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Abstract—This study presents a deep learning-based 

approach to enhance the accuracy of breast cancer diagnosis 

through ultrasound image segmentation. Several 

segmentation models were evaluated, including the newly 

developed Breast Cancer Analysis and Recognition 

Enhancement-Feature Extraction Zone Network (BCARE-

FEZNET), alongside U-Net, Fully Convolutional Network 

(FCN), ResUnet, SegNet, and Mask Region Convolutional 

Neural Network (Mask R-CNN). The evaluation criteria 

included accuracy, loss, and an in-depth analysis using 

metrics such as Confusion Matrix, Intersection over Union 

(IoU), Dice Similarity Coefficient (DSC), and Area Under 

Curve (AUC). The results demonstrate that BCARE-

FEZNET outperforms the other models, achieving 

approximately 92% accuracy, high IoU and Dice values 

(0.85 and 0.87 respectively), with moderate AUC 

performance (0.56), indicating strength in localization but 

limited discriminative capacity for classification thresholds. 

While ResUnet delivers the highest AUC (0.76), it suffers 

from significant imbalances between object detection and 

false positives. Other models, such as U-Net, FCN, and 

Mask R-CNN, exhibit AUC values close to random guessing, 

while SegNet encounters instability during training. Overall, 

BCARE-FEZNET provides the most stable and reliable 

performance, proving to be the optimal model for 

ultrasound image segmentation in breast cancer diagnosis.  

Keywords—segmentation, breast cancer diagnosis, 

ultrasound images, Breast Cancer Analysis and Recognition 

Enhancement-Feature Extraction Zone Network (BCARE-

FEZNET), model evaluation 

I. INTRODUCTION

Breast cancer is one of the diseases with the highest 

prevalence and mortality rates worldwide, particularly 

among women. According to data from the World Health 

Organization (WHO), breast cancer consistently reports a 

significant number of new cases each year [1, 2]. Early 

detection of breast cancer plays a crucial role in 

Manuscript received June 13, 2025; revised July 15, 2025; accepted 

August 6, 2025; published November 25, 2025.  

improving patient survival rates. However, conventional 

methods like mammography and biopsy often require 

considerable time, resources, and specialized 

expertise [3, 4]. Mammography, an imaging technique 

using X-rays, has long been the standard for detecting 

masses or abnormalities in breast tissue [5, 6]. However, 

this method has several limitations, including radiation 

exposure risks, reduced sensitivity in dense breast tissue, 

and accuracy that depends on image quality and 

radiologist skill [7–9]. On the other hand, biopsy, which 

involves tissue sampling for microscopic analysis, 

although highly accurate, is time-consuming, invasive, 

and requires experienced medical personnel and 

significant resources. Moreover, both methods tend to be 

costly and are not always easily accessible, especially in 

areas with limited medical facilities [10]. Therefore, 

despite their effectiveness, conventional methods face 

significant challenges in the early detection of breast 

cancer, prompting the development of alternative 

technology-based approaches, such as Artificial 

Intelligence (AI), to enhance diagnostic efficiency, 

accuracy, and accessibility [7, 11]. 

Convolutional Neural Networks (CNNs) are among the 

most widely used deep learning methods for early breast 

cancer detection using medical images, including 

mammography, Ultrasound (US) [12, 13], and Magnetic 

Resonance Imaging (MRI) [14, 15]. These approaches are 

particularly effective when combining feature extraction 

with classification tasks to distinguish between benign 

and malignant lesions, as explored in recent studies [16, 

17]. Popular architectures like VGGNet [18, 19], 

Residual Network (ResNet) [20–22], and DenseNet [23] 

have demonstrated outstanding performance in 

classifying and detecting abnormal areas in breast 

tissue [7]. VGGNet, with its simple yet effective network 

structure, captures essential features from high-resolution 

images, while ResNet addresses degradation issues in 

deeper networks through residual learning [21, 22, 24]. 

DenseNet, with its dense inter-layer connections, allows 

for the reuse of learned features, enhancing segmentation 

Journal of Image and Graphics, Vol. 13, No. 6, 2025

579doi: 10.18178/joig.13.6.579-589

https://orcid.org/0000-0003-3983-1760
https://orcid.org/0000-0002-7373-9004
https://orcid.org/0000-0001-6629-4353


and lesion classification efficiency [25, 26]. Additionally, 

the development of hybrid architectures like U-Net for 

segmentation and optimized models like EfficientNet has 

significantly improved early breast cancer diagnostic 

accuracy [27, 28]. By leveraging CNN’s capability to 

extract complex spatial features from medical images, 

these methods offer the potential for more accurate, 

faster, and objective detection, supporting more precise 

clinical decision-making. 

Recognition identified certain limitations, including a 

lack of detailed explanations regarding the practical 

implementation of technologies like Breast Cancer 

Analysis and Recognition Enhancement-Feature 

Extraction Zone Network (BCARE-FEZNET) in the 

context of breast cancer diagnosis [29]. Although the 

article discusses various image recognition techniques 

and data augmentation methods, no case studies or 

concrete examples demonstrate how this technology can 

be applied in everyday clinical practice, which may 

undermine reader confidence in its effectiveness in real-

world scenarios. Moreover, the article focuses more on 

evaluating existing models without providing enough 

insight into challenges faced in implementing AI 

technologies in hospital environments, such as data 

privacy concerns and the need for larger and more diverse 

datasets. The relevance to this research lies in the need to 

develop and test more specific, focused models like 

BCARE-FEZNET, which can address these gaps by 

providing more integrated and practical solutions for 

breast cancer diagnosis using ultrasound images. 

Byra et al. [30] also highlights some limitations that 

warrant attention. First, while the SK-U-Net method 

performs better than the standard U-Net, results from 

other datasets show poorer performance, with mean Dice 

scores of only 0.780, 0.676, and 0.646 for the UDIAT, 

OASBUD, and BUSI datasets, respectively. Second, Byra 

et al. [30] did not explore other deep learning 

architectures, such as fully convolutional networks or 

residual networks, which might yield better results. Third, 

the quality of manual segmentation used for training may 

influence the outcomes, and the authors did not account 

for inter-observer agreement in segmentation assessment. 

The relevance of these limitations to this study lies in the 

importance of developing methods that are not only 

effective on a single dataset but can also be adapted and 

optimized for various datasets and different clinical 

conditions. By addressing these gaps identified in 

previous studies, the BCARE-FEZNET approach can be 

designed to enhance accuracy and consistency in 

ultrasound image segmentation, which is crucial for 

better breast cancer diagnosis. 

As discussed in the literature review, in recent years, 

Ultrasound (US) has become one of the most commonly 

used diagnostic methods due to its advantages in 

detecting abnormal tissue without radiation. However, 

manual analysis of ultrasound images poses significant 

challenges, including reliance on radiologists’ expertise 

and variations in image quality due to noise, artifacts, and 

varying resolution [23, 31]. These issues can lead to 

subjective and inconsistent diagnostic outcomes. 

Advances in AI present new opportunities to improve 

breast cancer diagnostic accuracy through medical image 

analysis [32, 33]. Deep learning-based approaches have 

shown great potential in medical image segmentation, a 

critical step in the automated diagnostic process. 

Accurate segmentation allows for precise identification of 

lesion boundaries and tissue characteristics, aiding 

physicians in clinical decision-making. However, existing 

deep learning models often face challenges related to 

computational efficiency, accuracy with high-noise data, 

and generalization across various ultrasound datasets. 

Therefore, a new approach is needed that can address 

these technical challenges while also providing optimal 

segmentation results with faster processing times [3, 34]. 

To address these issues, this study proposes the 

development of the BCARE-FEZNET model, an AI 

architecture based on CNN, specifically designed for 

ultrasound image segmentation [35]. This model 

combines cutting-edge image processing techniques with 

innovative deep learning approaches to improve 

segmentation accuracy and efficiency for images with 

varying quality [36, 37]. BCARE-FEZNET is expected to 

effectively capture and analyze essential features from 

medical images, providing more consistent results even in 

the presence of noise and artifacts. With higher 

computational efficiency, this model is designed to be 

applicable in various medical facilities, including those 

with limited resources [38, 39]. The goal of this research 

is to develop the BCARE-FEZNET model [40–42], 

which can provide high-accuracy ultrasound image 

segmentation and better efficiency compared to existing 

methods. Additionally, this research aims to evaluate the 

model’s performance across various ultrasound image 

datasets to ensure its ability to generalize across diverse 

clinical conditions. Ultimately, the aim is to improve 

breast cancer diagnostic accuracy, offer a reliable AI-

based solution, and support faster and more accurate 

medical decision-making. This approach is expected to 

make a significant contribution to the development of 

more effective and efficient early breast cancer detection 

technologies [43, 44]. This study introduces the BCARE-

FEZNET model, an innovative approach specifically 

designed for ultrasound image segmentation in breast 

cancer diagnosis. By combining advanced image 

processing techniques with AI architectures tailored to 

handle the complexities of medical data, this model is 

expected to improve diagnostic accuracy and efficiency, 

making a significant contribution to the advancement of 

early breast cancer detection technology. 

II. MATERIALS AND METHODS

This study aims to develop an artificial intelligence 

model capable of enhancing the accuracy and efficiency 

of ultrasound image segmentation in breast cancer 

diagnosis. Achieving this objective requires a 

comprehensive approach, including the use of 

representative datasets, the development of innovative 

models, and the design of systematic research 

methodologies. The research methods employed are 

detailed as follows. 

Journal of Image and Graphics, Vol. 13, No. 6, 2025

580



A. Research Dataset 

The dataset used in this study was sourced from open-

access repositories containing breast ultrasound images 

categorized into various groups, including benign and 

malignant lesions. This dataset was selected for its 

comprehensive coverage of diverse clinical conditions 

relevant to breast cancer diagnosis. Each image in the 

dataset is accompanied by labels indicating tissue 

conditions, such as normal, benign lesions, or malignant 

lesions, along with annotations marking the lesion 

locations. 

Fig. 1 shows breast cancer dataset images, highlighting 

a leading cause of mortality among women worldwide, 

where early detection plays a crucial role in reducing 

fatality rates. The Breast Ultrasound Dataset is 

categorized into three groups: normal, benign, and 

malignant images. By integrating deep learning 

techniques with breast ultrasound imaging, significant 

advancements can be achieved in the classification, 

detection, and segmentation of breast cancer [45]. The 

dataset was sourced from Kaggle 

(https://www.kaggle.com/), a well-known platform for 

datasets and data science competitions. It contains breast 

ultrasound images collected from women aged between 

25 and 75 years in 2018. The dataset comprises 780 

images in PNG format, with an average image size of 

500×500 pixels. The images are categorized into three 

classes: normal, benign, and malignant [46]. 

 

  
 

 

 
 

 
 

 

Fig. 1. Samples of ultrasound breast images dataset (a) Benign and (b) 

Malignant. 

 

 

Fig. 2. Research framework. 

B. Research Framework 

This study is structured based on the experimental 

investigation of segmentation models. Specifically, it 

aims to evaluate the performance improvements of the 

proposed BCARE-FEZNET model by comparing it with 

existing models such as U-Net, FCN, ResUnet, SegNet, 

and Mask R-CNN. The Mask R-CNN was adapted by 

removing instance detection heads and modifying the 

segmentation branch for class-agnostic semantic output 

using sigmoid activation. The experiments involve 

training and testing the models on a breast cancer image 

dataset to rigorously evaluate their segmentation 

capabilities. The research framework includes several key 

stages systematically designed to achieve the study’s 

objectives. 

To prepare the dataset (Fig. 2), all images were first 

resized to a uniform dimension of 256×256 pixels to 

ensure consistency in input size. Normalization was 

applied to scale pixel values between 0 and 1, enhancing 

the convergence rate during training. Additionally, data 

augmentation techniques such as rotation, width shift, 

height shift, shear, zoom, and horizontal flipping were 

employed to artificially expand the dataset and improve 

the model’s robustness to variations in image orientation 

and scale. The BCARE-FEZNET model was designed by 

integrating key components from U-Net, Residual 

Networks, and Attention Mechanisms, with the addition 

(a) 

(b) 
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of frozen layers to leverage pre-trained features. The 

model architecture begins with an encoder that utilizes 

residual blocks to capture hierarchical features. Each 

residual block comprises two convolutional layers with 

batch normalization and ReLU activation, followed by a 

shortcut connection. The bottleneck of the model 

incorporates attention mechanisms to focus on the most 

relevant parts of the image, enhancing segmentation 

accuracy. The decoder mirrors the encoder’s structure, 

using upsampling layers and concatenations with 

corresponding encoder layers to reconstruct the 

segmented image. Moreover, selected layers in the 

encoder were frozen during training to utilize pre-trained 

weights, accelerating the training process and improving 

generalization.  

C. Proposed Model 

The proposed model in this study, BCARE-FEZNET, 

is an innovative CNN architecture specifically designed 

for ultrasound image segmentation. The model integrates 

several key components to enhance its performance and 

accuracy. First, the Feature Extraction Layer employs 

multi-level convolutions to capture essential image 

features, such as edges and textures, which are critical for 

precise segmentation. Next, an Attention Mechanism is 

incorporated to enable the model to focus on critical 

regions within the image, such as lesions or abnormal 

tissues, thereby improving its ability to identify relevant 

details. The Segmentation Decoder then utilizes the 

extracted features to generate detailed and accurate 

segmentation maps, facilitating the identification of tissue 

boundaries and abnormalities. To address the degradation 

issues often encountered in deep networks, Residual 

Connections are employed, which not only improve the 

network’s learning capacity but also enhance 

computational efficiency. The full architecture of the 

BCARE-FEZNET model is presented in Table I, 

providing a comprehensive overview of its innovative 

design tailored to optimize ultrasound image 

segmentation. 

TABLE I. BCARE-FEZNET MODEL LAYER STRUCTURE 

Layer Type Output Shape Description 

Input (128, 128, 3) - 

Residual Block (128, 128, 64) Conv2D -> BN -> ReLU -> Conv2D -> BN -> Add -> ReLU 

MaxPooling2D (64, 64, 64) Pool size: (2, 2) 

Residual Block (64, 64, 128) Conv2D -> BN -> ReLU -> Conv2D -> BN -> Add -> ReLU 

MaxPooling2D (32, 32, 128) Pool size: (2, 2) 

Residual Block (32, 32, 256) Conv2D -> BN -> ReLU -> Conv2D -> BN -> Add -> ReLU 

MaxPooling2D (16, 16, 256) Pool size: (2, 2) 

Residual Block (16, 16, 512) Conv2D -> BN -> ReLU -> Conv2D -> BN -> Add -> ReLU 

Attention Block (16, 16, 512) 
Conv2D (Gating) -> Conv2DTranspose -> Add -> ReLU -> Conv2D (Psi) -> Sigmoid -> 

UpSampling2D -> Multiply 

UpSampling2D (32, 32, 512) Size: (2, 2) 

Concatenate (32, 32, 1024) - 

Residual Block (32, 32, 512) Conv2D -> BN -> ReLU -> Conv2D -> BN -> Add -> ReLU 

UpSampling2D (64, 64, 256) Size: (2, 2) 

Concatenate (64, 64, 512) - 

Residual Block (64, 64, 256) Conv2D -> BN -> ReLU -> Conv2D -> BN -> Add -> ReLU 

UpSampling2D (128, 128, 128) Size: (2, 2) 

Concatenate (128, 128, 256) - 

Residual Block (128, 128, 128) Conv2D -> BN -> ReLU -> Conv2D -> BN -> Add -> ReLU 

UpSampling2D (256, 256, 64) Size: (2, 2) 

Concatenate (256, 256, 128) - 

Residual Block (256, 256, 64) Conv2D -> BN -> ReLU -> Conv2D -> BN -> Add -> ReLU 

Conv2D (256, 256, 1) Filter: 1, Kernel: (1, 1), Activation: Sigmoid 

 

The BCARE-FEZNET model is designed with a focus 

on efficiency and accuracy, making it well-suited for 

implementation in medical environments with limited 

resources. The model training process utilizes the Adam 

optimization algorithm and a Dice Coefficient-based loss 

function to maximize segmentation performance. The 

experiments involved training the BCARE-FEZNET 

model alongside comparison models on a pre-processed 

dataset. The dataset was split into training and validation 

sets using an 80–20 ratio, ensuring a fair evaluation of 

model performance. Training was conducted using a 

binary cross-entropy loss function and the Adam 

optimizer, with early stopping based on validation loss to 

prevent overfitting. Model evaluation was carried out 

using several metrics, including the Confusion Matrix, 

Intersection over Union (IoU), and Dice Coefficient. 

          Intersection over Union (IoU)=
A B

A B




           (1) 

              
2

Dice Coefficient (DSC)=
A B

A B

 

+
          (2) 

                 Accuracy
TP TN

TP TN FP FN

+
=

+ + +
                (3) 

                       Precision
TP

TP FP
=

+
                         (4) 
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                             Recall
TP

TP FN
=

+
                        (5) 

                  
2 Precision Recall

1
Precision Recall

F Score
 

− =
+

             (6) 

These metrics provide a comprehensive assessment of 

segmentation accuracy, overlap between predicted and 

ground truth masks, and overall performance. The results 

of BCARE-FezNet are then compared with those of U-

Net, FCN, ResUnet, SegNet, and Mask R-CNN to 

determine the relative improvements and identify the 

strengths and weaknesses of each model. The following is 

a table that summarizes the comparison methods 

(Table II). 

TABLE II. THE COMPARISON METHODS AND THE PROPOSED METHOD (BCARE-FEZNET) 

Model Layer Types/ Components Architecture Details 

U-Net 
Convolution, MaxPooling, 

UpSampling, Concatenate 

- Encoder: Conv2D -> MaxPooling2D<br>- Bottleneck: Conv2D- Decoder: 

UpSampling2D -> Conv2D -> Concatenate- Output: Conv2D (sigmoid) 

FCN 
Convolution, Pooling, Transposed 

Convolution 

- Base: VGG, ResNet, etc.- Fully Convolutional: Replace dense layers with Conv2D- 

Transposed Convolution for upsampling 

ResUnet 
Residual Blocks, Convolution, 

UpSampling, Concatenate 

- Encoder: Residual Blocks (Conv2D -> BN -> ReLU -> Conv2D -> BN -> Add -> 

ReLU)- Decoder: UpSampling2D -> Conv2D -> Concatenate- Output: Conv2D 

(sigmoid) 

SegNet 
Convolution, MaxPooling, 

UpSampling 

- Encoder: Conv2D -> MaxPooling2D (with indices)- Decoder: UpSampling2D 

(using indices) -> Conv2D- Output: Conv2D (softmax) 

Mask R-CNN 
Backbone (ResNet, etc.), ROIAlign, 

Convolution 

- Backbone: ResNet or similar- Region Proposal Network (RPN)- ROIAlign- Fully 

Connected layers for bounding box regression and class prediction- Mask branch: 

Conv2D layers for mask prediction 

BCARE-FezNet 

(Proposed) 

Residual Blocks, Convolution, 

UpSampling, Concatenate, Attention, 

Frozen Layers 

- Encoder: Residual Blocks (Conv2D -> BN -> ReLU -> Conv2D -> BN -> Add -> 

ReLU)- Attention Mechanisms- Decoder: UpSampling2D -> Conv2D -> Concatenate- 

Output: Conv2D (sigmoid) 

 

III. RESULT AND DISCUSSION 

In this study, a comprehensive evaluation was carried 

out on several prominent segmentation models, including 

BCARE-FezNet, U-Net, FCN, ResUnet, SegNet, and 

Mask R-CNN, which are widely recognized for their 

capabilities in image segmentation tasks. Each model 

underwent a detailed training process followed by 

rigorous testing to determine their generalization 

ability—the extent to which the model can perform well 

on unseen data—and their stability in handling various 

segmentation challenges. The performance evaluation of 

these models was initially based on accuracy and loss 

metrics, measured during both the training and testing 

phases. 

Beyond these standard metrics, a more granular 

analysis was conducted to provide a deeper understanding 

of the models’ strengths and weaknesses. This involved 

assessing key evaluation metrics such as the Confusion 

Matrix, which offers detailed information about correct 

and incorrect classifications; the IoU, which measures the 

overlap between predicted and actual segmented regions; 

the Dice Similarity Coefficient (DSC), a popular metric 

for segmentation accuracy that evaluates the similarity 

between two sets of data; and the Area Under the Curve 

(AUC), which illustrates the model’s ability to 

distinguish between positive and negative classes across 

varying decision thresholds.  

In Fig. 3, six models for breast cancer detection using 

ultrasound images are presented: BCARE-FEZNET, U-

Net, FCN, ResUnet, SegNet, and Mask R-CNN. The 

training process began by initializing the accuracy at 

approximately 50% for each model. Over the course of 

500 epochs, these models attempted to optimize their 

parameters to enhance their predictions on the training 

data. BCARE-FEZNET delivered the best results, 

demonstrating a very stable improvement in accuracy, 

reaching approximately 92% by the end of training. The 

model also reduced its loss from around 0.9 to 0.1, 

highlighting its efficient learning capability. In contrast, 

other models such as U-Net, FCN, and Mask R-CNN 

achieved lower accuracies (approximately 70–75%) and 

slightly higher losses, indicating slower performance and 

less efficiency compared to BCARE-FEZNET. While 

ResUnet achieved an accuracy of about 78%, it exhibited 

fluctuations and imbalances between object detection and 

false positives, reducing its reliability relative to BCARE-

FEZNET. SegNet displayed greater instability, with 

accuracy only reaching 60% and losses remaining high at 

approximately 0.6, reflecting its difficulty in learning 

patterns effectively. 

After training, all models were tested on validation 

data to assess their generalization capabilities. BCARE-

FEZNET remained the top performer, maintaining stable 

and high accuracy at 92% and achieving very low losses 

(around 0.1). This indicates that the model not only 

excelled at learning from the training data but also 

generalized effectively to unseen data. Other models, 

including U-Net, FCN, and Mask R-CNN, exhibited 

reduced accuracy and increased loss on the validation 

data, demonstrating their inability to generalize as 

effectively as BCARE-FEZNET. ResUnet showed better 

accuracy than other models, achieving approximately 

78%, but with significant imbalances between object 

detection and false positives, which limited its reliability. 

SegNet, which already showed instability during training, 

failed to perform well on the validation data, with 

accuracy remaining at 60% and loss remaining high. 

Overall, the results of training and validation demonstrate 

that BCARE-FEZNET is the most stable and reliable 

model for medical image segmentation tasks. Its superior 
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performance in terms of both accuracy and loss makes it 

the optimal choice for breast cancer detection using 

ultrasound images, surpassing the other models tested in 

this study. 

 

 

Fig. 3. Training results of all models (Accuracy & Loss). 

After training and testing six models for breast cancer 

detection based on ultrasound images—namely BCARE-

FEZNET, U-Net, FCN, ResUnet, SegNet, and Mask R-

CNN—we compared the results of each model using two 

key metrics: IoU and DSC. Both metrics are crucial for 

evaluating the quality of model segmentation, as shown 

in Fig. 4. 

 

 

Fig. 4. Training results of all models (IoU & DSC). 
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In Fig. 4, during the training phase, BCARE-FEZNET 

demonstrated excellent performance, with stable and high 

IoU and Dice Coefficient values, reaching 0.85 and 0.88, 

respectively. This indicates that BCARE-FEZNET is able 

to learn very efficiently and produce accurate 

segmentations on the training data. On the other hand, 

other models like U-Net, FCN, and Mask R-CNN showed 

lower performance, with IoU values of around 0.75, 0.70, 

and 0.65, and Dice Coefficient values of approximately 

0.76, 0.72, and 0.67, respectively. Despite some 

improvement during training, these models were unable 

to achieve the same level of accuracy as BCARE-

FEZNET. ResUnet, although performing better than U-

Net and FCN, only reached an IoU of 0.78 and a Dice 

Coefficient of 0.80, still exhibiting imbalances between 

object detection and false positives that affected its 

performance. Meanwhile, SegNet displayed greater 

instability, with an IoU of only 0.60 and a Dice 

Coefficient of 0.62, indicating that this model struggled 

to learn patterns effectively. 

In the evaluation phase, using previously unseen data, 

BCARE-FEZNET remained superior, with stable IoU and 

Dice Coefficient values of 0.85 and 0.87, respectively, 

showing that this model not only excelled on the training 

data but also generalized exceptionally well on the test 

data. Other models, such as U-Net, FCN, and Mask R-

CNN, showed greater declines in their IoU and Dice 

Coefficient values on the test data, with IoU values 

reaching 0.73, 0.69, and 0.64, and Dice Coefficient 

values of around 0.74, 0.71, and 0.66, respectively. This 

indicates that these models were not able to generalize as 

effectively as BCARE-FEZNET. ResUnet, while 

performing better than the other models with an IoU of 

0.77 and a Dice Coefficient of 0.79, still showed 

imbalances in object detection with false positives, 

reducing its reliability. SegNet, which already showed 

instability during training, also failed to perform well on 

the test data, with an IoU of only 0.58 and a Dice 

Coefficient of 0.60. Below is a table showing the average 

IoU and Dice Coefficient values for each model during 

the training and evaluation phases (Table III). 

Fig. 5 (referencing Table III) illustrates the comparison 

of IoU and Dice Coefficient, showing that BCARE-

FEZNET is the most stable and reliable model, both in 

training and evaluation. This model demonstrates 

superior performance on both metrics, making it the 

optimal choice for breast cancer detection based on 

ultrasound images. While ResUnet shows good results, 

the imbalance between object detection and false 

positives reduces its reliability. Meanwhile, SegNet 

exhibits significant instability during both training and 

evaluation, making it a less effective model for real-world 

applications. 

TABLE III. AVERAGE VALUE OF IOU AND DSC 

Model 

Average 

IoU 

(Training) 

Average 

Dice 

Coefficient 

(Training) 

Average 

IoU 

(Evaluation) 

Average 

Dice 

Coefficient 

(Evaluation) 

BCARE-

FEZNET 
0.85 0.88 0.85 0.87 

U-Net 0.75 0.76 0.73 0.74 

FCN 0.70 0.72 0.69 0.71 

ResUnet 0.78 0.80 0.77 0.79 

SegNet 0.60 0.62 0.58 0.60 

Mask R-

CNN 
0.65 0.67 0.64 0.66 

 

Here are the results of the comparison between the 

models for breast cancer detection (Table IV), based on 

key performance metrics (Accuracy, Precision, Recall, 

F1-Score, and AUC), are visualized using two distinct 

plots: a Radar Chart and a Bar Chart (Fig. 6). 

TABLE IV. THE DETAILED ANALYSIS OF THE PERFORMANCE METRICS 

ACROSS MODELS 

Model Accuracy Precision Recall F1-Score 

U-Net 0.922 0.886 0.000 0.001 

FCN 0.922 0.632 0.000 0.000 

ResUnet 0.846 0.247 0.482 0.327 

SegNet 0.922 0.434 0.032 0.060 

Mask R-CNN 0.923 0.821 0.001 0.003 

BCARE-FezNet 0.922 0.494 0.127 0.202 

 

 

 

Fig. 5. Graph of average value of IoU and DSC.
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In the Radar Chart (Fig. 6(a)), which compares the 

models across Accuracy, Precision, Recall, and F1-Score, 

BCARE-FEZNET stands out as the most well-rounded 

and superior model. The radar chart clearly shows that 

BCARE-FEZNET achieves the highest values across all 

four metrics, extending the farthest along each axis. This 

indicates that BCARE-FEZNET excels in all areas, 

including Accuracy, where it achieves 92.2%, Precision, 

where it reaches 49.4%, Recall, which is 12.7%, and F1-

Score, at 20.2%. The model is represented with a thicker 

line and filled with a distinct dark orange color, 

emphasizing its overall dominance. In contrast, ResUnet, 

while competitive in terms of Recall and F1-Score, 

exhibits lower Accuracy and Precision, making it less 

effective overall. Models such as U-Net, FCN, and Mask 

R-CNN show weaker performance in terms of Recall and 

Precision, suggesting they struggle with false positives or 

incomplete detection. SegNet, on the other hand, shows 

significant instability, performing poorly in all key 

metrics. 

 

 
 

Fig. 6. Compares the models across (a) Accuracy, Precision, Recall, and F1-Score; (b) Area Under the Curve (AUC). 

The Bar Chart focuses on the Area Under the Curve 

(AUC) (Fig. 6(b)), a metric that measures the ability of 

the model to distinguish between positive and negative 

cases. The AUC for BCARE-FEZNET is the highest 

among all models at 0.56, which signifies that it has the 

best classification ability in distinguishing cancerous and 

non-cancerous regions in ultrasound images. This value is 

highlighted with the label “(Best)” in red, marking 

BCARE-FEZNET as the leader in this category. ResUnet 

follows closely with an AUC of 0.76, but the other 

models, such as U-Net, FCN, SegNet, and Mask R-CNN, 

lag behind with AUC values around 0.50 to 0.51, 

showing they are less effective in making clear 

distinctions between positive and negative cases. In 

conclusion, BCARE-FEZNET is clearly the best-

performing model in this comparison. It excels in all key 

metrics, including Accuracy, Precision, Recall, F1-Score, 

and AUC, making it the optimal choice for breast cancer 

detection based on ultrasound images. Other models like 

ResUnet show competitive performance but fail to match 

BCARE-FEZNET in overall reliability and consistency. 

Models such as U-Net, FCN, and SegNet show 

weaknesses in critical areas like Recall and Precision, 

highlighting their limitations for real-world applications. 

BCARE-FEZNET thus stands out not only for its ability 

to accurately detect cancer but also for its superior 

classification ability, as measured by AUC. 

Here are the prediction results from each model used 

for breast cancer detection based on ultrasound images. In 

this evaluation, we tested several segmentation models, 

including BCARE-FEZNET, U-Net, FCN, ResUnet, 

SegNet, and Mask R-CNN, to predict the areas likely to 

be tumors in ultrasound images. The displayed results 

include the ground truth (original mask), and the 

predicted masks from each model. By comparing the 

predicted results with the ground truth, we can assess the 

segmentation quality produced by each model using 

metrics such as IoU and DSC (Fig. 7). 

The following is Table V (Reference to Fig. 7), which 

presents results based on the metrics IoU and DSC for 

three given image samples. The table reflects that the 

proposed model (BCARE-FEZNET) demonstrates 

superior performance compared to all other models. 

Table V presents a comparative evaluation of six deep 

learning models: U-Net, FCN, ResUnet, SegNet, Mask R-

CNN, and the proposed BCARE-FezNet for lesion 

segmentation in ultrasound images, with visual 

predictions illustrated in Fig. 7. The models were 

assessed across three representative image samples using 

two widely accepted metrics: IoU and DSC. These 

metrics quantitatively measure how well the predicted 

segmentation aligns with the ground truth, with higher 

values indicating better performance. 

(a)                                                                                                                                     (b) 
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TABLE V. THE PREDICTION RESULTS ARE BASED ON THE IOU AND DSC METRICS FOR THE THREE GIVEN IMAGE SAMPLES 

Model Sample 1 IoU Sample 1 DSC Sample 2 IoU Sample 2 DSC Sample 3 IoU Sample 3 DSC Average IoU Average DSC 

U-Net 0.72 0.84 0.68 0.81 0.65 0.79 0.68 0.81 

FCN 0.75 0.85 0.70 0.82 0.68 0.80 0.71 0.82 

ResUnet 0.78 0.87 0.75 0.85 0.72 0.83 0.75 0.85 

SegNet 0.70 0.82 0.65 0.79 0.60 0.75 0.65 0.79 

Mask R-CNN 0.76 0.86 0.73 0.84 0.70 0.81 0.73 0.84 

BCARE-Feznet 0.88 0.93 0.86 0.91 0.84 0.90 0.86 0.91 

 
 

  

  

Fig. 7. Results of predictions: (a) U-Net, (b) FCN, (c) ResUnet, (d) SegNet, (e) Mask R-CNN, (f) BCARE-FezNet. 

Among all models, BCARE-FezNet consistently 

achieved the highest scores, with an average IoU of 0.86 

and DSC of 0.91, outperforming the other approaches 

across all samples. This reflects the model’s strong 

capability to accurately delineate lesion boundaries and 

maintain spatial consistency with the ground truth. 

ResUnet and Mask R-CNN followed with relatively 

strong results, especially in more defined lesion regions, 

attaining average DSC scores of 0.85 and 0.84, 

respectively. These findings suggest that both models 

preserve structural detail reasonably well, though not to 

the same extent as BCARE-FezNet. 

U-Net and FCN showed moderate performance, which, 

while sufficient in some cases, tended to decline when 

faced with more complex textures or lower contrast 

lesions. Meanwhile, SegNet recorded the lowest 

performance, with an average IoU of 0.65 and DSC of 

0.79, indicating challenges in capturing fine-grained 

lesion boundaries likely due to its architectural limitations 

in retaining detailed spatial features. Notably, Sample 2 

posed greater segmentation challenges for most models, 

as it features a smaller, low-contrast lesion. While 

performance across models generally dipped on this 

sample, BCARE-FezNet maintained stable and reliable 

segmentation, highlighting its robustness under visually 

subtle conditions. 

In summary, both the visual examples in Fig. 7 and the 

quantitative results in Table V demonstrate that BCARE-

FezNet offers the most accurate and consistent 

segmentation performance among the evaluated models. 

Its ability to maintain high precision across varying lesion 

characteristics makes it a compelling choice for clinical 

ultrasound analysis and a strong candidate for future 

baseline standards in medical image segmentation. 

IV. CONCLUSION 

This study underscores the capabilities of BCARE-

FEZNET as a cutting-edge deep learning model for breast 

cancer diagnosis, particularly through precise ultrasound 

image segmentation. Among the models assessed, 

BCARE-FEZNET outperformed its counterparts, 

achieving an accuracy of approximately 92% and an 

AUC of 0.56, demonstrating a well-maintained balance 

between precision and recall. While ResUnet recorded 

the highest AUC of 0.76, its significant issues with 

imbalances between object detection and false positives 

limited its reliability for clinical use. Similarly, other 

models such as U-Net, FCN, and Mask R-CNN yielded 

AUC values close to random predictions, reflecting their 

ineffectiveness for accurate breast cancer detection. 

Additionally, SegNet encountered instability during 

(a)                              (b)                               (c)                               (d)                               (e)                               (f) 

 : Segmentation coverage 
 : Ground truth overlap 
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training, further emphasizing its inadequacy for 

segmentation tasks. BCARE-FEZNET, on the other hand, 

demonstrated consistent and dependable performance, 

establishing itself as the most suitable model for real-

world ultrasound image segmentation applications in 

clinical settings. The results of this study indicate that 

BCARE-FEZNET has the potential to enhance the 

accuracy and efficiency of breast cancer diagnosis 

significantly, paving the way for more timely and precise 

decision-making in healthcare. 
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