrate on the computational time and
improving the accuracy by using optimization techniques
performing features optimization. Based on the
performance, the suggested model can be utilized in many
disease identification applications.
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