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Abstract—The core challenge of few-shot image classification 
lies in efficiently learning and accurately classifying with 
limited labeled data. Current metric-based meta-learning 
methods primarily rely on computing the structural distance 
between the query and support sets for matching. However, 
traditional metric learning typically employs Euclidean 
distance or standard Sinkhorn Distance (SD) for feature 
matching, assuming that the total mass of the source and 
target distributions is equal. This assumption overlooks the 
imbalance in data distribution in real-world tasks. To 
overcome these challenges, this study systematically 
introduces Unbalanced Sinkhorn Distance (USD) into Few-
Shot Learning (FSL) to enhance the model’s ability to match 
features map of query set and support set under imbalanced 
distributions. USD allows dynamic adjustment of matching 
distributions during metric computation. Moreover, this 
method effectively reduces the interference of background 
noise when matching features between the support and query 
sets while maintaining low computational costs. 
Experimental results demonstrate that our method achieves 
state-of-the-art performance on four FSL benchmark 
datasets, significantly outperforming existing Optimal 
Transport (OT)-based methods. 

Keywords—few-shot learning, Unbalanced Sinkhorn 
Distance, optimal transmission theory, meta-learning 


I. INTRODUCTION

In recent years, deep learning has achieved remarkable 
success in computer-vision tasks such as image 
classification, detection, and segmentation. Nevertheless, 
these achievements rely heavily on large‐scale labeled 
datasets, which are costly and time-consuming to create. 
In practical scenarios, only a handful of annotated 
examples are often available per class, leading to the Few-
Shot Learning (FSL) problem. 

To address this data-scarcity challenge, researchers 
have proposed a variety of FSL methods, notably meta-
learning and metric-learning approaches. Metric-based 
models aim to learn a transferable embedding space in 
which similarities between support and query samples can 
be measured reliably. Although techniques such as 
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Prototypical Networks [1] perform well under balanced 
and clean conditions, they depend on simple Euclidean or 
cosine distances that struggle to capture complex spatial 
relations and are vulnerable to feature misalignment. 

Optimal Transport (OT) theory has recently been 
introduced to FSL to achieve finer structural alignment. 
For example, Deep Earth Mover’s Distance (DeepEMD) 
employs the Earth Mover’s Distance (EMD) to compute 
soft correspondences between feature maps, delivering 
significant gains over Euclidean-based metrics [2]. 
However, DeepEMD and similar balanced-OT methods 
assume that all transport mass must be preserved—a 
restriction that hampers robustness when class imbalance, 
background clutter, or missing data are present. 

To overcome this limitation, we propose a new FSL 
framework built on Unbalanced Sinkhorn Distance (USD). 
By incorporating Kullback-Leible (KL) -divergence 
penalties into the Sinkhorn iterations, USD relaxes the 
mass-conservation constraint and allows partial matching 
between support and query distributions, following the 
unbalanced-OT formulation of Chizat et al. [3]. This 
design enables dynamic mass adjustment and yields more 
reliable alignment under noisy or imbalanced conditions. 

To validate our algorithm, we conducted extensive 
experiments across multiple datasets to demonstrate its 
effectiveness. The results showcase the robustness and 
accuracy of our approach. Our main contributions are 
summarized as follows: 

(1) Proposing a metric learning framework based on
USD. This work introduces USD with KL-
divergence regularization, allowing dynamic
adjustment of matching distributions. This
improves feature robustness, reduces background
noise interference, and ensures efficient
classification even in imbalanced data scenarios.

(2) Optimizing feature matching and improving
computational efficiency. Our method relaxes the
strict mass conservation constraint and integrates
Sinkhorn entropy regularization with KL-
divergence optimization, reducing computational
cost while maintaining classification accuracy.
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(3) Achieving state-of-the-art performance on
multiple benchmark datasets. Our method
outperforms existing state-of-the-art approaches in
1-shot and 5-shot tasks on Mini-ImageNet, Tiered-
ImageNet, FC100, and CUB datasets.

II. RELATED WORKS

Early studies in FSL cast the problem as meta-learning: 
a model is trained on many small “episodes” so that it can 
adapt rapidly to novel classes. The seminal Siamese 
Network [4] and the cognitive one-shot learner of Lake et 
al. [5] showed that pair-wise similarity and episodic 
supervision permit generalisation from very few labelled 
samples. Subsequent work sharpened the optimization 
perspective. MetaOptNet formulates the inner loop as a 
differentiable convex programme [6], while Meta-
Baseline demonstrates that a simple cosine classifier atop 
a fixed backbone can rival more sophisticated meta-
learners [7]. Despite their efficiency, these approaches 
depend on global Euclidean or cosine distances and 
therefore remain vulnerable when support and query 
distributions are misaligned or imbalanced. 

To compensate for prototype bias and sparse 
supervision, a second strand focuses on feature refinement. 
Category-Traversal Networks search for task-relevant 
channels across classes [8], whereas Manifold Mixup 
interpolates hidden representations to smooth decision 
boundaries [9]. TADAM [10] introduces task-dependent 
metric scaling, and Prototype Rectification (PR) employs 
label propagation to correct biased prototypes in 
transductive settings [11]. Transfer Based FSL (TB-FSL) 
further leverages feature-distribution statistics to calibrate 
decision boundaries under covariate shift [12]. 
Nonetheless, these methods still rely on heuristic global 
pooling and cannot explicitly align fine-grained structures 
when parts of the query image lie outside the support 
manifold. 

OT metrics provide a principled way to minimise the 
cost of aligning two feature distributions. DeepEMD [2] 
incorporates Earth-Mover’s Distance to establish pixel-
level correspondences, whereas the Bilaterally Normalised 
Sinkhorn Distance (BSSD) accelerates entropic OT via 
scale-consistent matrix balancing [13]. Brownian Distance 
Covariance OT captures higher-order dependence beyond 
pairwise similarity [14, 15]. A common shortcoming of 
these balanced OT methods is the mass-conservation 
constraint, which forces all query mass to be matched to 
the support set; background noise, occluded regions, and 
severe class imbalance therefore lead to over-alignment 
and degraded robustness. 

Unbalanced OT theory relaxes this rigidity by 
penalizing, rather than forbidding, mass variation. Chizat 
et al. [3] derive a scalable KL-regularized formulation, and 
Chapel et al. [16] extend partial transport to positive–
unlabeled learning. These advances suggest that allowing 
unmatched mass to be discarded is key to robust alignment. 
Veilleux et al. [17] further argue that standard, class-
balanced benchmarks over-estimate FSL performance and 
introduce a Dirichlet query-imbalance protocol to emulate 
realistic deployments. In safety-critical domains, compact 

Convolution Neural Networks (CNNs) have been applied 
to multi-class skin-lesion triage with limited 
annotations [18], and transfer-learning pipelines detect 
knee-joint synovial fluid from Magnetic Resonance 
Imaging (MRI) scans under severe data scarcity [19]; both 
studies underline the demand for interpretable, 
distribution-aware matching. 

Motivated by the brittleness of balanced OT in 
DeepEMD [2] and BSSD [13], we adopt the unbalanced-
OT principle [3, 16] and introduce an USD for few-shot 
classification. USD preserves Sinkhorn’s efficiency yet 
permits partial-mass transport, enabling the model to 
ignore unmatched or noisy regions. As our experiments 
show, this optimization flexibility translates into superior 
accuracy and more coherent transport plans under class 
imbalance, occlusion, and background clutter. As 
illustrated in Fig. 1, the iterative process of USD alignment 
in feature space is visualized between the support and 
query sets. As the number of iterations increases (from it 
= 0 to it = 200), the initially disordered matching evolves 
into a structurally coherent alignment, demonstrating the 
effectiveness of USD in modeling fine-grained 
correspondences between distributions with unequal mass. 

Fig. 1. This image illustrates the process of calculating the USD in feature 
space and demonstrates how the USD iteratively adjusts feature point 
matching to optimize the structural distance between the query set and 
the support set.

III. PROPOSED METHOD

In this section, we first derive the formula transition 
from Earth Mover’s Distance (EMD) to USD. Starting 
with the EMD, we incorporate an entropic regularization 
term to facilitate computational efficiency. This leads to 
the Sinkhorn Distance, an efficient approximation of EMD. 
To handle distributions with unequal total mass, we 
introduce a penalty term for mass differences, resulting in 
the USD. This unbalanced variant maintains the benefits 
of entropic regularization while addressing real-world data 
imbalances. Subsequently, we integrate the optimal 
transport theory based on USD into a few-shot learning 
model. This integration allows for improved feature 
matching and classification performance. 

A. Earth Mover Distance Theory

This section provides a comprehensive derivation of
EMD, Sinkhorn Distance (SD), and USD to clarify the 
mathematical evolution behind each step. 
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EMD, also known as Wasserstein Distance, measures 
the optimal transport cost between two probability 
distributions. Given two discrete distributions: 

Source distribution: a = (a1, a2,…, am) over the set X = 
{x1, x2,…, xm}, satisfying. 

             
1
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m
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a


                 (1) 

Target distribution: b = (b1, b2,…, bn) over the set Y = 
{y1, y2,…, yn}, satisfying. 

                
1
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Given the transport matrix T, where Ti,j represents the 
amount of mass transported from xi to yj, the EMD 
optimization problem is formulated as: 

             , ,
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where: Ci,j is the cost matrix, representing the cost of 
moving mass from xi to yj. T satisfies the marginal 
constraints: T1 = a, TT = b, T  0. 

EMD solves the OT problem, but its major drawback is 
its high computational complexity of O(n3), making it 
impractical for large-scale problems. 

B. Sinkhorn Distance (SD) 

To accelerate EMD computation, SD introduces an 
entropy regularization term, making the optimization 
problem solvable using the efficient Sinkhorn-Knopp 
algorithm. The regularized optimal transport problem is 
given by: 

      , , , ,
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m n

m n m n

i j i j i j i j
T R i j i j
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where the first term represents the optimal transport cost. 
The second term is the entropy regularization term, which 
smooths the transport matrix T, improving computational 
efficiency. 

The regularization parameter  controls the smoothness. 
When   0, SD reduces to EMD. 
Solution method: Using Lagrange dual optimization, we 

introduce dual variables u and v, allowing us to express T 
as: 

              ,
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Defining the kernel matrix: 

               ,
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We can rewrite T as: 

             diag( ) diag( )T u K v             (7) 

Iterative updates: 

          ( 1) ( 1)
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Computational complexity is reduced to O(n2) making 
SD significantly faster than EMD. 

C. Unbalanced Sinkhorn Distance (USD) 

SD assumes that the total mass of source and target 
distributions is equal: 
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However, in many real-world applications different 
distributions may have unequal total mass. To address this, 
USD introduces Kullback-Leibler (KL)-divergence 
regularization, allowing mass adjustment during the 
matching process. 

USD Optimization Problem: 

, , , ,
1 1 1 1

min log ( 1 ) ( 1 )
m n

m n m n
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i j i j i j i j
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The additional KL-divergence terms: 

       ( 1 ) log( ) ( )i
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T
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a
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Allow mass adjustments rather than enforcing strict 
equality constraints. The regularization parameter  
controls the smoothness. When   , USD reduces to SD.  

Solution method: USD uses Sinkhorn-Knopp-like 
iterative updates, but now KL-divergence must be 
considered: 
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D. Unbalanced Sinkhorn Distance for Few-Shot 
Learning 

In a FSL scenario based on meta-learning, the training 
samples are divided into a Support Set ࣭ = { ௜࣭}௜ୀଵ௞  and a 
Query Set ࣫ = {࣫௝}௝ୀଵ௠ . Each sample ௜࣭ ∈ ࣭ and ࣫௝ ∈࣫  is passed through the feature extractor network, 
ResNet12, resulting in feature maps ℱ࣭೔ and ℱ࣫ೕ for the 

Support Set and Query Set, respectively. Specifically, ℱ࣭೔ ∈ ℝହ×଺ସ଴×ଶହ  and ℱ࣫ೕ ∈ ℝ଻ହ×଺ସ଴×ଶହ . The feature 
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maps are used to calculate the cost matrix Mij using the 

cosine similarity, given by ܯ௜௝ = 1 െ ℱ࣭೔∙ℱ࣫ೕ ∥ℱ࣭೔∥∥ℱ࣫ೕ ∥. This cost 

matrix is then used to calculate the USD.  

IV. EXPERIMENTS 

To assess the effectiveness of our proposed algorithm in 
few-shot classification, we begin by introducing the 
benchmark datasets and outlining the implementation 
details. Next, we conduct an ablation study to analyze the 
contribution of each component and present qualitative 
results for deeper insights. Finally, we compare our 
approach against state-of-the-art methods on widely used 
benchmark datasets and evaluate its performance in cross-
domain experiments. 

A. Dataset Description 

The experiments are conducted on four widely used 
few-shot learning datasets: Mini-ImageNet, Tiered-
ImageNet, FC100, and CUB. Mini-ImageNet contains 100 
classes with 600 images per class, split into 64 for training, 
16 for validation, and 20 for testing. Tiered-ImageNet 
includes 608 classes, structured to enhance domain 
differences, with 20 super-classes for training, 6 for 
validation, and 8 for testing. FC100, derived from 
CIFAR100, consists of 36 super-classes divided into 60 
training, 20 validation, and 20 testing classes. CUB, 
originally for fine-grained bird classification, has 200 
classes and 11,788 images, split into 100 for training, 50 
for validation, and 50 for testing. The dataset splits ensure 
a structured evaluation of few-shot learning models, as 
shown in Fig. 2. 

 

 

Fig. 2. This bar chart illustrates the class distribution across different 
datasets used for training, validation, and testing in few-shot learning 
tasks. The datasets include Mini-ImageNet, Tiered-ImageNet, CIFAR-
100, and CUB. 

B. Implementation Details 

Following standard practice in metric-based few-shot 
learning [1, 2], we apply uniform training strategies across 
all evaluated methods. Data augmentation includes 
random cropping, horizontal flipping, and color jittering. 
We use cosine learning rate scheduling and train all models 
under an episodic meta-learning framework with identical 
pretraining settings to ensure fair comparison. All 
experiments were conducted on an Ubuntu 22.04 operating 
system with an NVIDIA RTX 4090 GPU, implemented 
using the PyTorch framework. All methods were evaluated 
under the same hardware configuration without any 
specialized acceleration or optimization. The model 
maintains high computational efficiency during both 
training and inference. 

 

 
Fig. 3. Few-shot learning framework based on Unbalanced Sinkhorn Distance. 

Fig. 3 illustrates the training process for FSL using USD. 
Initially, the dataset is divided into a support set and a 
query set. The support set consists of 5 classes with 1 
sample each class, and the query set consists of 5 classes 
with 15 samples each, both having the input size of 
5×3×84×84 for support and 75×3×84×84 for query. 
Features are extracted from both sets using the ResNet12 
feature extractor, producing feature maps with sizes 
5×640×25 for the Support Set and 75×640×25 for the 
Query Set. After feature preprocessing, a cost matrix (Cost 

M) is computed between the support and query feature 
maps. USD is used to calculate the similarly between each 
query sample and the support samples, resulting in a 75×5 
distance matrix. This process demonstrates how USD is 
effectively utilized for feature matching and classification 
in few-shot learning, enhancing training efficiency and 
accuracy. 

C. Analysis 

Fig. 4 illustrates the classification accuracy trends of 
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different methods on the Mini-ImageNet dataset as the 
number of shots varies.  

 

 
Fig. 4. This graph compares the accuracy of different few-shot learning 

methods across varying numbers of shots (from 1 to 105).  

In this experiment, all other conditions were kept 
constant, and only the shot number was changed to observe 
the classification performance of different methods under 
varying data availability. Overall, the accuracy of all 
methods increases with the number of shots and stabilizes 
after a certain point, indicating that having more training 
samples improves classification performance, but the 
benefit diminishes at higher shot numbers. Compared to 
other methods, OUR method consistently achieves the 
highest accuracy across all shot settings, with a particularly 
significant advantage in low-shot scenarios. This 
demonstrates its superior feature alignment capability in 
few-shot learning tasks, allowing it to handle imbalanced 
data more effectively. The BSSD method improves upon 
EMD in low-shot cases, but as the shot number increases, 
the performance gap between them narrows, suggesting 

that BSSD mainly enhances feature matching in low-data 
scenarios. In contrast, EMD stabilizes in high-shot tasks 
but maintains lower overall accuracy. In summary, OUR 
outperforms other methods across different data scales, 
proving its effectiveness and robustness in few-shot 
learning tasks. 

1）Analysis of Unbalanced Sinkhorn Distance (USD) 
parameters under distributional imbalance 

The blur () and scaling () in USD not only affect 
numerical stability and convergence but also help address 
distributional mismatch between the support and query 
sets in FSL. 

In our context, distributional imbalance refers to 
situations where query samples fall outside the support 
feature distribution due to intra-class variation, occlusion, 
or background differences. Traditional OT methods like 
EMD and SD require full mass transport, which can lead 
to incorrect matches under such mismatch. 

USD alleviates this problem by allowing partial 
matching. The scaling () controls how much unmatched 
mass is tolerated—larger values enable more flexibility in 
ignoring poorly aligned query features. The blur () 
controls the smoothness of transport updates, helping 
stabilize the matching when the distributions are 
misaligned. 

Together, these parameters make USD more robust in 
few-shot scenarios where full alignment between support 
and query is not always possible. Fig. 5 shows the 
performance of USD under different blur and scaling 
parameters, confirming that proper tuning enhances 
robustness in the presence of support-query distribution 
mismatch—exactly the imbalance our method aims to 
handle. 

 

 
Fig. 5. These graphs illustrate the impact of varying blurring and scaling factors on the accuracy of USD for both 1-shot and 5-shot learning tasks. 

2）Comparison performance with different backbone 
networks 

ResNet is a type of artificial neural network introduced 
by Kaiming He et al. [20] in 2015 to address the vanishing 
gradient problem. This architecture significantly improves 
performance and has become a fundamental building block 
in many state-of-the-art deep learning models. To study the 
impact of different ResNet architectures on model 
performance in the context of few-shot learning, ResNet12, 

ResNet18, and ResNet34s were evaluated using the 
Tiered-ImageNet dataset. 

By keeping all other testing conditions constant only 
changing the backbone network, the study aimed to isolate 
the effects of network depth and complexity on few-shot 
learning performance. ResNet12 is expected to offer faster 
training and lower computational cost but might sacrifice 
some accuracy due to its limited capacity. ResNet18 
represents a balanced approach, potentially offering a good 
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trade-off between computational efficiency and accuracy. 
ResNet34s, the deepest network among the three, is 
anticipated to capture more complex features and provide 
higher accuracy, especially beneficial for 5-shot learning 
where more information is available. The results indicate 
that despite the increasing number of parameters from 
ResNet12 to ResNet34s, the accuracy improvement is 
minimal. The experimental results are shown in Table I. 

TABLE I. THIS TABLE COMPARES THE PERFORMANCE OF THREE 

DIFFERENT RESNET ARCHITECTURES (RESNET12, RESNET18, AND 

RESNET34S) ON 1-SHOT AND 5-SHOT LEARNING TASKS IN TIERED- 

IMAGENET 

Backbone Parameter 1-shot (%) 5-shot (%) 
ResNet12 1,249,200 75.58±0.27 88.21±0.36 
ResNet18 23,728,320 75.73±0.16 88.37±0.25 
ResNet34s 33,412,800 75.86±0.42 88.41±0.51 

 

3）Various unbalanced optimization transmission 
algorithms and transmission matrix visualization 

Fig. 6 compares four Unbalanced Optimal-Transport 
(UOT) strategies—Partial-OT [16], L2-UOT [21], KL-
UOT [16], and Entropic-KL-UOT [3]—applied to the 
same support–query feature maps under Euclidean and 
cosine costs. Although all methods share the identical cost 
matrix, they differ in the way they regularize the row and 
column sums, and this choice dictates how much mass can 
be discarded or smoothed during transport. Partial-OT 
imposes a hard upper bound on the transported mass (m = 
0.7), yielding an extremely sparse plan that effectively 
ignores background clutter but occasionally drops useful 

query mass, which explains the lower recall observed in 
Table II. Replacing the hard cap with an L2 penalty 
produces denser couplings that retain more query 
information; however, the quadratic term penalizes large 
local deviations too strongly, so mismatched regions are 
still partially over-aligned. KL-UOT switches to a 
logarithmic divergence, encouraging relative mass 
preservation; visually its transport matrix becomes more 
structured, and class accuracy improves correspondingly. 
Our USD adds an entropic term on top of the KL-
divergence, combining smooth assignment with the 
freedom to discard mismatched mass. As shown in 
Fig. 6(a), using Euclidean distance, the Entropic KL-UOT 
method produces clearer, semantically aligned transport 
paths and a well-structured transport matrix. Fig. 6(b) 
demonstrates similar results with cosine distance, where 
Entropic KL-UOT still maintains coherent matching and 
compact transport patterns. These results highlight the 
robustness and effectiveness of our USD approach under 
different distance settings. 

TABLE II. THIS TABLE COMPARES THE PERFORMANCE OF DIFFERENT 

REGULARIZED UOT METHODS USING COSINE AND EUCLIDEAN 

DISTANCES AS COST FUNCTIONS 

Different UOT 
methods 

Cost(cosine) 
(%) 

Cost (Euclidean) 
(%) 

Partial UOT 73.56±0.52 67.24±0.34 
L2-UOT 73.27±0.17 67.38±0.53 
KL-UOT 73.15±0.35 67.28±0.17 

Entropic KL-UOT 75.58±0.38 67.49±0.26 

 

 
Fig. 6. Visualization of transport plans using different UOT methods under Euclidean (a) and cosine (b) distance costs. Each method yields distinct 

feature alignments and transport matrix patterns, reflecting their sensitivity to cost definitions. 

4) Feature visualization and semantic consistency 
analysis 

Fig. 7 contrasts the t-SNE embeddings produced by the 
SD baseline (a) with those obtained using our USD (b). In 
the SD plot, points from the five test classes intermingle 
and several outliers spread across the space—a direct 
consequence of the mass-conservation constraint, which 
forces every query feature to be matched to some support 
mass even when they are semantically unrelated. By 
contrast, USD introduces a KL-based mass-penalty that 

allows unmatched or noisy features to be partially 
discarded. This relaxation yields two visible effects: 
tighter intra-class clusters—the variance within each color 
patch is markedly reduced—and larger inter-class 
margins—clusters are more clearly separated with fewer 
overlapping samples. The visual evidence confirms the 
theoretical advantage of USD: by optimizing a flexible 
transport plan, it mitigates over-alignment and suppresses 
background artefacts, thereby providing semantically 
coherent feature alignment that underpins the quantitative 
gains. 
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D. Comparison with State-of-the-Art Methods 

Tables III and IV present the performance comparison 
of various few-shot learning methods across multiple 
datasets. Some of the data presented in these tables have 
been sourced from relevant studies such as [2, 14]. In 
Table III, USD achieved the best performance on Mini-
ImageNet and Tiered-ImageNet, with 1-shot accuracy 
reaching 68.14% and 75.58%, and 5-shot accuracy 
reaching 85.57% and 88.21%, respectively. Table IV 
demonstrates the robustness of our methods on the 
CIFAR100 and CUB datasets. USD leads with a 1-shot 
accuracy of 47.56% on CIFAR100 and 76.68% on CUB, 

and a 5-shot accuracy of 64.62% on CIFAR100 and 
88.89% on CUB. 

 
Fig. 7. Feature visualization and semantic consistency analysis.

TABLE III. RESULTS ON MINI-IMAGENET AND TIERED-IMAGENET DATASETS 

Method Backbone 
Mini-ImageNet 

1-shot (%) 
Mini-ImageNet 

5-shot (%) 
Tiered-ImageNet 

1-shot (%) 
Tiered-ImageNet 

5-shot (%) 
CTM [8] ResNet18 64.12±0.82 80.51±0.13 68.41±0.39 84.28±1.73 
S2M2 [9] ResNet18 64.06±0.18 80.58±0.12 - - 

TADAM [10] ResNet12 58.50±0.30 76.70±0.38 - - 
MetaOptNet [6] ResNet12 62.64±0.44 78.63±0.46 65.99±0.72 81.56±0.63 

DN4 [20] ResNet12 64.73±0.44 79.85±0.31 - - 
Baseline++ [22] ResNet12 60.56±0.45 77.40±0.34 65.10±0.92 80.39±0.69 

Good-Embed [23] ResNet12 64.82±0.60 82.14±0.43 71.52±0.69 86.03±0.58 
FEAT [14] ResNet12 66.78±0.20 82.05±0.14 70.80±0.23 84.79±0.16 

Meta-Baseline [7] ResNet12 63.17±0.23 79.26± 0.17 68.62±0.27 83.29±0.18 
MELR [24] ResNet12 67.40±0.43 83.40±0.28 72.14±0.51 87.01±0.35 
FRN [25] ResNet12 66.45±0.19 82.83±0.13 71.16±0.22 86.01±0.15 
IEPT [26] ResNet12 67.05±0.44 82.90±0.30 72.24±0.50 86.73±0.34 
BML [27] ResNet12 67.04±0.63 83.63±0.29 68.99±0.50 85.49±0.34 

ProtoNet [1] ResNet12 62.11±0.44 80.77±0.30 68.31±0.51 83.85±0.36 
ADM [28] ResNet12 65.87±0.43 82.05±0.29 70.78±0.52 85.70±0.43 

Convert [25] ResNet12 64.59±0.45 82.02±0.29 69.75±0.52 84.21±0.26 
DeepEMD [2] ResNet12 65.91±0.82 82.41±0.56 71.16±0.87 86.03±0.58 

BSSD [13] ResNet12 67.28±0.20 83.48±0.14 71.55±0.23 86.13±0.16 
USD (ours) ResNet12 68.14±0.26 85.57±0.16 75.58±0.38 88.21±0.36 

TABLE IV. RESULTS ON CIFAR100 CUB DATASETS 

Method Backbone CIFAR100 1-shot (%) CIFAR100 5-shot (%) CUB 1-shot (%) CUB 5-shot (%) 
cosine classifier [7] ResNet12 38.47±0.70 57.67±0.77 67.30±0.86 84.75±0.60 

TADAM [10] ResNet12 40.10±0.40 56.10±0.40 66.09±0.92 82.50±0.58 
MetaOptNet [6] ResNet12 41.10±0.60 55.35±0.60 65.36±0.28 81.28±0.41 

ProtoNet [1] ResNet12 41.54±0.76 57.08±0.76 64.25±0.34 82.23±0.36 
Match Net [29] ResNet12 43.88±0.75 57.05±0.71 71.87±0.85 85.08±0.57 

MTL [3] ResNet12 45.10±0.38 57.62±0.59 70.87±0.46 84.65±0.32 
Relation Net [30] ResNet34s 44.62±0.18 56.47±0.39 66.20±0.99 82.30±0.58 

DeepEMD [2] ResNet12 46.47±0.78 63.22±0.71 75.65±0.83 88.69±0.50 
BSSD [13] ResNet12 45.36±0.37 63.57±0.29 72.46±0.34 85.28±0.19 
USD (ours) ResNet12 47.56±0.83 64.62±0.52 76.68±0.83 88.89±0.63 

 

E. Cross-domain classification (Mini-ImageNet → 
CUB) 

Table V shows the cross-domain FSL experiments 
conducted under the 5-way 1-shot and 5-way 5-shot 
scenarios, our methods, USD, demonstrated significant 
superiority over existing approaches, particularly when 
training on Mini-ImageNet and testing on the CUB dataset. 
As presented in Table Ⅴ, USD achieved the highest 
accuracy in the 5-shot scenario, reaching 74.61%, which 
surpasses all other compared methods. In the 1-shot 
scenario, USD also performed exceptionally well, leading 
with accuracies of 54.48%. These results highlight the 
effectiveness of our proposed methods in addressing the 

challenges of cross-domain few-shot learning, particularly 
when applied to diverse datasets such as Mini-ImageNet 
and CUB. The superior performance of USD emphasizes 
their capability in capturing and transferring relevant 
features across domains, making them robust solutions for 
few-shot learning tasks in varying contexts. 

Although the results from DeepBDC is competitive, the 
differences in image resolution (84×84×3 in our case 
versus 224×224×3 in theirs) make direct comparison 
difficult [31]. Therefore, we did not include a comparison 
with DeepBDC. Our experiments underscore the 
effectiveness of our approach, particularly in the 
challenging 1-shot setting. 
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TABLE V. THE TABLE PRESENTS A COMPARISON OF CROSS-DOMAIN 

FEW-SHOT LEARNING RESULTS UNDER 1-SHOT AND 5-SHOT 

CONDITIONS, USING MINI-IMAGENET FOR TRAINING AND CUB FOR 

TESTING 

Method Backbone 1-shot (%) 5-shot (%) 
Baseline [22] ResNet-18 45.31±0.59 65.57±0.70 

Baseline++ [22] ResNet-18 46.52±0.73 62.04±0.76 
GNN+FT [32] ResNet-12 48.26±0.56 66.98±0.68 

BML [27] ResNet-12 51.47±0.63 72.42±0.54 
ProtoNet [5] ResNet-12 48.24±0.68 67.19±0.38 

Good-Embed [23] ResNet-12 48.39±0.73 67.43±0.44 
ADM [28] ResNet-12 50.61±0.48 70.55±0.43 

DeepEMD [2] ResNet-12 52.36±0.52 72.36±0.58 
BSSD ResNet-12 52.47±0.38 71.46±0.34 

USD (ours) ResNet-12 54.48+0.47 74.61+0.46 

V. CONCLUSION 

In this paper, we propose a simple yet effective method 
for few-shot image classification. Our approach addresses 
the challenge of mismatched source and target 
distributions by effectively aligning the features between 
the query set and the support set using USD. By reshaping 
the positions of query samples within the feature maps, our 
method enhances the distinguishability and diversity of 
features relative to the support set. We have carefully 
designed the embedding layer to enable end-to-end 
training. Our method was benchmarked against existing 
few-shot learning approaches based on OT theory, 
demonstrating significant improvements in both 
computational efficiency and accuracy. Extensive 
experiments show that our proposed method outperforms 
state-of-the-art approaches, establishing a new standard in 
FSL. Our work highlights the largely overlooked potential 
of USD and encourages its future application in deep 
learning. 

CONFLICT OF INTEREST 

The authors have no conflicts of interest to declare that 
are relevant to the content of this article.  

AUTHOR CONTRIBUTIONS 

Yun Pang was responsible for the conceptualization of 
this study, methodology, software development, and 
writing the original draft. Hayati Abd Rahman was 
responsible for data analysis, reviewing, and editing. All 
authors had approved the final version. 

REFERENCES 
[1] J Snell, K Swersky, and R Zemel, “Prototypical networks for few-

shot learning,” Advances in Neural Information Processing Systems, 
2017. doi：10.48550/arXiv.1703.05175 

[2] C. Zhang, Y. Cai, G. Lin, and C. Shen, “Deepemd: Few-shot image 
classification with differentiable earth mover’s distance and 
structured classifiers,” in Proc. of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 2020, pp. 12200–12210. 

[3] L. Chizat, G. Peyré, B. Schmitzer, and F. X. Vialard, “Scaling 
algorithms for unbalanced optimal transport problems,” 
Mathematics of Computation, vol. 87, no. 314, pp. 2563–2609, 
2018. doi: 10.1090/mcom/3303 

[4] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural 
networks for one-shot image recognition,” ICML Deep Learning 
Workshop, vol. 2, no. 1, pp. 1–30, 2015. 

[5] B. Lake, R. Salakhutdinov, and J. Gross, “One shot learning of 
simple visual concepts,” in Proc. of the Annual Meeting of the 
Cognitive Science Society, vol. 33, no. 33, 2011. 

[6] K. Lee, S. Maji, and A. Ravichandran, “Meta-learning with 
differentiable convex optimization,” in Proc. of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, 2019, 
pp.10657–10665. doi:10.1109/CVPR.2019.0109 1 

[7] Y. Chen, Z. Liu, H. Xu, et al., “Meta-baseline: Exploring simple 
meta-learning for few-shot learning,” in Proc. of the IEEE/CVF 
International Conference on Computer Vision, 2021. pp. 9062–
9071. doi:10.1109/ICCV48922.2021.00893 

[8] H. Li, D. Eigen, S. Dodge, et al., “Finding task-relevant features for 
few-shot learning by category traversal,” in Proc. of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, 2019. 
https://doi.org/10.48550/arXiv.1905.11116 

[9] P. Mangla, N. Kumari, A. Sinha, et al., “Charting the right manifold: 
Manifold mix up for few-shot learning,” in Proc. of the IEEE/CVF 
Winter Conference on Applications of Computer Vision, 2020, pp. 
2218–2227. 

[10] B. Oreshkin, P. Rodríguez López, A. Lacoste, “Tadam: Task 
dependent adaptive metric for improved few-shot learning,” 
Advances in Neural Information Processing Systems, p. 31, 2018. 
doi：10.48550/arXiv.1805.10123 

[11] J. Liu, L. Song, and Y. Qin, “Prototype rectification for few-shot 
learning,” in Proc. Computer Vision–ECCV 2020, 2020, pp. 741–
756. 

[12] Y. Hu, V. Gripon, and S. Pateux, “Leveraging the feature 
distribution in transfer-based few-shot learning,” in Proc. 
International Conference on Artificial Neural Networks. Cham: 
Springer International Publishing, 2021, pp. 487–499. 

[13] Y. Liu, L. Zhu, X. Wang, et al., “Bilaterally normalized scale-
consistent Sinkhorn distance for few-shot image classification,” 
IEEE Transactions on Neural Networks and Learning Systems, vol. 
35, no. 8, pp. 11475–11485, 2023. 

[14] J. Xie, F. Long, J. Lv, et al., “Joint distribution matters: Deep 
brownian distance covariance for few-shot classification,” in Proc. 
of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, 2022, pp. 7972–7981. doi: 
10.48550/arXiv.2204.04567 

[15] B. Schmitzer, “Stabilized sparse scaling algorithms for entropy 
regularized transport problems,” SIAM Journal on Scientific 
Computing, vol. 41, no. 3, pp. A1443–A1481, 2019. doi: 
10.1137/16M1106018 

[16] L. Chapel, M. Z. Alaya, and G. Gasso, “Partial optimal transport 
with applications on positive-unlabeled learning,” Advances in 
Neural Information Processing Systems 33, pp. 2903–2913, 2020. 

[17] O. Veilleux, M. Boudiaf, P. Piantanida, et al. “Realistic evaluation 
of transductive few-shot learning,” Advances in Neural Information 
Processing Systems, vol. 34, pp. 9290–9302, 2021. 

[18] I. Iqbal, M. Younus, K. Walayat, et al., “Automated multi-class 
classification of skin lesions through deep convolutional neural 
network with dermoscopic images,” Computerized Medical 
Imaging and Graphics, vol. 88, 101843, 2021. 

[19] I. Iqbal et al., “Deep learning‐based automated detection of human 
knee joint’s synovial fluid from magnetic resonance images with 
transfer learning,” IET Image Processing, vol. 14, no. 10, pp. 1990–
1998, 2020. 

[20] K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for 
image recognition,” in Proc. 2016 IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), 2016, pp. 770–778. 

[21] J. A. Black, A. Paez, and P. A. Suthanaya, “Sustainable urban 
transportation: Performance indicators and some analytical 
approaches,” Journal of Urban Planning and Development, vol. 
128, no. 4, pp. 184–209, 2002. 

[22] M. Hou and I. Sato. “A closer look at prototype classifier for few-
shot image classification,” Advances in Neural Information 
Processing Systems, vol. 35, pp. 25767–25778, 2022. 

[23] Y. Tian et al., “Rethinking few-shot image classification: A good 
embedding is all you need?” in Proc. Computer Vision–ECCV 2020, 
2020, pp. 266–282. 

[24] N. Fei et al. “MELR: Meta-learning via modeling episode-level 
relationships for few-shot learning,” in Proc. International 
Conference on Learning Representations, 2021. 

[25] D. Wertheimer, L. Tang, and B. Hariharan, “Few-shot classification 
with feature map reconstruction networks,” in Proc. of the 

Journal of Image and Graphics, Vol. 13, No. 5, 2025

577



 

IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, 2021. 

[26] M. Zhang et al., “IEPT: Instance-level and episode-level pretext 
tasks for few-shot learning,” in Proc. International Conference on 
Learning Representations, 2021. 

[27] Z. Zhou et al., “Binocular mutual learning for improving few-shot 
classification,” in Proc. of the IEEE/CVF International Conference 
on Computer Vision, 2021, pp. 8382–8391.  

[28] W. Li, L. Wang, J. Huo, et al., “Asymmetric distribution measure 
for few-shot learning,” in Proc. of the Twenty-Ninth International 
Joint Conference on Artificial Intelligence, vol. 407, 2020, pp. 
2957–2963. 

[29] L. Chapel, R. Flamary, H. Wu, et al., “Unbalanced optimal transport 
through non-negative penalized linear regression,” Advances in 
Neural Information Processing Systems, vol. 34, pp. 23270–23282, 
2021. 

[30] M. Cuturi, “Sinkhorn distances: lightspeed computation of optimal 
transport,” Advances in Neural Information Processing Systems, 
vol. 2, pp. 2292–2300, 2013. 

[31] Y. Liu, L. Zhu, X. Wang, et al. “Bilaterally-normalized scale-
consistent Sinkhorn distance for few-shot image classification,” 
IEEE Transactions on Neural Networks and Learning Systems, vol. 
35, no. 8, pp. 11475–11485, 2024. 

[32] H. Y. Tseng, H. Y. Lee, J. B. Huang, et al., “Cross-domain few-shot 
classification via learned feature-wise transformation,” arXiv 
preprint, arXiv:2001.08735, 2020. 

 
Copyright © 2025 by the authors. This is an open access article 
distributed under the Creative Commons Attribution License (CC-BY-
4.0), which permits use, distribution and reproduction in any medium, 
provided that the article is properly cited, the use is non-commercial and 
no modifications or adaptations are made

 

Journal of Image and Graphics, Vol. 13, No. 5, 2025

578




