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Abstract—The core challenge of few-shot image classification
lies in efficiently learning and accurately classifying with
limited labeled data. Current metric-based meta-learning
methods primarily rely on computing the structural distance
between the query and support sets for matching. However,
traditional metric learning typically employs Euclidean
distance or standard Sinkhorn Distance (SD) for feature
matching, assuming that the total mass of the source and
target distributions is equal. This assumption overlooks the
imbalance in data distribution in real-world tasks. To
overcome these challenges, this study systematically
introduces Unbalanced Sinkhorn Distance (USD) into Few-
Shot Learning (FSL) to enhance the model’s ability to match
features map of query set and support set under imbalanced
distributions. USD allows dynamic adjustment of matching
distributions during metric computation. Moreover, this
method effectively reduces the interference of background
noise when matching features between the support and query
sets while maintaining low computational costs.
Experimental results demonstrate that our method achieves
state-of-the-art performance on four FSL benchmark
datasets, significantly outperforming existing Optimal
Transport (OT)-based methods.

Keywords—few-shot  learning, Unbalanced Sinkhorn
Distance, optimal transmission theory, meta-learning

L INTRODUCTION

In recent years, deep learning has achieved remarkable
success in computer-vision tasks such as image
classification, detection, and segmentation. Nevertheless,
these achievements rely heavily on large-scale labeled
datasets, which are costly and time-consuming to create.
In practical scenarios, only a handful of annotated
examples are often available per class, leading to the Few-
Shot Learning (FSL) problem.

To address this data-scarcity challenge, researchers
have proposed a variety of FSL methods, notably meta-
learning and metric-learning approaches. Metric-based
models aim to learn a transferable embedding space in
which similarities between support and query samples can
be measured reliably. Although techniques such as
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Prototypical Networks [1] perform well under balanced
and clean conditions, they depend on simple Euclidean or
cosine distances that struggle to capture complex spatial
relations and are vulnerable to feature misalignment.

Optimal Transport (OT) theory has recently been
introduced to FSL to achieve finer structural alignment.
For example, Deep Earth Mover’s Distance (DeepEMD)
employs the Earth Mover’s Distance (EMD) to compute
soft correspondences between feature maps, delivering
significant gains over Euclidean-based metrics [2].
However, DeepEMD and similar balanced-OT methods
assume that all transport mass must be preserved—a
restriction that hampers robustness when class imbalance,
background clutter, or missing data are present.

To overcome this limitation, we propose a new FSL
framework built on Unbalanced Sinkhorn Distance (USD).
By incorporating Kullback-Leible (KL) -divergence
penalties into the Sinkhorn iterations, USD relaxes the
mass-conservation constraint and allows partial matching
between support and query distributions, following the
unbalanced-OT formulation of Chizat et al. [3]. This
design enables dynamic mass adjustment and yields more
reliable alignment under noisy or imbalanced conditions.

To validate our algorithm, we conducted extensive
experiments across multiple datasets to demonstrate its
effectiveness. The results showcase the robustness and
accuracy of our approach. Our main contributions are
summarized as follows:

(1) Proposing a metric learning framework based on
USD. This work introduces USD with KL-
divergence regularization, allowing dynamic
adjustment of matching distributions. This
improves feature robustness, reduces background
noise interference, and ensures efficient
classification even in imbalanced data scenarios.

(2) Optimizing feature matching and improving
computational efficiency. Our method relaxes the
strict mass conservation constraint and integrates
Sinkhorn entropy regularization with KL-
divergence optimization, reducing computational
cost while maintaining classification accuracy.
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(3) Achieving state-of-the-art performance on
multiple benchmark datasets. Our method
outperforms existing state-of-the-art approaches in
1-shot and 5-shot tasks on Mini-ImageNet, Tiered-
ImageNet, FC100, and CUB datasets.

II.  RELATED WORKS

Early studies in FSL cast the problem as meta-learning:
a model is trained on many small “episodes” so that it can
adapt rapidly to novel classes. The seminal Siamese
Network [4] and the cognitive one-shot learner of Lake et
al. [S] showed that pair-wise similarity and episodic
supervision permit generalisation from very few labelled
samples. Subsequent work sharpened the optimization
perspective. MetaOptNet formulates the inner loop as a
differentiable convex programme [6], while Meta-
Baseline demonstrates that a simple cosine classifier atop
a fixed backbone can rival more sophisticated meta-
learners [7]. Despite their efficiency, these approaches
depend on global Euclidean or cosine distances and
therefore remain vulnerable when support and query
distributions are misaligned or imbalanced.

To compensate for prototype bias and sparse
supervision, a second strand focuses on feature refinement.
Category-Traversal Networks search for task-relevant
channels across classes [8], whereas Manifold Mixup
interpolates hidden representations to smooth decision
boundaries [9]. TADAM [10] introduces task-dependent
metric scaling, and Prototype Rectification (PR) employs
label propagation to correct biased prototypes in
transductive settings [11]. Transfer Based FSL (TB-FSL)
further leverages feature-distribution statistics to calibrate
decision boundaries under covariate shift [12].
Nonetheless, these methods still rely on heuristic global
pooling and cannot explicitly align fine-grained structures
when parts of the query image lie outside the support
manifold.

OT metrics provide a principled way to minimise the
cost of aligning two feature distributions. DeepEMD [2]
incorporates Earth-Mover’s Distance to establish pixel-
level correspondences, whereas the Bilaterally Normalised
Sinkhorn Distance (BSSD) accelerates entropic OT via
scale-consistent matrix balancing [13]. Brownian Distance
Covariance OT captures higher-order dependence beyond
pairwise similarity [14, 15]. A common shortcoming of
these balanced OT methods is the mass-conservation
constraint, which forces all query mass to be matched to
the support set; background noise, occluded regions, and
severe class imbalance therefore lead to over-alignment
and degraded robustness.

Unbalanced OT theory relaxes this rigidity by
penalizing, rather than forbidding, mass variation. Chizat
et al. [3] derive a scalable KL-regularized formulation, and
Chapel et al. [16] extend partial transport to positive—
unlabeled learning. These advances suggest that allowing

unmatched mass to be discarded is key to robust alignment.

Veilleux et al. [17] further argue that standard, class-
balanced benchmarks over-estimate FSL performance and
introduce a Dirichlet query-imbalance protocol to emulate
realistic deployments. In safety-critical domains, compact
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Convolution Neural Networks (CNNs) have been applied
to multi-class  skin-lesion triage with limited
annotations [18], and transfer-learning pipelines detect
knee-joint synovial fluid from Magnetic Resonance
Imaging (MRI) scans under severe data scarcity [19]; both
studies underline the demand for interpretable,
distribution-aware matching.

Motivated by the brittleness of balanced OT in
DeepEMD [2] and BSSD [13], we adopt the unbalanced-
OT principle [3, 16] and introduce an USD for few-shot
classification. USD preserves Sinkhorn’s efficiency yet
permits partial-mass transport, enabling the model to
ignore unmatched or noisy regions. As our experiments
show, this optimization flexibility translates into superior
accuracy and more coherent transport plans under class
imbalance, occlusion, and background clutter. As
illustrated in Fig. 1, the iterative process of USD alignment
in feature space is visualized between the support and
query sets. As the number of iterations increases (from it
= 0 to it = 200), the initially disordered matching evolves
into a structurally coherent alignment, demonstrating the
effectiveness of USD in modeling fine-grained
correspondences between distributions with unequal mass.

The calculation process of unbal
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Fig. 1. This image illustrates the process of calculating the USD in feature
space and demonstrates how the USD iteratively adjusts feature point

matching to optimize the structural distance between the query set and
the support set.
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III. PROPOSED METHOD

In this section, we first derive the formula transition
from Earth Mover’s Distance (EMD) to USD. Starting
with the EMD, we incorporate an entropic regularization
term to facilitate computational efficiency. This leads to
the Sinkhorn Distance, an efficient approximation of EMD.
To handle distributions with unequal total mass, we
introduce a penalty term for mass differences, resulting in
the USD. This unbalanced variant maintains the benefits
of entropic regularization while addressing real-world data
imbalances. Subsequently, we integrate the optimal
transport theory based on USD into a few-shot learning
model. This integration allows for improved feature
matching and classification performance.

A. Earth Mover Distance Theory

This section provides a comprehensive derivation of
EMD, Sinkhorn Distance (SD), and USD to clarify the
mathematical evolution behind each step.
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EMD, also known as Wasserstein Distance, measures
the optimal transport cost between two probability
distributions. Given two discrete distributions:

Source distribution: a = (ay, az,..., ax) over the set X =
{x1, X2,..., Xm}, satisfying.

2

Target distribution: b = (by, b.,..., b,) over the set ¥ =
{yl, Y2,y yn} s Satisfying.

m
a =1

i=1 i

(1

n

b =1

L )

Given the transport matrix 7, where 7T;, represents the
amount of mass transported from x; to );, the EMD
optimization problem is formulated as:

min iiCi’/TiJ 3)

TeR™ 5353

where: C;; is the cost matrix, representing the cost of
moving mass from x; to y. T satisfies the marginal
constraints: 71 =a, T"=b, T> 0.

EMD solves the OT problem, but its major drawback is
its high computational complexity of O(n*), making it
impractical for large-scale problems.

B.  Sinkhorn Distance (SD)

To accelerate EMD computation, SD introduces an
entropy regularization term, making the optimization
problem solvable using the efficient Sinkhorn-Knopp
algorithm. The regularized optimal transport problem is
given by:

“)

where the first term represents the optimal transport cost.
The second term is the entropy regularization term, which
smooths the transport matrix 7, improving computational
efficiency.

The regularization parameter A controls the smoothness.

When A — 0, SD reduces to EMD.

Solution method: Using Lagrange dual optimization, we
introduce dual variables u and v, allowing us to express T’
as:

G,
];,j = exp(_T)u[Vj (5)
Defining the kernel matrix:
G,
K., = exp(— /‘t‘ (6)

We can rewrite T as:
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T = diag(u)Kdiag(v) @)
Iterative updates:
(t+1) _ a (1+1) _ b
- (er)’ - Kru(zm (8)

Computational complexity is reduced to O(n*) making
SD significantly faster than EMD.

C. Unbalanced Sinkhorn Distance (USD)

SD assumes that the total mass of source and target
distributions is equal:

)

However, in many real-world applications different
distributions may have unequal total mass. To address this,
USD introduces Kullback-Leibler (KL)-divergence
regularization, allowing mass adjustment during the
matching process.

USD Optimization Problem:

m_n

> DT, logT, , +tKL(T1||a)+ TKL(T" 1||b)

i=1 j=1
(10

min” iiq/ﬂ/ +A

TeR™ 5 =1

The additional KL-divergence terms:

KUM= Y T log )~ (T -a) (D)

Allow mass adjustments rather than enforcing strict
equality constraints. The regularization parameter 7
controls the smoothness. When 7— oo, USD reduces to SD.

Solution method: USD wuses Sinkhorn-Knopp-like
iterative updates, but now KL-divergence must be
considered:

u = a

—_— 12
(Kv(”)%’“” (12

P a

—_— 13)
(KTu(t+l) )%24-1)

D. Unbalanced Sinkhorn Distance for Few-Shot
Learning
In a FSL scenario based on meta-learning, the training
samples are divided into a Support Set § = {$;}*., anda
Query Set Q = {Q;}7L;. Each sample §; €S and Q; €
Q is passed through the feature extractor network,
ResNetl2, resulting in feature maps Fs, and TQ]. for the

Support Set and Query Set, respectively. Specifically,
Fs, € R5%640X25  and Fo, € R75%640X25  The feature
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maps are used to calculate the cost matrix Mj; using the

Fs,Fo. .
- # This cost
Il Si|||| [ Il

matrix is then used to calculate the USD.

cosine similarity, givenby M;; =1

IV. EXPERIMENTS

To assess the effectiveness of our proposed algorithm in
few-shot classification, we begin by introducing the
benchmark datasets and outlining the implementation
details. Next, we conduct an ablation study to analyze the
contribution of each component and present qualitative
results for deeper insights. Finally, we compare our
approach against state-of-the-art methods on widely used
benchmark datasets and evaluate its performance in cross-
domain experiments.

A. Dataset Description

The experiments are conducted on four widely used
few-shot learning datasets: Mini-ImageNet, Tiered-
ImageNet, FC100, and CUB. Mini-ImageNet contains 100
classes with 600 images per class, split into 64 for training,
16 for validation, and 20 for testing. Tiered-ImageNet
includes 608 classes, structured to enhance domain
differences, with 20 super-classes for training, 6 for
validation, and 8 for testing. FC100, derived from
CIFAR100, consists of 36 super-classes divided into 60
training, 20 validation, and 20 testing classes. CUB,
originally for fine-grained bird classification, has 200
classes and 11,788 images, split into 100 for training, 50
for validation, and 50 for testing. The dataset splits ensure
a structured evaluation of few-shot learning models, as
shown in Fig. 2.
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Fig. 2. This bar chart illustrates the class distribution across different
datasets used for training, validation, and testing in few-shot learning
tasks. The datasets include Mini-ImageNet, Tiered-ImageNet, CIFAR-
100, and CUB.

B.  Implementation Details

Following standard practice in metric-based few-shot
learning [1, 2], we apply uniform training strategies across
all evaluated methods. Data augmentation includes
random cropping, horizontal flipping, and color jittering.
We use cosine learning rate scheduling and train all models
under an episodic meta-learning framework with identical
pretraining settings to ensure fair comparison. All
experiments were conducted on an Ubuntu 22.04 operating
system with an NVIDIA RTX 4090 GPU, implemented
using the PyTorch framework. All methods were evaluated
under the same hardware configuration without any
specialized acceleration or optimization. The model
maintains high computational efficiency during both
training and inference.

Fig. 3. Few-shot learning framework based on Unbalanced Sinkhorn Distance.

Fig. 3 illustrates the training process for FSL using USD.

Initially, the dataset is divided into a support set and a
query set. The support set consists of 5 classes with 1
sample each class, and the query set consists of 5 classes
with 15 samples each, both having the input size of
5x3x84x84 for support and 75x3x84x84 for query.
Features are extracted from both sets using the ResNet12
feature extractor, producing feature maps with sizes
5x640%25 for the Support Set and 75x640%25 for the
Query Set. After feature preprocessing, a cost matrix (Cost
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M) is computed between the support and query feature
maps. USD is used to calculate the similarly between each
query sample and the support samples, resulting in a 75x5
distance matrix. This process demonstrates how USD is
effectively utilized for feature matching and classification
in few-shot learning, enhancing training efficiency and
accuracy.

C. Analysis
Fig. 4 illustrates the classification accuracy trends of
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different methods on the Mini-ImageNet dataset as the
number of shots varies.
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Fig. 4. This graph compares the accuracy of different few-shot learning
methods across varying numbers of shots (from 1 to 105).

In this experiment, all other conditions were kept
constant, and only the shot number was changed to observe
the classification performance of different methods under
varying data availability. Overall, the accuracy of all
methods increases with the number of shots and stabilizes
after a certain point, indicating that having more training
samples improves classification performance, but the
benefit diminishes at higher shot numbers. Compared to
other methods, OUR method consistently achieves the
highest accuracy across all shot settings, with a particularly
significant advantage in low-shot scenarios. This
demonstrates its superior feature alignment capability in
few-shot learning tasks, allowing it to handle imbalanced
data more effectively. The BSSD method improves upon
EMD in low-shot cases, but as the shot number increases,
the performance gap between them narrows, suggesting

Accuracy vs. Blur in Unbalanced Sinkhorn Distance

that BSSD mainly enhances feature matching in low-data
scenarios. In contrast, EMD stabilizes in high-shot tasks
but maintains lower overall accuracy. In summary, OUR
outperforms other methods across different data scales,
proving its effectiveness and robustness in few-shot
learning tasks.

1) Analysis of Unbalanced Sinkhorn Distance (USD)
parameters under distributional imbalance

The blur (1) and scaling (7) in USD not only affect
numerical stability and convergence but also help address
distributional mismatch between the support and query
sets in FSL.

In our context, distributional imbalance refers to
situations where query samples fall outside the support
feature distribution due to intra-class variation, occlusion,
or background differences. Traditional OT methods like
EMD and SD require full mass transport, which can lead
to incorrect matches under such mismatch.

USD alleviates this problem by allowing partial
matching. The scaling (7) controls how much unmatched
mass is tolerated—Ilarger values enable more flexibility in
ignoring poorly aligned query features. The blur (1)
controls the smoothness of transport updates, helping
stabilize the matching when the distributions are
misaligned.

Together, these parameters make USD more robust in
few-shot scenarios where full alignment between support
and query is not always possible. Fig. 5 shows the
performance of USD under different blur and scaling
parameters, confirming that proper tuning enhances
robustness in the presence of support-query distribution
mismatch—exactly the imbalance our method aims to
handle.
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Fig. 5. These graphs illustrate the impact of varying blurring and scaling factors on the accuracy of USD for both 1-shot and 5-shot learning tasks.

2 ) Comparison performance with different backbone
networks

ResNet is a type of artificial neural network introduced
by Kaiming He ef a/. [20] in 2015 to address the vanishing
gradient problem. This architecture significantly improves
performance and has become a fundamental building block
in many state-of-the-art deep learning models. To study the
impact of different ResNet architectures on model
performance in the context of few-shot learning, ResNet12,
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ResNetl8, and ResNet34s were evaluated using the
Tiered-ImageNet dataset.

By keeping all other testing conditions constant only
changing the backbone network, the study aimed to isolate
the effects of network depth and complexity on few-shot
learning performance. ResNet12 is expected to offer faster
training and lower computational cost but might sacrifice
some accuracy due to its limited capacity. ResNetl8
represents a balanced approach, potentially offering a good
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trade-off between computational efficiency and accuracy.
ResNet34s, the deepest network among the three, is
anticipated to capture more complex features and provide
higher accuracy, especially beneficial for 5-shot learning
where more information is available. The results indicate
that despite the increasing number of parameters from
ResNetl2 to ResNet34s, the accuracy improvement is
minimal. The experimental results are shown in Table 1.

TABLE 1. THIS TABLE COMPARES THE PERFORMANCE OF THREE
DIFFERENT RESNET ARCHITECTURES (RESNET12, RESNET18, AND
RESNET34S) ON 1-SHOT AND 5-SHOT LEARNING TASKS IN TIERED-

IMAGENET
Backbone Parameter  1-shot (%)  5-shot (%)
ResNet12 1,249,200  75.58+0.27  88.21+0.36
ResNet18 23,728,320  75.73+0.16  88.37+0.25
ResNet34s 33,412,800  75.86+0.42  88.41+0.51
3) Various unbalanced optimization transmission

algorithms and transmission matrix visualization

Fig. 6 compares four Unbalanced Optimal-Transport
(UOT) strategies—Partial-OT [16], L2-UOT [21], KL-
UOT [16], and Entropic-KL-UOT [3]—applied to the
same support—query feature maps under Euclidean and
cosine costs. Although all methods share the identical cost
matrix, they differ in the way they regularize the row and
column sums, and this choice dictates how much mass can
be discarded or smoothed during transport. Partial-OT
imposes a hard upper bound on the transported mass (m =
0.7), yielding an extremely sparse plan that effectively
ignores background clutter but occasionally drops useful

query mass, which explains the lower recall observed in
Table II. Replacing the hard cap with an L2 penalty
produces denser couplings that retain more query
information; however, the quadratic term penalizes large
local deviations too strongly, so mismatched regions are
still partially over-aligned. KL-UOT switches to a
logarithmic divergence, encouraging relative mass
preservation; visually its transport matrix becomes more
structured, and class accuracy improves correspondingly.
Our USD adds an entropic term on top of the KL-
divergence, combining smooth assignment with the
freedom to discard mismatched mass. As shown in
Fig. 6(a), using Euclidean distance, the Entropic KL-UOT
method produces clearer, semantically aligned transport
paths and a well-structured transport matrix. Fig. 6(b)
demonstrates similar results with cosine distance, where
Entropic KL-UOT still maintains coherent matching and
compact transport patterns. These results highlight the
robustness and effectiveness of our USD approach under
different distance settings.

TABLE II. THIS TABLE COMPARES THE PERFORMANCE OF DIFFERENT
REGULARIZED UOT METHODS USING COSINE AND EUCLIDEAN
DISTANCES AS COST FUNCTIONS

Partial-UOT L2-UOT KL-UOT  Entropic KL-UOT
reg=0.03
& 3
=
E
f;
=
g 4
z &
g =
£ =
[

(a)Use Euclidean distance as cost

Different UOT Cost(cosine) Cost (Euclidean)
methods (%) (%)

Partial UOT 73.56+0.52 67.24+0.34
L2-UOT 73.27+£0.17 67.38+0.53
KL-UOT 73.15+0.35 67.28+0.17

Entropic KL-UOT 75.58+0.38 67.49+0.26
Partial-UOT L2-UOT KL-UOT Entropic KL-UOT

reg=15

reg=0.03
)

reg=0.03 ]

(b)Use Cosine distance as cost

Fig. 6. Visualization of transport plans using different UOT methods under Euclidean (a) and cosine (b) distance costs. Each method yields distinct
feature alignments and transport matrix patterns, reflecting their sensitivity to cost definitions.

4) Feature visualization and semantic consistency
analysis

Fig. 7 contrasts the t-SNE embeddings produced by the
SD baseline (a) with those obtained using our USD (b). In
the SD plot, points from the five test classes intermingle
and several outliers spread across the space—a direct
consequence of the mass-conservation constraint, which
forces every query feature to be matched to some support
mass even when they are semantically unrelated. By
contrast, USD introduces a KL-based mass-penalty that

575

allows unmatched or noisy features to be partially
discarded. This relaxation yields two visible effects:
tighter intra-class clusters—the variance within each color
patch is markedly reduced—and larger inter-class
margins—clusters are more clearly separated with fewer
overlapping samples. The visual evidence confirms the
theoretical advantage of USD: by optimizing a flexible
transport plan, it mitigates over-alignment and suppresses
background artefacts, thereby providing semantically
coherent feature alignment that underpins the quantitative
gains.
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D. Comparison with State-of-the-Art Methods

Tables III and IV present the performance comparison
of various few-shot learning methods across multiple
datasets. Some of the data presented in these tables have
been sourced from relevant studies such as [2, 14]. In
Table III, USD achieved the best performance on Mini-
ImageNet and Tiered-ImageNet, with 1-shot accuracy
reaching 68.14% and 75.58%, and 5-shot accuracy
reaching 85.57% and 88.21%, respectively. Table IV
demonstrates the robustness of our methods on the
CIFAR100 and CUB datasets. USD leads with a 1-shot
accuracy of 47.56% on CIFAR100 and 76.68% on CUB,

and a S5-shot accuracy of 64.62% on CIFAR100 and

88.89% on CUB.
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Fig. 7. Feature visualization and semantic consistency analysis.

TABLE III. RESULTS ON MINI-IMAGENET AND TIERED-IMAGENET DATASETS

Mini-ImageNet

Mini-ImageNet

Tiered-ImageNet  Tiered-ImageNet

Method Backbone 4ot (%) 5-shot (%) 1-shot (%) 5-shot (%)
CTM [8] ResNet18 64.12+0.82 80.51+0.13 68.41+0.39 84.28+1.73
S2M2 [9] ResNet18 64.06£0.18 80.58+0.12 - -
TADAM [10] ResNet12 58.50+0.30 76.70+£0.38 - -
MetaOptNet [6] ResNet12 62.64+0.44 78.63+0.46 65.99+0.72 81.56+0.63
DN4 [20] ResNet12 64.73+0.44 79.85+0.31 - -
Baseline++ [22] ResNet12 60.56+0.45 77.40+0.34 65.10+£0.92 80.39+0.69
Good-Embed [23]  ResNetl2 64.82+0.60 82.14+0.43 71.52+0.69 86.03+0.58
FEAT [14] ResNet12 66.78+0.20 82.05+0.14 70.80+0.23 84.79+0.16
Meta-Baseline [7]  ResNetl2 63.17+0.23 79.26+0.17 68.62+0.27 83.29+0.18
MELR [24] ResNet12 67.40+0.43 83.40+0.28 72.14+0.51 87.01+0.35
FRN [25] ResNet12 66.45+0.19 82.83+0.13 71.16+0.22 86.01+0.15
IEPT [26] ResNetl12 67.05+0.44 82.90+0.30 72.24+0.50 86.73+0.34
BML [27] ResNet12 67.04+0.63 83.63+£0.29 68.99+0.50 85.49+0.34
ProtoNet [1] ResNet12 62.11+0.44 80.77+0.30 68.31+0.51 83.85+0.36
ADM [28] ResNet12 65.87+0.43 82.05+0.29 70.78+0.52 85.70+0.43
Convert [25] ResNet12 64.59+0.45 82.02+0.29 69.75+0.52 84.21+0.26
DeepEMD [2] ResNet12 65.91+0.82 82.41+0.56 71.16+0.87 86.03+0.58
BSSD [13] ResNet12 67.28+0.20 83.48+0.14 71.55+0.23 86.13£0.16
USD (ours) ResNetl2 68.14+0.26 85.57+0.16 75.58+0.38 88.21+0.36
TABLE IV. RESULTS ON CIFAR100 CUB DATASETS
Method Backbone CIFAR100 1-shot (%) CIFAR100 5-shot (%) CUB I-shot (%) CUB 5-shot (%)
cosine classifier [7]  ResNetl2 38.47+0.70 57.67+0.77 67.30+0.86 84.75+0.60
TADAM [10] ResNet12 40.10+0.40 56.10+£0.40 66.09+0.92 82.50+0.58
MetaOptNet [6] ResNet12 41.10£0.60 55.35+0.60 65.36+0.28 81.28+0.41
ProtoNet [1] ResNet12 41.54+0.76 57.08+0.76 64.25+0.34 82.23+0.36
Match Net [29] ResNet12 43.88+0.75 57.05+0.71 71.87+0.85 85.08+0.57
MTL [3] ResNet12 45.10+0.38 57.62+0.59 70.87+0.46 84.65+0.32
Relation Net [30] ResNet34s 44.62+0.18 56.47+0.39 66.20+0.99 82.30+0.58
DeepEMD [2] ResNet12 46.47+0.78 63.2240.71 75.65+0.83 88.69+0.50
BSSD [13] ResNet12 45.36+0.37 63.57+0.29 72.46+0.34 85.28+0.19
USD (ours) ResNet12 47.56+0.83 64.62+0.52 76.68+0.83 88.89+0.63

E.  Cross-domain classification (Mini-ImageNet —
CUB)

Table V shows the cross-domain FSL experiments
conducted under the 5-way l-shot and 5-way 5-shot
scenarios, our methods, USD, demonstrated significant
superiority over existing approaches, particularly when

training on Mini-ImageNet and testing on the CUB dataset.

As presented in Table V, USD achieved the highest
accuracy in the 5-shot scenario, reaching 74.61%, which
surpasses all other compared methods. In the 1-shot
scenario, USD also performed exceptionally well, leading
with accuracies of 54.48%. These results highlight the
effectiveness of our proposed methods in addressing the

challenges of cross-domain few-shot learning, particularly
when applied to diverse datasets such as Mini-ImageNet
and CUB. The superior performance of USD emphasizes
their capability in capturing and transferring relevant
features across domains, making them robust solutions for
few-shot learning tasks in varying contexts.

Although the results from DeepBDC is competitive, the
differences in image resolution (84x84x3 in our case
versus 224x224x3 in theirs) make direct comparison
difficult [31]. Therefore, we did not include a comparison
with DeepBDC. Our experiments underscore the
effectiveness of our approach, particularly in the
challenging 1-shot setting.
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TABLE V. THE TABLE PRESENTS A COMPARISON OF CROSS-DOMAIN
FEW-SHOT LEARNING RESULTS UNDER 1-SHOT AND 5-SHOT
CONDITIONS, USING MINI-IMAGENET FOR TRAINING AND CUB FOR

TESTING
Method Backbone  1-shot (%)  5-shot (%)
Baseline [22] ResNet-18  45.31+0.59  65.57+0.70
Baseline++ [22] ResNet-18  46.524+0.73  62.04+0.76
GNN+FT [32] ResNet-12  48.26+0.56  66.98+0.68
BML [27] ResNet-12 51.47+0.63  72.42+0.54
ProtoNet [5] ResNet-12 48.2440.68  67.19+0.38
Good-Embed [23] ResNet-12  48.39+0.73  67.43+0.44
ADM [28] ResNet-12  50.61+0.48  70.55+0.43
DeepEMD [2] ResNet-12 52.36+0.52  72.36+0.58
BSSD ResNet-12  52.47+0.38  71.46+0.34
USD (ours) ResNet-12  54.48+0.47  74.61+0.46

V. CONCLUSION

In this paper, we propose a simple yet effective method
for few-shot image classification. Our approach addresses
the challenge of mismatched source and target
distributions by effectively aligning the features between
the query set and the support set using USD. By reshaping
the positions of query samples within the feature maps, our
method enhances the distinguishability and diversity of
features relative to the support set. We have carefully
designed the embedding layer to enable end-to-end
training. Our method was benchmarked against existing
few-shot learning approaches based on OT theory,
demonstrating  significant improvements in both
computational efficiency and accuracy. Extensive
experiments show that our proposed method outperforms
state-of-the-art approaches, establishing a new standard in
FSL. Our work highlights the largely overlooked potential
of USD and encourages its future application in deep
learning.
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