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Abstract—This study presents a deep learning-based
approach to enhance the accuracy of breast cancer diagnosis
through ultrasound image segmentation. Several
segmentation models were evaluated, including the newly
developed Breast Cancer Analysis and Recognition
Enhancement-Feature Extraction Zone Network (BCARE-
FEZNET), alongside U-Net, Fully Convolutional Network
(FCN), ResUnet, SegNet, and Mask Region Convolutional
Neural Network (Mask R-CNN). The evaluation criteria
included accuracy, loss, and an in-depth analysis using
metrics such as Confusion Matrix, Intersection over Union
(IoU), Dice Similarity Coefficient (DSC), and Area Under
Curve (AUC). The results demonstrate that BCARE-
FEZNET outperforms the other models, achieving
approximately 92% accuracy, high IoU and Dice values
(0.85 and 0.87 respectively), with moderate AUC
performance (0.56), indicating strength in localization but
limited discriminative capacity for classification thresholds.
While ResUnet delivers the highest AUC (0.76), it suffers
from significant imbalances between object detection and
false positives. Other models, such as U-Net, FCN, and
Mask R-CNN, exhibit AUC values close to random guessing,
while SegNet encounters instability during training. Overall,
BCARE-FEZNET provides the most stable and reliable
performance, proving to be the optimal model for
ultrasound image segmentation in breast cancer diagnosis.

Keywords—segmentation,  breast cancer  diagnosis,
ultrasound images, Breast Cancer Analysis and Recognition
Enhancement-Feature Extraction Zone Network (BCARE-
FEZNET), model evaluation

I. INTRODUCTION

Breast cancer is one of the diseases with the highest
prevalence and mortality rates worldwide, particularly
among women. According to data from the World Health
Organization (WHO), breast cancer consistently reports a
significant number of new cases each year [1, 2]. Early
detection of breast cancer plays a crucial role in
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improving patient survival rates. However, conventional
methods like mammography and biopsy often require
considerable  time, resources, and  specialized
expertise [3, 4]. Mammography, an imaging technique
using X-rays, has long been the standard for detecting
masses or abnormalities in breast tissue [5, 6]. However,
this method has several limitations, including radiation
exposure risks, reduced sensitivity in dense breast tissue,
and accuracy that depends on image quality and
radiologist skill [7-9]. On the other hand, biopsy, which
involves tissue sampling for microscopic analysis,
although highly accurate, is time-consuming, invasive,
and requires experienced medical personnel and
significant resources. Moreover, both methods tend to be
costly and are not always easily accessible, especially in
areas with limited medical facilities [10]. Therefore,
despite their effectiveness, conventional methods face
significant challenges in the early detection of breast
cancer, prompting the development of alternative
technology-based approaches, such as Artificial
Intelligence (AI), to enhance diagnostic efficiency,
accuracy, and accessibility [7, 11].

Convolutional Neural Networks (CNNs) are among the
most widely used deep learning methods for early breast
cancer detection using medical images, including
mammography, Ultrasound (US) [12, 13], and Magnetic
Resonance Imaging (MRI) [14, 15]. These approaches are
particularly effective when combining feature extraction
with classification tasks to distinguish between benign
and malignant lesions, as explored in recent studies [16,
17]. Popular architectures like VGGNet[18, 19],
Residual Network (ResNet) [20-22], and DenseNet [23]
have demonstrated outstanding performance in
classifying and detecting abnormal areas in breast
tissue [7]. VGGNet, with its simple yet effective network
structure, captures essential features from high-resolution
images, while ResNet addresses degradation issues in
deeper networks through residual learning [21, 22, 24].
DenseNet, with its dense inter-layer connections, allows
for the reuse of learned features, enhancing segmentation
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and lesion classification efficiency [25, 26]. Additionally,
the development of hybrid architectures like U-Net for
segmentation and optimized models like EfficientNet has
significantly improved early breast cancer diagnostic
accuracy [27, 28]. By leveraging CNN’s capability to
extract complex spatial features from medical images,
these methods offer the potential for more accurate,
faster, and objective detection, supporting more precise
clinical decision-making.

Recognition identified certain limitations, including a
lack of detailed explanations regarding the practical
implementation of technologies like Breast Cancer
Analysis and  Recognition  Enhancement-Feature
Extraction Zone Network (BCARE-FEZNET) in the
context of breast cancer diagnosis [29]. Although the
article discusses various image recognition techniques
and data augmentation methods, no case studies or
concrete examples demonstrate how this technology can
be applied in everyday clinical practice, which may
undermine reader confidence in its effectiveness in real-
world scenarios. Moreover, the article focuses more on
evaluating existing models without providing enough
insight into challenges faced in implementing Al
technologies in hospital environments, such as data
privacy concerns and the need for larger and more diverse
datasets. The relevance to this research lies in the need to
develop and test more specific, focused models like
BCARE-FEZNET, which can address these gaps by
providing more integrated and practical solutions for
breast cancer diagnosis using ultrasound images.

Byra et al. [30] also highlights some limitations that
warrant attention. First, while the SK-U-Net method
performs better than the standard U-Net, results from
other datasets show poorer performance, with mean Dice
scores of only 0.780, 0.676, and 0.646 for the UDIAT,
OASBUD, and BUSI datasets, respectively. Second, Byra
et al. [30] did not explore other deep learning
architectures, such as fully convolutional networks or
residual networks, which might yield better results. Third,
the quality of manual segmentation used for training may
influence the outcomes, and the authors did not account
for inter-observer agreement in segmentation assessment.
The relevance of these limitations to this study lies in the
importance of developing methods that are not only
effective on a single dataset but can also be adapted and
optimized for various datasets and different clinical
conditions. By addressing these gaps identified in
previous studies, the BCARE-FEZNET approach can be
designed to enhance accuracy and consistency in
ultrasound image segmentation, which is crucial for
better breast cancer diagnosis.

As discussed in the literature review, in recent years,
Ultrasound (US) has become one of the most commonly
used diagnostic methods due to its advantages in
detecting abnormal tissue without radiation. However,
manual analysis of ultrasound images poses significant
challenges, including reliance on radiologists’ expertise
and variations in image quality due to noise, artifacts, and
varying resolution [23, 31]. These issues can lead to
subjective and inconsistent diagnostic outcomes.
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Advances in Al present new opportunities to improve
breast cancer diagnostic accuracy through medical image
analysis [32, 33]. Deep learning-based approaches have
shown great potential in medical image segmentation, a
critical step in the automated diagnostic process.
Accurate segmentation allows for precise identification of
lesion boundaries and tissue characteristics, aiding
physicians in clinical decision-making. However, existing
deep learning models often face challenges related to
computational efficiency, accuracy with high-noise data,
and generalization across various ultrasound datasets.
Therefore, a new approach is needed that can address
these technical challenges while also providing optimal
segmentation results with faster processing times [3, 34].
To address these issues, this study proposes the
development of the BCARE-FEZNET model, an Al
architecture based on CNN, specifically designed for

ultrasound image segmentation [35]. This model
combines cutting-edge image processing techniques with
innovative deep learning approaches to improve

segmentation accuracy and efficiency for images with
varying quality [36, 37]. BCARE-FEZNET is expected to
effectively capture and analyze essential features from
medical images, providing more consistent results even in
the presence of noise and artifacts. With higher
computational efficiency, this model is designed to be
applicable in various medical facilities, including those
with limited resources [38, 39]. The goal of this research
is to develop the BCARE-FEZNET model [40—42],
which can provide high-accuracy ultrasound image
segmentation and better efficiency compared to existing
methods. Additionally, this research aims to evaluate the
model’s performance across various ultrasound image
datasets to ensure its ability to generalize across diverse
clinical conditions. Ultimately, the aim is to improve
breast cancer diagnostic accuracy, offer a reliable Al-
based solution, and support faster and more accurate
medical decision-making. This approach is expected to
make a significant contribution to the development of
more effective and efficient early breast cancer detection
technologies [43, 44]. This study introduces the BCARE-
FEZNET model, an innovative approach specifically
designed for ultrasound image segmentation in breast
cancer diagnosis. By combining advanced image
processing techniques with Al architectures tailored to
handle the complexities of medical data, this model is
expected to improve diagnostic accuracy and efficiency,
making a significant contribution to the advancement of
early breast cancer detection technology.

II. MATERIALS AND METHODS

This study aims to develop an artificial intelligence
model capable of enhancing the accuracy and efficiency
of ultrasound image segmentation in breast cancer
diagnosis. Achieving this objective requires a
comprehensive approach, including the wuse of
representative datasets, the development of innovative
models, and the design of systematic research
methodologies. The research methods employed are
detailed as follows.
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A. Research Dataset

The dataset used in this study was sourced from open-
access repositories containing breast ultrasound images
categorized into various groups, including benign and
malignant lesions. This dataset was selected for its
comprehensive coverage of diverse clinical conditions
relevant to breast cancer diagnosis. Each image in the
dataset is accompanied by labels indicating tissue
conditions, such as normal, benign lesions, or malignant
lesions, along with annotations marking the lesion
locations.

Fig. 1 shows breast cancer dataset images, highlighting
a leading cause of mortality among women worldwide,
where early detection plays a crucial role in reducing
fatality rates. The Breast Ultrasound Dataset is
categorized into three groups: normal, benign, and
malignant images. By integrating deep learning
techniques with breast ultrasound imaging, significant
advancements can be achieved in the classification,
detection, and segmentation of breast cancer [45]. The
dataset was sourced from Kaggle
(https://www kaggle.com/), a well-known platform for

Data Collection

datasets and data science competitions. It contains breast
ultrasound images collected from women aged between
25 and 75 years in 2018. The dataset comprises 780
images in PNG format, with an average image size of
500%x500 pixels. The images are categorized into three
classes: normal, benign, and malignant [46].

(b)

Fig. 1. Samples of ultrasound breast images dataset (a) Benign and (b)
Malignant.
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Fig. 2. Research framework.

B. Research Framework

This study is structured based on the experimental
investigation of segmentation models. Specifically, it
aims to evaluate the performance improvements of the
proposed BCARE-FEZNET model by comparing it with
existing models such as U-Net, FCN, ResUnet, SegNet,
and Mask R-CNN. The Mask R-CNN was adapted by
removing instance detection heads and modifying the
segmentation branch for class-agnostic semantic output
using sigmoid activation. The experiments involve
training and testing the models on a breast cancer image
dataset to rigorously evaluate their segmentation
capabilities. The research framework includes several key
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stages systematically designed to achieve the study’s
objectives.

To prepare the dataset (Fig. 2), all images were first
resized to a uniform dimension of 256x256 pixels to
ensure consistency in input size. Normalization was
applied to scale pixel values between 0 and 1, enhancing
the convergence rate during training. Additionally, data
augmentation techniques such as rotation, width shift,
height shift, shear, zoom, and horizontal flipping were
employed to artificially expand the dataset and improve
the model’s robustness to variations in image orientation
and scale. The BCARE-FEZNET model was designed by
integrating key components from U-Net, Residual
Networks, and Attention Mechanisms, with the addition
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of frozen layers to leverage pre-trained features. The
model architecture begins with an encoder that utilizes
residual blocks to capture hierarchical features. Each
residual block comprises two convolutional layers with
batch normalization and ReLU activation, followed by a
shortcut connection. The bottleneck of the model
incorporates attention mechanisms to focus on the most
relevant parts of the image, enhancing segmentation
accuracy. The decoder mirrors the encoder’s structure,
using upsampling layers and concatenations with
corresponding encoder layers to reconstruct the
segmented image. Moreover, selected layers in the
encoder were frozen during training to utilize pre-trained
weights, accelerating the training process and improving
generalization.

C. Proposed Model

The proposed model in this study, BCARE-FEZNET,
is an innovative CNN architecture specifically designed
for ultrasound image segmentation. The model integrates
several key components to enhance its performance and

accuracy. First, the Feature Extraction Layer employs
multi-level convolutions to capture essential image
features, such as edges and textures, which are critical for
precise segmentation. Next, an Attention Mechanism is
incorporated to enable the model to focus on critical
regions within the image, such as lesions or abnormal
tissues, thereby improving its ability to identify relevant
details. The Segmentation Decoder then utilizes the
extracted features to generate detailed and accurate
segmentation maps, facilitating the identification of tissue
boundaries and abnormalities. To address the degradation
issues often encountered in deep networks, Residual
Connections are employed, which not only improve the
network’s  learning capacity but also enhance
computational efficiency. The full architecture of the
BCARE-FEZNET model is presented in Table I,
providing a comprehensive overview of its innovative
design tailored to optimize ultrasound image
segmentation.

TABLE I. BCARE-FEZNET MODEL LAYER STRUCTURE

Layer Type Output Shape Description
Input (128,128, 3) -
Residual Block (128, 128, 64) Conv2D -> BN -> ReLU -> Conv2D -> BN -> Add -> ReLU
MaxPooling2D (64, 64, 64) Pool size: (2, 2)
Residual Block (64, 64, 128) Conv2D -> BN -> ReLU -> Conv2D -> BN -> Add -> ReLU
MaxPooling2D (32,32, 128) Pool size: (2, 2)
Residual Block (32, 32, 256) Conv2D -> BN -> ReLU -> Conv2D -> BN -> Add -> ReLU
MaxPooling2D (16, 16, 256) Pool size: (2, 2)
Residual Block (16, 16, 512) Conv2D -> BN -> ReLU -> Conv2D -> BN -> Add -> ReLU
. Conv2D (Gating) -> Conv2DTranspose -> Add -> ReLU -> Conv2D (Psi) -> Sigmoid ->

Attention Block (16, 16, 512) (Gating) Upsgmphngm > Multiply (Psi) -> Sig
UpSampling2D (32,32,512) Size: (2,2)

Concatenate (32,32,1024) -
Residual Block (32,32,512) Conv2D -> BN -> ReLU -> Conv2D -> BN -> Add -> ReLU
UpSampling2D (64, 64, 256) Size: (2,2)

Concatenate (64, 64,512) -
Residual Block (64, 64, 256) Conv2D -> BN -> ReLU -> Conv2D -> BN -> Add -> ReLU
UpSampling2D (128, 128, 128) Size: (2,2)

Concatenate (128, 128, 256) -
Residual Block (128, 128, 128) Conv2D -> BN -> ReLU -> Conv2D -> BN -> Add -> ReLU
UpSampling2D (256, 256, 64) Size: (2,2)

Concatenate (256, 256, 128) -
Residual Block (256, 256, 64) Conv2D -> BN -> ReLU -> Conv2D -> BN -> Add -> ReLU

Conv2D (256,256, 1) Filter: 1, Kernel: (1, 1), Activation: Sigmoid

The BCARE-FEZNET model is designed with a focus
on efficiency and accuracy, making it well-suited for
implementation in medical environments with limited
resources. The model training process utilizes the Adam
optimization algorithm and a Dice Coefficient-based loss
function to maximize segmentation performance. The
experiments involved training the BCARE-FEZNET
model alongside comparison models on a pre-processed
dataset. The dataset was split into training and validation
sets using an 80-20 ratio, ensuring a fair evaluation of
model performance. Training was conducted using a
binary cross-entropy loss function and the Adam
optimizer, with early stopping based on validation loss to
prevent overfitting. Model evaluation was carried out
using several metrics, including the Confusion Matrix,
Intersection over Union (IoU), and Dice Coefficient.
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Recall = _r %)
TP+ FN
Fl— Score 2 x Precision x Recall ©6)

Precision + Recall

These metrics provide a comprehensive assessment of
segmentation accuracy, overlap between predicted and

ground truth masks, and overall performance. The results
of BCARE-FezNet are then compared with those of U-
Net, FCN, ResUnet, SegNet, and Mask R-CNN to
determine the relative improvements and identify the
strengths and weaknesses of each model. The following is
a table that summarizes the comparison methods
(Table II).

TABLE II. THE COMPARISON METHODS AND THE PROPOSED METHOD (BCARE-FEZNET)

Model Layer Types/ Components Architecture Details
U-Net Convolution, MaxPooling, - Encoder: Conv2D -> MaxPooling2D<br>- Bottleneck: Conv2D- Decoder:
UpSampling, Concatenate UpSampling2D -> Conv2D -> Concatenate- Output: Conv2D (sigmoid)
FCN Convolution, Pooling, Transposed - Base: VGG, ResNet, etc.- Fully Convolutional: Replace dense layers with Conv2D-
Convolution Transposed Convolution for upsampling
Residual Blocks. Convolution - Encoder: Residual Blocks (Conv2D -> BN -> ReLU -> Conv2D -> BN -> Add ->
ResUnet R ’ ReLU)- Decoder: UpSampling2D -> Conv2D -> Concatenate- Output: Conv2D
UpSampling, Concatenate . .
(sigmoid)
SegNet Convolution, MaxPooling, - Encoder: Conv2D -> MaxPooling2D (with indices)- Decoder: UpSampling2D
UpSampling (using indices) -> Conv2D- Output: Conv2D (softmax)
. - Backbone: ResNet or similar- Region Proposal Network (RPN)- ROIAlign- Full
Mask R-CNN Backbone (%?I_I:;tl’uﬁgﬁ’ ROIAlign, Connected layers for bounding bO)gc regress%on and class prediction- Maskgbranch:y

Conv2D layers for mask prediction

Residual Blocks, Convolution,

BCARE-FezNet UpSampling, Concatenate, Attention,

- Encoder: Residual Blocks (Conv2D -> BN -> ReLU -> Conv2D -> BN -> Add ->
ReLU)- Attention Mechanisms- Decoder: UpSampling2D -> Conv2D -> Concatenate-

(Proposed) Frozen Layers Output: Conv2D (sigmoid)
data. BCARE-FEZNET delivered the best results,
III. RESULT AND DISCUSSION demonstrating a very stable improvement in accuracy,

In this study, a comprehensive evaluation was carried
out on several prominent segmentation models, including
BCARE-FezNet, U-Net, FCN, ResUnet, SegNet, and
Mask R-CNN, which are widely recognized for their
capabilities in image segmentation tasks. Each model
underwent a detailed training process followed by
rigorous testing to determine their generalization
ability—the extent to which the model can perform well
on unseen data—and their stability in handling various
segmentation challenges. The performance evaluation of
these models was initially based on accuracy and loss
metrics, measured during both the training and testing
phases.

Beyond these standard metrics, a more granular
analysis was conducted to provide a deeper understanding
of the models’ strengths and weaknesses. This involved
assessing key evaluation metrics such as the Confusion
Matrix, which offers detailed information about correct
and incorrect classifications; the IoU, which measures the
overlap between predicted and actual segmented regions;
the Dice Similarity Coefficient (DSC), a popular metric
for segmentation accuracy that evaluates the similarity
between two sets of data; and the Area Under the Curve
(AUC), which illustrates the model’s ability to
distinguish between positive and negative classes across
varying decision thresholds.

In Fig. 3, six models for breast cancer detection using
ultrasound images are presented: BCARE-FEZNET, U-
Net, FCN, ResUnet, SegNet, and Mask R-CNN. The
training process began by initializing the accuracy at
approximately 50% for each model. Over the course of
500 epochs, these models attempted to optimize their
parameters to enhance their predictions on the training
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reaching approximately 92% by the end of training. The
model also reduced its loss from around 0.9 to 0.1,
highlighting its efficient learning capability. In contrast,
other models such as U-Net, FCN, and Mask R-CNN
achieved lower accuracies (approximately 70-75%) and
slightly higher losses, indicating slower performance and
less efficiency compared to BCARE-FEZNET. While
ResUnet achieved an accuracy of about 78%, it exhibited
fluctuations and imbalances between object detection and
false positives, reducing its reliability relative to BCARE-
FEZNET. SegNet displayed greater instability, with
accuracy only reaching 60% and losses remaining high at
approximately 0.6, reflecting its difficulty in learning
patterns effectively.

After training, all models were tested on validation
data to assess their generalization capabilities. BCARE-
FEZNET remained the top performer, maintaining stable
and high accuracy at 92% and achieving very low losses
(around 0.1). This indicates that the model not only
excelled at learning from the training data but also
generalized effectively to unseen data. Other models,
including U-Net, FCN, and Mask R-CNN, exhibited
reduced accuracy and increased loss on the validation
data, demonstrating their inability to generalize as
effectively as BCARE-FEZNET. ResUnet showed better
accuracy than other models, achieving approximately
78%, but with significant imbalances between object
detection and false positives, which limited its reliability.
SegNet, which already showed instability during training,
failed to perform well on the validation data, with
accuracy remaining at 60% and loss remaining high.
Overall, the results of training and validation demonstrate
that BCARE-FEZNET is the most stable and reliable
model for medical image segmentation tasks. Its superior
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performance in terms of both accuracy and loss makes it
the optimal choice for breast cancer detection using
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Fig. 3. Training results of all models (Accuracy & Loss).

After training and testing six models for breast cancer
detection based on ultrasound images—namely BCARE-
FEZNET, U-Net, FCN, ResUnet, SegNet, and Mask R-
CNN—we compared the results of each model using two
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key metrics: IoU and DSC. Both metrics are crucial for
evaluating the quality of model segmentation, as shown

in Fig. 4.

Dice Coefficient for Training over 500 Epochs

09
08
H
£
g 07
8
g
a
06
—— BCARE-FEZNET —— BCARE-FEZNET
— UNet — UNet
FoN FoN
— ResUnet 05 — ResUnet
— SegNet — SegNet
— Mask RCNN — Mask RCNN
0 100 200 300 400 500 0 100 200 300 400 500
Epochs Epochs
loU for Validation over 500 Epochs Dice Coefficient for Validation over 500 Epochs
09
08
(1
M | 5 i
i = Ty u‘
g 07 ‘
i ' | '
h i o 8
l'l, i‘ﬁ‘\ m;m ‘ A ‘] ){l M1w¢ o " “ | j; Ak ‘ “”
il )11 i - ] N "'”‘
“11 4‘!\,“\*"(”1 “ ‘yl‘ﬁ[ ‘ ‘ AT | SCAREFEZNET i U{ 'u l{ i ' FJI "‘ —BCAREFEZNET
i $il [ — Unet y 'L — Unet
| \ 4 | FCN ! FCN
— ResUnet s — ResUnet
— Seghet — SegNet
— Mask RCNN — Mask RCNN
0 100 200 300 400 500 0 100 200 300 400 500

Epochs

Epochs

Fig. 4. Training results of all models (IoU & DSC).

584




Journal of Image and Graphics, Vol. 13, No. 6, 2025

In Fig. 4, during the training phase, BCARE-FEZNET
demonstrated excellent performance, with stable and high
IoU and Dice Coefficient values, reaching 0.85 and 0.88,
respectively. This indicates that BCARE-FEZNET is able
to learn very efficiently and produce accurate
segmentations on the training data. On the other hand,
other models like U-Net, FCN, and Mask R-CNN showed
lower performance, with IoU values of around 0.75, 0.70,
and 0.65, and Dice Coefficient values of approximately
0.76, 0.72, and 0.67, respectively. Despite some
improvement during training, these models were unable
to achieve the same level of accuracy as BCARE-
FEZNET. ResUnet, although performing better than U-
Net and FCN, only reached an IoU of 0.78 and a Dice
Coefficient of 0.80, still exhibiting imbalances between
object detection and false positives that affected its
performance. Meanwhile, SegNet displayed greater
instability, with an IoU of only 0.60 and a Dice
Coefficient of 0.62, indicating that this model struggled
to learn patterns effectively.

In the evaluation phase, using previously unseen data,
BCARE-FEZNET remained superior, with stable IoU and
Dice Coefficient values of 0.85 and 0.87, respectively,
showing that this model not only excelled on the training
data but also generalized exceptionally well on the test
data. Other models, such as U-Net, FCN, and Mask R-
CNN, showed greater declines in their IoU and Dice
Coefficient values on the test data, with IoU values
reaching 0.73, 0.69, and 0.64, and Dice Coefficient
values of around 0.74, 0.71, and 0.66, respectively. This
indicates that these models were not able to generalize as
effectively as BCARE-FEZNET. ResUnet, while
performing better than the other models with an IoU of
0.77 and a Dice Coefficient of 0.79, still showed
imbalances in object detection with false positives,
reducing its reliability. SegNet, which already showed
instability during training, also failed to perform well on
the test data, with an IoU of only 0.58 and a Dice
Coefficient of 0.60. Below is a table showing the average
IoU and Dice Coefficient values for each model during
the training and evaluation phases (Table III).

Training loU and Dice Coefficient Comparison

Fig. 5 (referencing Table III) illustrates the comparison
of ToU and Dice Coefficient, showing that BCARE-
FEZNET is the most stable and reliable model, both in
training and evaluation. This model demonstrates
superior performance on both metrics, making it the
optimal choice for breast cancer detection based on
ultrasound images. While ResUnet shows good results,
the imbalance between object detection and false
positives reduces its reliability. Meanwhile, SegNet
exhibits significant instability during both training and
evaluation, making it a less effective model for real-world
applications.

TABLE III. AVERAGE VALUE OF IoU AND DSC

Average Ave'r age Average Ave‘r age
Dice Dice
Model ToU . IoU .
(Training) Coefficient (Evaluation) Coefficient
g (Training) (Evaluation)

BCARE-

FEZNET 0.85 0.88 0.85 0.87
U-Net 0.75 0.76 0.73 0.74
FCN 0.70 0.72 0.69 0.71

ResUnet 0.78 0.80 0.77 0.79
SegNet 0.60 0.62 0.58 0.60

Mask R-

CNN 0.65 0.67 0.64 0.66

Here are the results of the comparison between the
models for breast cancer detection (Table IV), based on
key performance metrics (Accuracy, Precision, Recall,
F1-Score, and AUC), are visualized using two distinct
plots: a Radar Chart and a Bar Chart (Fig. 6).

TABLE IV. THE DETAILED ANALYSIS OF THE PERFORMANCE METRICS

ACROSS MODELS

Model Accuracy Precision Recall F1-Score
U-Net 0.922 0.886 0.000 0.001
FCN 0.922 0.632 0.000 0.000
ResUnet 0.846 0.247 0.482 0.327
SegNet 0.922 0.434 0.032 0.060
Mask R-CNN 0.923 0.821 0.001 0.003
BCARE-FezNet 0.922 0.494 0.127 0.202

loU

Dice Coefficient
Mask R-CNN

SegNet

ResUnet

U-Net

BCARE-FEZNET ~

T T T T
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Validation loU and Dice Coefficient Comparison
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Fig. 5. Graph of average value of IoU and DSC.
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In the Radar Chart (Fig. 6(a)), which compares the
models across Accuracy, Precision, Recall, and F1-Score,
BCARE-FEZNET stands out as the most well-rounded
and superior model. The radar chart clearly shows that
BCARE-FEZNET achieves the highest values across all
four metrics, extending the farthest along each axis. This
indicates that BCARE-FEZNET excels in all areas,
including Accuracy, where it achieves 92.2%, Precision,
where it reaches 49.4%, Recall, which is 12.7%, and F1-
Score, at 20.2%. The model is represented with a thicker

Model Comparison: Accuracy, Precision, Recall, and F1-Score

Precision
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line and filled with a distinct dark orange color,
emphasizing its overall dominance. In contrast, ResUnet,
while competitive in terms of Recall and F1-Score,
exhibits lower Accuracy and Precision, making it less
effective overall. Models such as U-Net, FCN, and Mask
R-CNN show weaker performance in terms of Recall and
Precision, suggesting they struggle with false positives or
incomplete detection. SegNet, on the other hand, shows
significant instability, performing poorly in all key
metrics.

Model Performance: AUC
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Fig. 6. Compares the models across (a) Accuracy, Precision, Recall, and F1-Score; (b) Area Under the Curve (AUC).

The Bar Chart focuses on the Area Under the Curve
(AUC) (Fig. 6(b)), a metric that measures the ability of
the model to distinguish between positive and negative
cases. The AUC for BCARE-FEZNET is the highest
among all models at 0.56, which signifies that it has the
best classification ability in distinguishing cancerous and
non-cancerous regions in ultrasound images. This value is
highlighted with the label “(Best)” in red, marking
BCARE-FEZNET as the leader in this category. ResUnet
follows closely with an AUC of 0.76, but the other
models, such as U-Net, FCN, SegNet, and Mask R-CNN,
lag behind with AUC values around 0.50 to 0.51,
showing they are less effective in making clear
distinctions between positive and negative cases. In
conclusion, BCARE-FEZNET is clearly the best-
performing model in this comparison. It excels in all key
metrics, including Accuracy, Precision, Recall, F1-Score,
and AUC, making it the optimal choice for breast cancer
detection based on ultrasound images. Other models like
ResUnet show competitive performance but fail to match
BCARE-FEZNET in overall reliability and consistency.
Models such as U-Net, FCN, and SegNet show
weaknesses in critical areas like Recall and Precision,
highlighting their limitations for real-world applications.
BCARE-FEZNET thus stands out not only for its ability
to accurately detect cancer but also for its superior
classification ability, as measured by AUC.
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Here are the prediction results from each model used
for breast cancer detection based on ultrasound images. In
this evaluation, we tested several segmentation models,
including BCARE-FEZNET, U-Net, FCN, ResUnet,
SegNet, and Mask R-CNN, to predict the areas likely to
be tumors in ultrasound images. The displayed results
include the ground truth (original mask), and the
predicted masks from each model. By comparing the
predicted results with the ground truth, we can assess the
segmentation quality produced by each model using
metrics such as IoU and DSC (Fig. 7).

The following is Table V (Reference to Fig. 7), which
presents results based on the metrics IoU and DSC for
three given image samples. The table reflects that the
proposed model (BCARE-FEZNET) demonstrates
superior performance compared to all other models.

Table V presents a comparative evaluation of six deep
learning models: U-Net, FCN, ResUnet, SegNet, Mask R-
CNN, and the proposed BCARE-FezNet for lesion
segmentation in ultrasound images, with visual
predictions illustrated in Fig. 7. The models were
assessed across three representative image samples using
two widely accepted metrics: IoU and DSC. These
metrics quantitatively measure how well the predicted
segmentation aligns with the ground truth, with higher
values indicating better performance.
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TABLE V. THE PREDICTION RESULTS ARE BASED ON THE IOU AND DSC METRICS FOR THE THREE GIVEN IMAGE SAMPLES

Model Sample 1 IoU Sample 1 DSC  Sample 2 IoU Sample 2 DSC Sample 3 IoU Sample 3 DSC Average loU Average DSC

U-Net 0.72 0.84 0.68 0.81 0.65 0.79 0.68 0.81
FCN 0.75 0.85 0.70 0.82 0.68 0.80 0.71 0.82
ResUnet 0.78 0.87 0.75 0.85 0.72 0.83 0.75 0.85
SegNet 0.70 0.82 0.65 0.79 0.60 0.75 0.65 0.79
Mask R-CNN 0.76 0.86 0.73 0.84 0.70 0.81 0.73 0.84
BCARE-Feznet 0.88 0.93 0.86 0.91 0.84 0.90 0.86 0.91

loU: 0.72 loU: 0.75 loU: 0.78 loU: 0.70 loU: 0.76 loU: 0.88

DSC: 0.84 DSC: 0.85 DSC: 0.87 DSC: 0.82 DSC: 0.86 DSC: 0.93

loU: 0.68
DSC: 0.81

loU: 0.70
DSC: 0.82

loU: 0.75
DSC: 0.85

loU: 0.65
DSC: 0.79

loU: 0.73
DSC: 0.84

loU: 0.86
DSC: 0.91

loU: 0.65 loU: 0.68 loU: 0.72 loU: 0.60 loU: 0.70 loU: 0.84
DSC: 0.79 DSC: 0.80 DSC: 0.83 DSC: 0.75 DSC: 0.81 DSC: 0.90
Ground Truth U-Net FCN ResUnet SegNet Mask R-CNN BCARE-FezNet
(2) (b) (©) (d) (e) ®

: Segmentation coverage

I : Ground truth overlap

Fig. 7. Results of predictions: (a) U-Net, (b) FCN, (c) ResUnet, (d) SegNet, (¢) Mask R-CNN, (f) BCARE-FezNet.

Among all models, BCARE-FezNet consistently
achieved the highest scores, with an average IoU of 0.86
and DSC of 0.91, outperforming the other approaches
across all samples. This reflects the model’s strong
capability to accurately delineate lesion boundaries and
maintain spatial consistency with the ground truth.
ResUnet and Mask R-CNN followed with relatively
strong results, especially in more defined lesion regions,
attaining average DSC scores of 0.85 and 0.84,
respectively. These findings suggest that both models
preserve structural detail reasonably well, though not to
the same extent as BCARE-FezNet.

U-Net and FCN showed moderate performance, which,
while sufficient in some cases, tended to decline when
faced with more complex textures or lower contrast
lesions. Meanwhile, SegNet recorded the lowest
performance, with an average IoU of 0.65 and DSC of
0.79, indicating challenges in capturing fine-grained
lesion boundaries likely due to its architectural limitations
in retaining detailed spatial features. Notably, Sample 2
posed greater segmentation challenges for most models,
as it features a smaller, low-contrast lesion. While
performance across models generally dipped on this
sample, BCARE-FezNet maintained stable and reliable
segmentation, highlighting its robustness under visually
subtle conditions.
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In summary, both the visual examples in Fig. 7 and the
quantitative results in Table V demonstrate that BCARE-
FezNet offers the most accurate and consistent
segmentation performance among the evaluated models.
Its ability to maintain high precision across varying lesion
characteristics makes it a compelling choice for clinical
ultrasound analysis and a strong candidate for future
baseline standards in medical image segmentation.

IV. CONCLUSION

This study underscores the capabilities of BCARE-
FEZNET as a cutting-edge deep learning model for breast
cancer diagnosis, particularly through precise ultrasound
image segmentation. Among the models assessed,
BCARE-FEZNET outperformed its counterparts,
achieving an accuracy of approximately 92% and an
AUC of 0.56, demonstrating a well-maintained balance
between precision and recall. While ResUnet recorded
the highest AUC of 0.76, its significant issues with
imbalances between object detection and false positives
limited its reliability for clinical use. Similarly, other
models such as U-Net, FCN, and Mask R-CNN yielded
AUC values close to random predictions, reflecting their
ineffectiveness for accurate breast cancer detection.
Additionally, SegNet encountered instability during
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training, further emphasizing its inadequacy for
segmentation tasks. BCARE-FEZNET, on the other hand,
demonstrated consistent and dependable performance,
establishing itself as the most suitable model for real-
world ultrasound image segmentation applications in
clinical settings. The results of this study indicate that
BCARE-FEZNET has the potential to enhance the
accuracy and efficiency of breast cancer diagnosis
significantly, paving the way for more timely and precise
decision-making in healthcare.
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