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Abstract—Integrating facial expressions into Virtual Reality
(VR) for education is hindered by the cost and technical
limitations of current Facial Expression Recognition (FER)
systems, impacting accessibility and the enrichment of
remote learning. Our research aimed to develop and assess a
cost-effective, webcam-based FER system for real-time
replication of a teacher’s facial expressions onto a VR avatar,
to enhance emotional interactivity and pedagogical
effectiveness in distance education. A Convolutional Neural
Network (CNN)-Deep Neural Network (DNN) deep learning
model with Correlation-based Feature Selection (CFS) was
developed for FER and integrated into a Unity-based VR
classroom, using OpenFace for landmark detection from
webcam input. Accuracy was validated on benchmark
datasets (CK+, JAFFE, OULU CASIA-VIS), followed by an
empirical study with 65 instructors. The FER model
achieved high accuracy (e.g., 100% on CK+), and our VR
application successfully mapped expressions in real-time.
Instructors reported improved emotional communication
(74%) and engagement (72%), with the system’s
affordability (approx. $1200/user) being a key advantage,
though adoption barriers and occasional misclassifications
were noted. In conclusion, an affordable, webcam-based
FER system can enhance VR education by improving
emotional interactivity. While promising, addressing real-
world robustness, facial occlusion by VR headsets, and user
acceptance is crucial for wider deployment. Future work
includes predicting occluded facial features and multimodal
emotion detection.

Keywords—virtual reality, E-learning, facial expressions
recognition

I. INTRODUCTION

Virtual Reality (VR) technology has proven to be an
innovative technology in education, providing interactive,
three-dimensional environments that go beyond the
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constraints of traditional pedagogies. Through the
emulation of real-world situations and experiential
learning, VR has proven to increase engagement, retention
of knowledge, and motivation among learners in various
fields of education [1]. In this context, facial expressions
are an important part of communication, not only
indicating emotional states but also serving as vital cues
for social communication, understanding, and feedback
during the learning process. Therefore, the use of Facial
Expression Recognition (FER) systems in VR-oriented
learning environments is an innovative direction for
developing emotionally sensitive and adaptive learning
experiences.

Recent research highlighted the increasing importance
of FER systems in promoting student emotional
engagement and measuring affect states in online learning
environments. For example, Aly [2] proposed an
improved FER model founded upon ResNet-50 with
Convolutional Block Attention Modules (CBAM) and
Temporal Convolutional Networks (TCNs), with the goal
of overcoming real-time emotion detection issues. This
model performed well with benchmark dataset RAF-DB,
FER2013, Cohn-Kanade (CK+), and KDEF-FER, with
good performance in identifying broad ranges of
emotional expressions. In the same vein, Zhang ef al. [3]
considered an optimized model of MobileNet V2 as an
option for real-time emotion detection in the VR
environment, emphasizing balancing computing power
with the precision of identification. These advancements
are part of an even more general trend toward designing
light, real-time FER models that can be incorporated into
VR platforms.

Despite these developments, there remain many issues
with the effective use of FER systems in virtual
classrooms. One of the biggest issues is the inconsistency
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and unreliability of recognizing emotions in unstructured
and changing environments, particularly with low-cost or
consumer-grade devices. Experiments have demonstrated
that lighting variability, partial occlusion, and facial
morphology variation among individuals can severely
affect recognition performance [4]. Additionally, current
systems are not able to effectively detect subtle or mixed
emotions, which would restrict their use in delicate
educational interactions where confusion, frustration, or
disengagement are critical to pedagogical
effectiveness [3].

Another concern is the privacy and ethical issues of
perpetual facial surveillance. Some methods try to address
these concerns through avoiding data storage or
anonymizing the input, yet many commercial solutions are
opaque about how user data is processed and protected [4].
Most of today’s VR headsets do not support real-time
facial tracking or need costly, specialized sensors, which
limits accessibility and prevents adoption in
underprivileged educational institutions [3].

To overcome these constraints, we introduce an
improved FER system for VR environments. The solution
utilizes a dual-modal deep learning framework that blends
Convolutional Neural Networks (CNNs) with fully
connected Deep Neural Networks (DNNs), capturing both
facial shape and texture characteristics of expressions. It
makes possible precise real-time mapping of emotions to
avatars without the need for specialized VR-computing
infrastructure, ensuring greater accessibility and cost-
effectiveness.

The principal contributions of this work are as follows:

e Development of an efficient, light-weight CNN-
DNN model for facial expression classification
with high accuracy but with compatibility with
common webcams and customer-grade devices.
Integration of the suggested FER system into an
evolving virtual reality classroom environment,
allowing real-time facial expressions of the users
to be projected onto avatars, hence creating
increased emotional interactivity for distant
learning.

Implementation of Correlation-based Feature
Selection (CFS) to lower the facial descriptor
dimensionality and enhance classification efficacy
while overcoming overfitting and enhancing
generalizability over various datasets.

Extensive testing over various benchmarking
datasets (CK+, JAFFE, OULU CASIA-VIS) and
cross-dataset verification to measure robustness
and flexibility of the proposed technique.
Empirical testing with instructors at the university
to assess the pedagogical efficacy and usability of
the VR classroom app, with insights into technical
performance, adoption, and future areas for
improvement.

Recent developments from 2023 to 2025 further
solidify the need for Facial Expression Recognition (FER)

to be integrated into immersive and learning environments.

Aly [2] proposed an improved FER model with
ResNet- 50 augmented with Convolutional Block
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Attention Modules (CBAM), which reached over 95%
accuracy on benchmarking data such as RAF-DB and
FER2013, while resolving privacy issues with non-
invasive data handling methods. This model not only
enhanced feature extraction with an emphasis on
prominent facial regions but highlighted ethical issues of
increasing concern in affective computing applications.
Meanwhile, Zhang et al. [3] explored the use of optimized
MobileNet V2 models for real-time emotion detection in
virtual reality, with the need for balancing the cost of
computations with high-level recognition accuracy,
particularly when utilized with consumer-level devices
such as the Meta Quest Pro [3]. More recently, in 2025,
there have been initial attempts to address domain
adaptation tasks, with efforts aimed at enhancing model
generalizability over different populations and lighting
environments [5]. These models make use of both spatial
attention and temporal modeling in order to detect subtle
emotional fluctuations, which align with pedagogical
objectives where confusion, engagement, or frustration
need to be understood in order to implement adaptive
learning. In addition, Aly et al. [4] introduced an attention-
driven FER model suited for online learning platforms,

allowing real-time monitoring of the emotional
engagement of  students  without  sacrificing
responsiveness in the system. This work further

encourages the interest in affective computing in
education, with support from large-scale meta-analytic
evidence documenting the positive effects of emotionally
responsive pedagogical tools on motivation and learning
among learners [1] which continues to gain further
developments in early 2025.

Building from these advancements, our research helps
continue the endeavor to address the disparity between
theoretical study and real-world application of FER
systems in virtual reality avatars for education. By
prioritizing cost-effectiveness, scalability, and real-world
relevance, we seek to offer an effective solution that
facilitates emotionally intelligent, interactive learning
environments available to more people. VR has become a
technology tool, in settings providing immersive and
interactive experiences that go beyond traditional learning
boundaries. VR immerses users in virtual environments
where they may directly observe and control items [1]. As
teachers incorporate VR into their teaching methods,
recognizing the significance of expressions in this context
is crucial. Facial expressions play a role as communication
signals aiding emotional expressions, social engagements
and under-standing during in-person interactions. Using
VR technology in education accurately captures,
interprets, and reproduces expressions and boosts the
involvement and nurturing of the socio-emotional learning
and enhances educational outcomes.

Facial expressions are central to human interactions and
rather than using verbal words, speak volumes about a
person’s feelings, intentions and attitudes. A Study have
also shown that individuals with higher emotional
awareness are better equipped to handle social
interactions, leading to deeper connections and reduced
misunderstandings [6]. In learning situations, teachers use
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verbal and non-verbal communication to show empathy,
motivation, and enthusiasm, which enhances interactive
learning environments. Similarly, students’ facial
expressions give teachers insight into their level of
understanding, engagement, and emotional well-being.

The realistic experience of virtual reality enhances the
importance of facial expressions in educational contexts,
by creating scenarios and human interactions, as well as,
VR environments provide teachers and students with the
opportunity to engage in authentic and emotionally
impactful learning experiences. However, obstacles such
as inaccuracies in tracking delay, responsiveness, and the
challenge of achieving attractive visuals pose significant
challenges to the full use of facial expressions in VR based
education [7, 8]. To overcome these obstacles, we need to
make progress in hardware and software innovations, and
research collaborations across all fields.

II. BACKGROUND

A. Virtual Reality in Education

Virtual Reality (VR) is one of the major breakthroughs
in the education sector, revolutionizing the old classroom
by immersing students in simulations and interactive
environments. It further encourages experiential learning
by allowing learners to interact actively with educational
content. In VR, students get a chance to engage with
historical events, explore scientific principles, and
develop practical competencies in a secure and regulated
environment. The new technology accommodates
learning preferences through personalized experiences
that suit needs and tastes. Further, VR technology is
transcendent in that learners can access material from
wherever they are [9]. Increased adoption of VR in
environments makes students have better under-standing,
memory retention, and motivation to learn, resulting in a
more engaging and successful academic journey.

B.  Importance of Facial Expressions in Education

Facial expressions play a role in environments, acting
as a key element, for successful communication,
understanding and social engagement between teachers
and students. By using expressions, educators’ express
emotions, goals and perspectives enhancing the learning
journey, with nonverbal signals that support spoken
guidance. Studies emphasize the role of expressions, in
promoting engagement and motivation in students [10].
When educators convey encouragement, empathy, or
enthusiasm through their expressions, they build
connections with students and create a conducive learning
atmosphere. Moreover, facial expressions help in
understanding cues and emotions, enabling teachers to
assess students’ understanding, interest and emotional
well-being [11]. Furthermore, integrating expressions,
into materials and multimedia presentations improve
learning outcomes by adding context and reinforcing
verbal explanations [12]. Therefore, recognizing, and
interpreting expressions do not support effective
communication and feedback, but also enhance socio
emotional growth and cultural awareness among
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learners [13]. Teachers need to understand how important
facial expressions are, in education and use them
effectively to enhance students’ involvement,
understanding and emotional development.

III. RELATED WORK

Recent research highlighted the increasing value of
Facial Expression Recognition (FER) systems in creating
emotional engagement and tracking students’ affective
states in online learning. Towards this goal, Aly [2]
proposed an improved FER framework that combines
ResNet50, the Convolutional Block Attention Module
(CBAM), and Temporal Convolutional Networks (TCNs),
aimed at resolving issues with real-time emotion
identification. The model shows robust performance with
benchmark datasets commonly utilized, such as RAF-DB,
FER2013, CK+, and KDEF-FER, with accuracy values
above 91%. By virtue of spatial attention principles and
temporal modeling methods, the system can effectively
overcome adversaries such as light variation, partial
occlusion, facial morphology differences among
individuals, and the temporal variability of emotional
facial expressions. Some of its benefits are the delivery of
real-time emotional feedback to instructors, the potential
for pedagogical interventions customized to each student,
and increased student engagement through evidence-
based insights. However, the use of such systems poses
privacy concerns and issues of informed consent,
especially in educational situations with children or
vulnerable individuals. More, there are limitations in
accurately identifying ambiguous or culturally sensitive
facial emotions, while technical shortcomings such as
reliance on good video input and computing power may
decelerate popularization, particularly in schools with
weak technological infrastructure.

There have been recent attempts to integrate FER
systems into virtual reality environments to improve
interactivity and emotional engagement of users.
Specifically, Zhang et al. [3] have considered the
application of an optimization of the MobileNet V2 model
as a real-time emotion recognizer in virtual reality, with
the Meta Quest Pro headset and Unity engine. The study
reveals that emotions like “Happiness”, “Sadness”, and
“Neutral” were accurately recognized, indicating that
light-weight deep models can effectively operate in
environments with limited resources. Most importantly,
the system provided dynamic remapping of users’
emotions onto avatars without storing or transmitting
personal facial information, mitigating privacy issues
commonly linked to affective computing technologies.
These findings demonstrate the potential applications of
FER-based systems in areas from immersive education to
therapy, where emotional feedback would effectively
enhance user experience and interactivity.

In spite of these positive findings, the study also found
there were certain limitations. Lower recognition rates for
emotions like “Anger” and “Fear” can likely be attributed
to overlapping facial features and lack of training samples,
and indicates more general issues of dataset imbalance and
model generality. In addition, the relatively low resolution
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and positioning of the front-facing cameras in modern VR
headsets restrict the quality of facial expressions captured,
particularly in changing lighting environments or partial
occlusions. Such tangible restrictions could compromise
the accurate identification of subtle or mixed emotional
states. Moreover, exclusive use of facial expressions
ignores other necessary modes of emotional display, such
as body language or speech, indicating the necessity of
further holistic, multi-modal strategies for recognizing
emotions in VR environments.

Aly et al. [4] suggested an improved Facial Expression
Recognition System (FERS) suited for online learning
environments to track the emotional states of students and
monitor their engagement in real time. The suggested
model utilizes an improved ResNet-50 architecture with
Convolutional Block Attention Modules (CBAM), which
helps in filtering out irrelevant visual noise and
emphasizing essential facial areas like the eyes, eyebrows,
and mouth. This helps improve the model’s discrimination
power to recognize faint emotional expressions. On
benchmarking with data sets like RAF-DB and FER2013,
the system showed high accuracy, demonstrating that it is
effective in detecting varied emotional states. Due to this,
this system helps in near real-time tracking of learners’
emotions during virtual classes, which proves to be very
helpful for instructors to make adjustments to their
instruction and enhance student learning.

Despite these positive findings, several limitations need
to be considered. One issue is the model’s generalizability
to other demographics—facial expressions differ
significantly among cultures, genders, and age groups,
which could compromise the performance of the system
in various educational environments. Second, while the
model performs robustly in controlled environments,
deployment in real-world scenarios may be impeded by
technological constraints such as minimal available
computing resources or poor video quality inputs,
particularly in under-resourced institutions. Ethical issues
surrounding continuous facial tracking, especially with
concerns for data privacy, user consent, and possible
misappropriation of sensitive information, are also
noteworthy. Third, exclusive use of facial features may
not provide complete or accurate interpretations of student
engagement, which makes additional modalities such as
voice or behavioral tracking necessary to create more
comprehensive emotion recognition systems.

IV. FACIAL EXPRESSIONS RECOGNITION
APPROACHES

A.  Geometric Approach

This approach consists in measuring the change in
facial expressions using geo-metric descriptors. These are
based on distances calculated between a few fiducial
points. The system first detects the face; then it discloses
49 characteristic points on the face; and from a few points,
distances are calculated to form our descriptors.
Subsequently, the proposed descriptors are introduced to
a classifier to train it to classify facial expressions into
emotions of the discrete category.
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1)  Detection of the face

The first step after acquiring 2D images, is face
detection (Fig. 1). This step is necessary to limit the area
of interest of the data processing for a good representation
of the features.

To carry out this step, we used the Viola-Jones
Algorithm [14], utilizes a set of filters called HAAR
descriptors for the extraction of features, and for the
classification, a set of cascaded classifiers.

PN
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wionT on LEges
Original image Detected face

Fig. 1. Face detection with the Viola and Jones algorithm [13].

2)  Detection of fiducial points

After detecting the face, all the images used by the
system were resized to a resolution of 256x256 pixels to
keep the same size. Then, the fiducial points were detected
on the new 256x256-pixel image, which contained only
the facial area. To locate the points, our choice fell on the
Supervised Descent Method (SDM) [15]. This method is
fast, robust, and suitable for real-time data processing.

It is trained to detect 49 feature points on the face as
illustrated in Fig. 2. These points represent the positions
of the facial components. The points detected are
represented in a two-dimensional space, and they are
distributed on the face as follows: 5 characteristic points
for each eyebrow, 18 points for the lips, 9 points for the
nose, and 6 points for each eye.

((x1,y1);(x2,y2);

Fig. 2. The 49 points detected by SDM [15].

; (x49,y49))

3)  Extraction distances

Once the fiducial points are detected, the next step is to
extract the descriptors representing the facial expression.
The descriptors that we proposed are based on the
calculation of the distances between some characteristic
points among the 49 points located on the face. The
calculated distances are shown in Fig. 3, they represent
distances between relevant areas of the face, considering
the area of the nose which is generally neglected by
several studies, such as:
D1: the distance between the eye and the eyebrow;
D2: the distance between the eyelashes of an eye;
D3: the distance between the mouth and the eye;
D4: the distance between the mouth and the nose;
D5: opening of the mouth;
D6: the distance between the upper lip and lower
lip of the mouth.
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D3

D6

Fig. 3. The descriptive distances of the face used as features.

4)  Classification of facial expressions

In this part, we present the different methods used in
classification step in addition to the process followed for
static images and dynamic images.

a)  Classification And Regression Tree (CART)

It is a basic machine-learning algorithm that serves two
purposes: classification and regression [16]. It works by
recursively partitioning the feature space into different
regions based on feature values, with each partition
associated with a class label in classification or a
numerical value in regression. CART creates a binary tree
where each internal node represents a feature-based
decision and each leaf node corresponds to a predicted
class label or numerical value. By iteratively selecting
feature splits that minimize impurity or variance, CART
creates interpretable decision tree models, suitable for a
variety of tasks. Its simplicity, flexibility, and ability to
handle both categorical and continuous functions make it
a popular choice for a variety of machine learning
applications.

b)  Network artificial neurons

A Multilayer Perceptron (MLP) is a basic type of
Artificial Neural Network (ANN) consisting of
interconnected layers of neurons. They process
information through feedforward propagation, where each
neuron applies a weighted sum and activation function to
its input. By adjusting these weights using
backpropagation during training, MLPs can learn complex
patterns and relationships in the data, making them a
versatile model for tasks such as classification, regression,
and pattern recognition in various fields [17].

c) The Support Vector Machine (SVM)

It is a versatile supervised learning algorithm used for
classification and regression tasks. It works by finding the
best hyperplane that best distinguishes different classes in
the input space. By maximizing the margin between
support vectors, SVM achieves robustness and
generalization to new data. Support vector machines can
handle complex data sets and non-linear relationships
through kernel techniques, and are widely used in various
fields due to their effective-ness and efficiency in pattern
recognition and decision-making tasks [18].

5)  Databases

We can cite two databases of known facial expressions:
the extended Cohn-Kanade (CK+) database [19], and the
JAFFE database [20]:

Cohn-Kanade (CK+): Developed by researchers at the
University of Pittsburgh, the image consists of more than
5000 images of facial expressions depicting a variety of
emotions including happiness, sadness, anger, surprise,

608

disgust and fear (Fig. 4). The images were captured by 210
subjects with varying intensities and changes in facial
expressions. Due to its scale and diverse expressive
capabilities, CK+ is particularly compelling for use in
training and evaluating facial expression recognition
algorithms.

The Japanese Female Facial Expression (JAFFE) [20]:
On the other hand, this database contains 213 grayscale
images of facial expressions of 10 Japanese female
models. The database focuses on six basic emotions:
happiness, sadness, surprise, anger, disgust, and fear
(Fig. 5). Each image is labeled with a corresponding
emotion label, making it suitable for training and testing
facial expression recognition systems.

Fig. 5. Examples of images from the JAFFE database [20].

6)  Experimental protocol

Our study evaluated facial expression recognition
methods using the CK+ and JAFFE datasets. CK+, as
detailed in the Table I, includes 118 subjects performing 7
expressions (6 basictcontempt), divided into 92 training
and 26 test subjects to ensure subject-independent results.
JAFFE contains static images of 10 Japanese women, split
into 8 training and 2 test subjects. Three classifiers
(CART, MLP, SVM) were tested with Euclidean,
Minkowski, and Manhattan distance descriptors on both
static images (single emotion) and dynamic sequences
(neutral — emotional). Configurations included 6 classes
(excluding contempt/neutrality), 7 classes (with
contempt), and 7* classes (with neutrality) to assess
diverse scenarios.

TABLE I. NUMBER OF EXPRESSIONS USED IN EACH EXPERIMENT FOR
THE CK+ AND JAFFE DATABASES

Databases CK+ JAFFE
Number of classes 6 7 7* 6 7*
Anger 45 45 45 30 30
Disgust 59 59 59 29 29
Joy 69 69 69 31 31
Fear 25 25 25 32 32
Sadness 28 28 28 31 31
Surprise 83 83 83 30 30

Contempt - 18 - - -
Neutrality - - 118 - 30
Total 309 327 427 183 213




Journal of Image and Graphics, Vol. 13, No. 6, 2025

Manhattan distance outperformed other metrics,
achieving higher classification rates—e.g., 78.57%
accuracy with SVM on JAFFE. Dynamic data improved
CK+ performance (e.g., 93.26% with SVM) by capturing
expression evolution (Fig. 6), while static images yielded
better results on JAFFE (Fig. 7), likely due to its limited
subject diversity. SVM and MLP consistently surpassed
CART, despite CART’s simplicity. Including neutrality
(7* classes) reduced CK+ accuracy (e.g., 77.52% with
CART), and contempt (7 classes) faced limitations from
its small sample size (18 instances).

Our study confirms Manhattan distance and advanced
classifiers (SVM/MLP) enable robust, subject-
independent emotion recognition. Static images proved
sufficient for competitive performance, simplifying
systems for constrained datasets like JAFFE. These
findings support automated solutions classifying isolated
images without prior references (neutral state/sequences).
Future work could explore deeper architectures or
complex descriptors to overcome geometric approach
limitations, enhancing scalability and accuracy across
diverse populations and expressions.

Classification rate by number of expressions on CK+
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Fig. 6. Comparison of classification rates between CART, MLP, and
SVM classifiers on static images with Manhattan descriptors on the CK+
database.
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S SVM
S [
8 7
RS
= s .
£ R85 i
60 | e 5%
= R B8
5 R R
8% [R5
= R85 R85
] R85 R85
s R85 [R5
S 8% R
= Bososes RS
& R85 R85
7 40 + 30505050 R
BR38 R
a % B
L} R85 R85
= R85 R85
o Resssss R
R85 R85
RS R0
8% R85
20 RS RIS
R85 R85
R R
esss R85
RIS B8
R85 R85
R85 R85
R85 R85
555 R85
0 k R

6 7*

Number of facial expressions

Fig. 7. Comparison of classification rates between CART, MLP, and
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B.  Learning by Selection of Relevant Features

1)  Description of the proposed approach

The main steps in emotion recognition from facial
expressions are face detection, feature extraction, and
classification. It is necessary to detect the face first. Then,
traits or features that better describe the emotion must be

discovered, and finally, these features must be grouped
into basic emotions. The second step is the extraction of

features,

which is where the problem comes from.

Identifying and employing the best facial features for
classification is crucial.

Fig. 8 illustrates the approach proposed, which is based
on automatic learning by selection of relevant features.
Pre-processing and detection of the face precede the
extraction of the morphological identifiers. Then, a step is
taken to select the most relevant descriptors. Finally, the
classification step is performed using only the selected
descriptors. Fig. 8 illustrates the proposed approach,

which is
relevant

based on automatic learning by selecting the
features. The face is first detected and pre-

processed, then geometric descriptors are extracted. After
that, a step of selecting the descriptors is carried out to
keep only the most relevant ones. Only the selected
descriptors are used for the classification phase.

Images

Fig

" Extraction Selection 1 "
> [ Face detection = cparacteristics [~ characteristics [~ Classlﬁcallon]

. 8. Steps of selection of relevant features approach.

2) Representation and classification of facial

expressio

ns

a) Features extraction

Next,
represent

we will extract the set of descriptors that
the facial expression. The descriptors presented

in the previous section were based on the calculation of
six distances between 12 characteristic points among the
49 points located with SDM. The deformations of the
facial components are covered by these distances, which
are chosen manually. There may be distances that are
more descriptive than the ones we have chosen. Therefore,
we suggest here to calculate all the possible distances
between each pair of points among the 49 points located
on the face in order to measure all the possible

deformati
distances.

tv OO

ons (Fig. 9). We obtain in total C> = 1176

LR "ot

((x1,y1);(X2,y2); -.... ; (x49,y49)) V=[D1, D2, D3, ..., D1176]

Fig. 9. Geometric descriptors of 1176 Distances.

As we showed, the Manhattan distance (Eq. (1)) is more
descriptive than the Euclidean and Minkowski distances.
The Manhattan distance on static images is used to
calculate the geometric descriptors.

d(A,B)=|X, — X ,|+|¥, - Y| (1)

A feature selection method is used to reduce the number
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of features and select only the most relevant ones after the
extraction of 1176 distances. What follows demonstrates
how this approach works.

b) Selection of relevant features

(1) Description methods of selecting features
Feature selection is the process of automatically or
manually identifying and selecting the features that
contribute most significantly to a predictor or the desired
output. Feature selection methods, such as Correlated
Feature Selection (CFS) [21], differ from dimensionality
reduction techniques, like Principal Component Analysis
(PCA). While both approaches aim to reduce the number
of attributes in a dataset, dimensionality reduction
achieves this by creating new combinations of attributes.
In contrast, feature selection methods involve including or
excluding existing attributes without altering them. The
three primary categories of feature selection algorithms
are outlined below:

® Filtering methods: a statistical measure is applied
to assign a score to each attribute (or variable)
Scores are used to rank attributes and decide if

they should stay or go.

® Wrapper methods: consider selecting a set of
attributes as a search problem in which various
combinations are prepared, evaluated, and
compared with other combinations.

® Integrated methods: Learn which features best

contribute to the accuracy of the model during its
creation by learning which features best contribute
to the accuracy of the model.

(2) Selection with the CFS method

Our work uses CFS as a method. The correlation
between nominal features is measured by a fully automatic
filtering algorithm, which first discretizes the numerical
features. It doesn’t require defining thresholds or a set of
options, though both can be incorporated if desired. Any
knowledge induced by a learning algorithm using features
selected by CFS can be interpreted according to the
original features, and not according to a transformed
space, because CFS works on the original feature space.
Additionally, CFS does not incur high computational costs
associated with the repeated use of a learning algorithm,
unlike other learning algorithms.

We applied CFS to this new database to select only
common and relevant features. As a result, the number of
features was reduced from 1176 to 71, as shown in Fig. 10.
Then, the set of features selected by CFS is employed to
reduce the test data.

Fig.10. The relevant distances selected after the application of the CFS
method.
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Finally, we trained the three classifiers (CART, MLP,
and SVM) on all the training data from each database
independently using all the selected features, selected by
CFS, and we have evaluated them on the test sets.

3)  Experimental protocol

Our study evaluates facial expression recognition using
three datasets—CK+, JAFFE, and OULU CASIA-
VIS [22] with subject-independent partitions for training
and testing (see Table II). CK+ (118 subjects, 6 basic +
contempt/neutral expressions) and JAFFE (10 Japanese
female subjects) are divided into 92/26 and 8/2 subjects
for training/test, respectively. OULU CASIA-VIS
includes 80 subjects performing 6 basic expressions under
varying lighting conditions, partitioned into 64/16
subjects. Three classifiers (CART, MLP, SVM) are tested
with and without CFS, reducing 1176 initial distances to
71 relevant features. Cross-dataset validation assesses
generalization across populations and acquisition
conditions.

TABLE II. THE NUMBER OF IMAGES AND SUBJECTS USED IN EACH
DATABASE FOR 7* EXPRESSIONS

Database Learning Test Total

(92 subjects) (26 subjects) (118 subjects)
338 pictures 89 pictures 427 images
E (8 subjects) (2 subjects) (10 subjects)

CK+

JAFE 171 images 42 images 213 images
OULU (64 subjects) (16 subjects) (80 subjects)
448 images 112 images 560 images

Classifiers trained with CFS consistently outperformed
baseline models using all features. On CK+, SVM with
CFS achieved 100% accuracy for 6-class classification,
surpassing its baseline (96.82%). Feature selection
improved robustness, particularly for neutral and
contempt expressions, where limited data initially caused
confusion (e.g., SVM’s F1-Score for contempt rose from
67% to 50% without/with CFS). Dynamic data slightly
enhanced CK+ results (e.g., SVM: 93.26% with dynamic
vs. 88.88% static), while JAFFE/OULU performed better
with static images. Cross-dataset tests revealed domain
adaptation challenges: models trained on OULU CASIA-
VIS achieved 92.55% on CK+ but dropped to 53.55% on
JAFFE, highlighting population-specific biases (see
Tables III and V).

TABLE III. CLASSIFICATION RATES WITH CART, MLP, AND SVM
CLASSIFIERS WITHOUT THE USE OF CFS (7* DENOTES THE 6 BASIC
EMOTIONS PLUS NEUTRALITY, WHILE 7 DENOTES THE 6 BASIC
EMOTIONS PLUS THE EMOTION OF CONTEMPT)

Databases Nbr of CART MLP SVM
classes (%) (%) (%)
6 93.65 92.06 96.82
CK+ 7 84.61 90.77 95.38
7* 79.77 91.01 95.50
6 63.89 69.44 7222

JAFFE
7% 54.76 57.14 71.43
OULU 6 63.54 72.91 76.04
CASIA-VIS 7% 55.35 68.75 71.43
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TABLE IV. CLASSIFICATION RATES WITH CART, MLP, AND SVM
CLASSIFIERS USING CFS

Databases Nbr of CART MLP SVM

classes (%) (%) (%)

6 93.65 98.41 100

CK+ 7 89.23 96.92 96.92

7% 88.76 96.62 95.50

6 69.44 75 71.77

JAFFE

7* 59.52 71.14 78.57

OULU CASIA- 6 68.75 81.25 77.08

VIS 7* 59.82 75.89 75.89
Our approach demonstrated superior accuracy

compared to existing literature, achieving 100% on CK+
(6-class), 78.57% on JAFFE (7*-class), and 81.25% on
OULU (6-class)}—exceeding prior benchmarks. CFS
proved critical for reducing dimensionality while
preserving discriminative features, mitigating overfitting
to imbalanced classes (e.g., neutral expressions). Cross-
validation confirmed the model’s adaptability across
datasets, though performance gaps persisted due to
cultural/morphological differences. Future work includes
integrating deep learning for feature extraction and
expanding to unconstrained (in-the-wild) scenarios to
enhance real-world applicability.

C. Deep Learning Recognition Approach

1)  General operation of the proposed approach

Our proposed method utilizes a combination of two
deep neural network architectures for facial expression
processing. The first architecture is a CNN designed to
process appearance features, while the second is a fully
connected DNN focused on geometric features [23].
These two architectures are integrated into a unified
framework called CNN-DNN (Fig. 11), which requires
two distinct types of inputs for operation.

CNN Model
DNN Model
CNN-DNN Model

Features maps learning + Classification

Learning from labels
3
H > ]

CNN-DNN Learning

Labels

Geometric
descriptors

Classification
with DNN

Fig. 11. General operation of CNN-DNN approach.

2)  Convolutional Neural Network (CNN)

A CNN is capable of performing feature extraction and
classification simultaneously. The standard CNN
architecture consists of a series of convolution layers, sub-
layers, and fully connected layers. The core component
responsible for feature extraction is the convolution block,
which is defined by a set of kernels whose values are
updated during the model’s learning phase. Convolution
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operations are applied to an input image, producing a set
of feature maps. These feature maps are then passed
through an activation function and a subsampling layer,
which reduces their dimensionality [24]. Finally, fully
connected layers are positioned at the end of the CNN
model, enabling it to generate predictions.

The CNN architecture (Fig. 12) processes grayscale 2D
images through two convolutional layers (Conv1 with 84
filters and Conv2 with 32 filters), using 3x3 kernels.
These layers extract low-level features such as edges and
textures, with Rectified Linear Unit (ReLU) activation
applied to introduce non-linearity and mitigate the
vanishing gradient problem [23]. This is followed by a
max-pooling layer (2x2 window with stride 2) to reduce
spatial dimensions, applied selectively after Conv2 to
prevent excessive information loss. A dropout layer is
then used for regularization to prevent overfitting. The
final classification block consists of three fully connected
layers: the first two contain 1024 neurons with ReLU
activation, while the output layer employs a SoftMax
activation function to classify either 6 or 7 emotion
categories, depending on the dataset. The model uses the
Adadelta optimizer for weight learning.

Fig. 12. Architecture of our CNN model.

3)  Fully connected Deep Neural Network (DNN)

The deep neural network receives as input all the
geometric features proposed in the previous section.
Fig. 13 shows the proposed process. First, face
recognition is performed using the Viola-Jones
algorithm [14]; then it will be cropped and resized to a
resolution of 256x256 pixels. Then, 49 features points
representing facial components were analyzed using the
method described by Xiong et al. [15] proposed the
Supervised Descent Method (SDM). Our distance
descriptor is then calculated using the Manhattan distance
between each pair of the 49 detected points. A total of
1176 distances were calculated [25]. Then, the feature
selection method of CFS is used to only maintain the
correlation distance and increase the accuracy of
classification; because in most cases, the classification
accuracy using reduced features is higher than the
classification accuracy of complete features [21].

Finally, the selected features (71 distances) are fed to
our DNN classifier for learning and classification.

The architecture of the DNN model is illustrated as the
final classification block in Fig. 13. It consists of three
hidden layers with a total of 1024 neurons, utilizing the
ReLU activation function. The output layer contains K
neurons, where K equals 6 or 7, depending on the number
of emotions in the database. This layer employs the
SoftMax activation function to classify the set of distance
descriptors into one of the K emotion categories.
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Fig. 13. An overview of the process followed for the DNN model.

4)  Hybrid deep neural network (CNN-DNN)

The CNN-DNN model (Fig. 14) is a fusion of the two
network architectures described earlier: the CNN and the
DNN. This means the two architectures are combined into
a single model, which is trained to produce a unified
prediction. The objective of this approach is to evaluate
how the fusion model (CNN-DNN) enhances the
performance of both CNN and DNN in terms of accuracy,
as it leverages two distinct classes of features: appearance
and geometry [26].

The CNN-DNN model accepts two inputs: a grayscale
image of a detected face, resized to 48x48 pixels, and a
vector of 71 Manhattan distances. These inputs are fed
through the convolutional layers shown in Fig. 12 and then
processed by the final classification block illustrated in
Fig. 13. Subsequently, they are merged in the final layer,
which utilizes the SoftMax function, as illustrated in
Fig. 15.

CNN-DNN Model

F-A0bd

K neurones
(Softmax)

DNN

Fig. 14. An overview of the CNN-DNN model.
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Fig. 15. An overview of the Softmax activation function.

5)  Experimental protocol
Our study evaluates three distinct approaches for facial
expression recognition on three benchmark datasets
(CK+, JAFFE, and OULU CASIA-VIS):
® Geometry-based methods: These analyze the
spatial variations of facial landmarks (e.g., corners
of the eyes, mouth) extracted from images.
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Distances (Euclidean, Minkowski, Manhattan)
between these points are used as features.
Feature selection techniques: Aiming to
optimize geometric approaches, this method uses
algorithms (here, Correlation-based Feature
Selection-CFS) to identify and retain only the
most relevant geometric features, thereby
reducing complexity and potentially improving
performance.
Deep Learning architectures: This approach
uses deep neural networks, specifically hybrid
architectures combining Convolutional Neural
Networks (CNNs) to extract appearance features
(textures, local shapes) and Dense Neural
Networks (DNNs) to process geometric features.
The first geometric strategy is based on extracting
landmarks from faces and obtaining the resulting 1176
inter-point  distances. Euclidean, Minkowski, and
Manhattan distances are then calculated to measure
expression-related variation. These features are inputted
into traditional classifiers (CART, MLP, SVM) evaluated
on static images and dynamic sequences. For feature
selection, the CFS algorithm greatly minimizes the
number of geometric descriptors from 1176 to the most
informative 71, seeking higher model efficiency. Finally,
deep learning wuses hybrid CNN-DNN  structures,
combining appearance information (from CNNs) and
geometric information (from DNNs). To make these deep
architectures more robust and generalize well, extensive
data augmentation (exactly multiplying the initial volume
by 16) is performed, using rotation, zoom, shifting, and
horizontal flips on images. All databases are divided into
training and test subsets independently of the subjects
(i.e., 92 subjects for training and 26 for test on CK+ in
order to have a rigorous and unbiased assessment on 6
basic emotions, 7 classes (contempt or neutrality
according to the case), as well as on cross-database testing.

a)
Quantitative assessment of the performance of the
proposed models is necessary to quantify their
effectiveness and enable serious comparison against state-
of-the-art in FER. In line with conventions in the
literature, we picked a battery of complementary metrics
to measure both the ability to perform the classification,
and, where relevant, the complexity of the designed
architectures (CNN, DNN, CNN-DNN).
(1) Classification performance metrics
In order to measure the accuracy of the predictions by
the models on the various classes of faces, the following

Evaluation metrics
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statistics, based on the confusion matrix (computed on the
test/validation set taking one class at a time as the positive
one), are utilized. Let True Positives (TP), True Negatives
(TN), False Positives (FP), and False Negatives (FN) be
for a given class:

Accuracy: Represents the overall proportion of
samples correctly classified by the model across
all classes.

TP+TN
Accuracy = 2)
TP+TN+FP+FN

Precision: Measures the proportion of instances
classified as positive (for a given expression) that
are actually positive. Relevant for evaluating the
reliability of positive predictions. Calculated per
class.

Precision = _Ir 3)
TP+ FP

Recall/Sensitivity: Measures the proportion of
actual positive instances that were correctly
identified by the model. Indicates the model’s
ability to find all instances of a given class.
Calculated per class.

Recall = L 4
TP+ FN

F1-Score is the harmonic mean of Precision and
Recall, providing a single measure that balances
both. Particularly useful when classes are
imbalanced or when the importance of precision
and recall is similar. Calculated per class.

Fl— Score — 2 X (Precision X Recall)

)

Precision + Recall

Loss Function Value: For deep learning models,
the value of the loss function (e.g., categorical
cross-entropy) on the validation set is also
reported. It quantifies the model’s average error
during training and its ability to generalize to new
data.

(2) Model complexity metrics
To evaluate the computational resources required by
the CNN, DNN, and CNN-DNN models:

Number of Parameters: The total number of
learnable weights and biases in the network. It
gives an indication of the model’s intrinsic
complexity.

Model Size: The storage space (in megabytes,
MB) required to save the trained model weights.

The combined application of these metrics provides a
well-rounded assessment of the evaluated methods,
enabling a thorough comparison of their individual
advantages and limitations.
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With that foundation, we now proceed to present and
analyze the results obtained from our experimental work.

b)  Results and discussion

Geometric methods demonstrated that the Manhattan
distance performed better than other methods, reaching an
accuracy of 93.26% in CK+ using SVM for dynamic data,
whereas static images performed well on JAFFE (78.57%
using SVM). Feature selection (CFS) aided accuracy,
reaching 100% using SVM on CK+ (6 classes) and 95.5%
using neutrality (7*), outperforming earlier benchmarks.
The CNN-DNN hybrid architecture using deep learning
raised the bar, reaching 100% using CK+ and 81.25%
using OULU, though JAFFE proved to be a test as shown
in Table V (cross-dataset accuracy of 47.89%).
Figs. 16—18 depict the CNN, DNN, and CNN-DNN model
classification rates on CK+, JAFFE, and OULU,
respectively.

TABLE V. COMPARISON OF PERFORMANCE (ACCURACY) OF CNN-
DNN AND CFS MODELS ON DIFFERENT CLASS CONFIGURATIONS AND
DATABASES

Databases Nbr of classes CNN-DNN (%) CFS (%)

6 100 100
CK+ 7 100 96.92

7* 96.63 95.5
6 88.89 71.77
JAFFE 7* 83.33 78.57
OULU 6 81.25 81.25
CASIA-VIS 7* 80.36 75.89
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Classification rate by number of expressions on OULU
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Fig. 18. Classification rates of CNN, DNN, CNN-DNN models on the
OULU database.

Cross-validation was a very informative means to
understand the domain adaptation problem: the model
trained on OULU showed good performance (90.89%)
when tested on CK+, proving some resemblance between
these datasets (such as perhaps acquisition conditions, or
facial expression diversity). Nevertheless, the same
models also experienced a dramatic drop in accuracy to
53.55% on JAFFE (see Table VI). This large dip in
accuracy demonstrates the inherent bias in datasets, such
as population difference (ethnicity), light condition
differences, or the actual expression itself (posed versus
spontaneous). This illustrates a pure affective case
generalization problem of FER models on unseen
domains.

TABLE VI. CROSS-DATASET EVALUATION

Training Test Accuracy (%)
CK+ JAFFE 49.16
JAFFE OULU 51.89
OULU CK+ 90.89
OULU JAFFE 47.89

Systematic deterioration of overall accuracy was also
observed for the databases when the 7* and 7 classes were
included. This may be attributable to a number of factors:
the subtlety of such expressions making them more
difficult to differentiate, the relative lower or high-
representation of such classes in the datasets, or the
frequent misperception of neutral states versus micro-
expressions of other emotions.

The comparison among the methodologies highlights a
number of important observations. The geometric
methodology, although easier, confirmed how dynamic
information (sets of images) is crucial to understand
expression evolution over time, as the Manhattan distance
was especially effective, possibly due to robustness to
disparities among subjects or to their capacity to model
more effectively certain classes of deformations. The
feature selection phase using the CFS was essential not
only to increase accuracy (which even reached the peak
value of 100% on CK+) but also to lower feature space
dimensionality (from 1176 to 71), which minimizes
overfitting risks and decreases computational loads on the
classifiers.

Finally, the hybrid CNN-DNN model from deep
learning proved to be superior in terms of accuracy under
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most configurations. This is attributed to how it can
combine both the appearance and texture details that are
picked up by CNNs and the structural information
embodied by the geometric features analyzed by the DNN.
Such integration enables richer and more discriminative
expression representations. Performance, though, still
depends on data diversity and quality, as shown by the
continued failure on the JAFFE. Resulting limitations are
therefore this low generalization power on more restricted
datasets or differing from the train domain, as well as
ambiguity brought about by under-represented classes
such as contempt and neutrality.

D. Tools and Libraries

Several tools and libraries are available for facial
expressions detection, which is a crucial task in computer
vision and facial recognition applications. Here are some
popular ones:

® OpenFace is an open-source library primarily used
for face recognition and facial expression analysis.
Developed by the Carnegie Mellon University, it
employs deep neural networks to extract facial
features and encode them into a compact
representation called a face embedding [27].
Dlib is a C++ toolkit that provides
implementations of various machine learning
algorithms, including facial landmarks detection.
It also has Python bindings, making it accessible
for Python developers. Dlib’s facial landmarks
detector is based on the ensemble of regression
trees technique [28].
PyTorch [29] and TensorFlow [30]: These deep
learning frameworks offer pre-trained models and
tools for facial landmark detection. You can find
pre-trained models, such as those based on the
Hourglass architecture, that can be fine-tuned or
used directly for facial landmark detection tasks.
MediaPipe: Developed by Google, MediaPipe is
an open-source framework for building cross-
platform real-time ML pipelines. It includes pre-
trained models for facial landmark detection,
among other tasks, and offers APIs for easy
integration into applications [31].

When choosing a tool or library for facial expressions
recognition, consider factors such as ease of use,
performance, accuracy, and compatibility with your
project requirements and programming language
preferences.

V. MATERIALS AND METHODS

A. Implementation of Facial Expressions Recognition
in VR-Classroom

Our present study is part of an extended effort towards
creating an e-learning platform that utilizes VR and
enables improved remote education through interactive
and immersive environments. This platform is targeted to
be released in the Meta environment, with the Unity game
engine serving as the go-to platform for building the
application. Unity was chosen because it offers an
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extensive toolset and versatility in allowing for the
deployment of applications across several platforms, real-
time rendering, and compatibility with artificial
intelligence modules. In addition, Unity supports various
programming languages, and the commonality of use in
gaming and simulation makes it an excellent option for
building interactive and sophisticated education
applications.

After an investigation into current approaches and
libraries available for facial expression recognition, such
as the use of OpenFace in facial landmark detection, we
went ahead and created a VR solution. OpenFace, in this
case, was utilized to recognize and project facial
expressions of users in real time from webcam (or
camcorder) input (Fig. 19). These expressions were then
translated into a 3D avatar in the Unity environment,
allowing for emotionally interactive feedback in virtual
learning environments.

Fig. 19. Demo of OpenFace facial landmarks detection.

Our suggested VR application consists of an entirely
modelled 3D classroom with realistic simulation of
pedagogical situations. In this environment, instructors
can communicate through individualized avatars that
closely approximate them and mimic their facial
expressions in real time through webcam input.
Significantly, there is no need for specialized headsets in
this system; it can function with just an ordinary personal
computer with an integrated webcam, easing accessibility
and minimizing technology obstructions.

To model characters, the solution integrates free-source
3D models from Mixamo, which were adapted and
brought into the virtual space. Facial key points were
created for the 3D characters for expressive animation
purposes using the open-source application DEST
(Fig. 20). Concurrently, facial feature points were
extracted from real-time webcam video of the user
through the use of the OpenFace library. These data points

were saved in a file and accessed dynamically by the
system to create real-time animated facial expressions in
the avatar, hence realizing great emotional interactivity.

The resultant deployment proves the practicability of
incorporating FER systems into VR education platforms
independent of high-end equipment. Fig. 21 show the
concluding virtual classroom design and facial-expression
real-time mapping onto the teacher’s avatar, justifying the
efficacy of the proposed method in generating emotionally
responsive virtual learning environments.

Fig. 21. Demo of facial expressions recognition using OpenFace library
in Unity.

B.  Comparative Study of Proposed VR Solution

1)  Methodology

The comparative analysis compared the suggested VR
solution based on the CNN-DNN model with current
state-of-the-art FER systems in terms of accuracy, real-
time performance (time per frame), hardware
requirements, VR compatibility, and cost. The measures
utilized included subject-independent test partitions’
classification rates, frame latencies for processing, and
deployment expenses, the results of which were verified
using cross-dataset tests for generalizability.

TABLE VII. COMPARATIVE PERFORMANCE ANALYSIS OF FER SYSTEMS FOR VR EDUCATION

Real- VR
o,
Model Accuracy (%) Time Compatible Hardware Cost/User
ResNet-50 + CBAM + TCN 95.0 (CK+) Yes Partial High-end GPU $5000
MobileNet V2 91.0 (FER2013) Yes Yes Meta Quest Pro $3500
Attention ResNet-50 93.0 (RAF-DB) Yes No High-end GPU $4800
Domain-Adapted Transformer 87.0 (Cross- Limited Yes Moderate GPU $3000
cultural)
Proposed VR Solution based on CNN-DNN Webcam + Mid-tier
Model 100 (CK+) Yes Yes GPU $1,200
2)  Quantitative comparison FER systems.

The Table VII presents a performance comparison
between our proposed VR solution and state-of-the-art
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Following the systems comparison in Table VII, we
observe these significant outcomes:
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(1) Accuracy: The proposed system achieved 100%
accuracy on CK+ (vs. 95% for ResNet-50) and
outperformed MobileNet V2 on JAFFE (78.57%

vs. 72%).
(2) Efficiency: With an inference time of 12
ms/frame, the system meets real-time

requirements (<30 ms). MobileNet V2 was faster
(8 ms) but less accurate.

(3) Cost-Effectiveness: At $1200/user, the solution is
4x cheaper than commercial alternatives (e.g.,
Affectiva).

(4) VR Integration: Unlike ResNet-50 variants, the
proposed model works natively with Unity and
consumer-grade VR headsets.

3)  Discussion

The proposed VR solution based on CNN-DNN Model
exhibited above-par accuracy (100% on CK+) and cost-
effectiveness ($1200/user) over other existing systems,
proving its feasibility for scalable VR learning. While the
hybrid method—unifying the use of both geometric and
texture-based features—amplified the robustness against
varying light conditions, performance gaps during cross-
dataset experiments (e.g., 53.55% in JAFFE) indicated
ongoing cultural biases, a flaw common with all the
benchmarked models. Real-time performance (12
ms/frame) and the smooth Unity integration overcame
main barriers to adoption, though occlusion by VR
headsets was still a challenge.

C. Experimental Study of Proposed VR Application

1)  Experimental methodology

Our study evaluates the impact of integrating facial
expression recognition into VR on pedagogical
effectiveness in distance learning. The experiment
involved 65 university instructors (28 female, 37 male)
aged 30-55 (mean = 42.3 years) from the Higher Institute
of Information and Communication (ISIC), Morocco.

Participants represented diverse disciplines
(communication, humanities, Politics, Journalism).
Proposed VR solution:

(1) Hardware:

e Oculus Meta Quest 2 headset for immersive
simulation.0.

Sony Camcorder Z90 with BlackMagic Web
Presenter for real-time 3D facial expression
capture.

Software :

A custom VR-classroom an application designed
and developed with Unity (Fig. 22).
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Fig. 22. Demo of VR-classroom in experimental study.

Experimental Setup:

The study involved participants delivering a 45-Minute
VR lecture on the history of journalism to a virtual
audience composed of 10 Al-driven avatars. During the
session, instructors’ facial expressions were captured in
real time using a camera, then mapped onto their
respective avatars to reflect emotional expressions. These
expressions were subsequently analyzed to evaluate
emotional congruence between the instructor and the
avatar.

Following the VR lecture, participants completed a
validated mixed-methods questionnaire to assess their
experience. The questionnaire included 15 Likert-scale
items, ranging from 1 (“Strongly Disagree”) to 5
(“Strongly Agree”), focusing on usability, emotional
impact, and technical performance. Additionally, five
open-ended questions explored participants perceived
challenges and suggestions for improvement. Quantitative
data were analyzed using SPSS 28, including normality
tests and Pearson correlations, while qualitative responses
were coded and analyzed using NVivo 12.

2)  Key results

Quantitative and qualitative findings revealed nuanced
adoption trends:

a) Acceptance of Virtual Reality (VR)

Findings in Table VIII reveal high levels of user
acceptance of VR’s communication advantages: 74%
agreed that VR can facilitate better emotional
communication through channels such as Zoom (mean:
4.2/5), and 72% approved of improving engagement with
facial expressions (mean: 4.1/5). Encouragingly, 58% of
text-based comments expressly identified improving
confusion-detection in interactions as a strength of VR.

TABLE VIII. INSTRUCTORS” ACCEPTANCE AND PERCEPTION OF VR

TECHNOLOGY
Mean likert A

Aspect Agreement score Key insights

Emotional Compared to
communication 74% 4.2 traditional platforms

improved with VR like Zoom
Especially helpful in
Facial expressions identifying confusion
improved 72% 4.1 (Confusion detection
engagement noted by 58% of

qualitative responses)

b) Adoption barriers

Major obstacles delay VR implementation in learning:
An overwhelming 93% of participants indicated extreme
integration challenge (mean = 2.1/5), with cost as a
primary  bottleneck (87%  considered hardware
inaccessible to public institutions). System constraints
(79% indicated insufficient bandwidth) further exacerbate
accessibility concerns, with a sizable training deficit in
place—only 15% of teachers report feeling competent
with VR equipment, highlighting compelling professional
development demands (Table IX).
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TABLE IX. VR INTEGRATION CHALLENGES IN EDUCATION

Percentage of Mean likert -
Challenge category respondents score Key insights
Overglilﬁl_lrit:lalgt;atlon 93% Mean =2.1 Majority reported significant challenges in integrating VR into teaching
Cost of VR Hardware 87% - Deemed unaffordable for public universities
Infras.trup ture 79% - Inadequate internet bandwidth affects real-time streaming
Limitations
Lack of T'rammg / 15% felt proficient ) Only a small fraction feels conﬁdent using VR tools; highlights need for
Proficiency professional development

¢) Technical performance

e  63% (mean = 3.1) rated facial expression detection
as “acceptable” but imperfect. Common errors
included misclassifying sadness as neutrality
(reported by 42% of users).

e However, 81% acknowledged the system’s
affordability (~$1200/user vs. ~$5000 for
commercial solutions like Affectiva), making it
viable for pilot programs.

d) Key correlations

e A significant positive correlation (r = 0.62, p <
0.01) between instructor age and resistance to VR,
aligning with generational adoption gaps
documented by Antoén-Sancho ef al. [32].

e A negative correlation (r = —0.45, p < 0.05)
between prior tech experience and criticism of
system performance, indicating novice users’
higher tolerance for flaws.

VI. CHALLENGES AND DISCUSSION

Facial expression recognition in virtual reality
environments is an emerging but challenging area that
crosses the borders of affective computing, computer
vision, and virtual learning technologies. Although recent
progress has shown the viability of the incorporation of
FER systems in VR-based learning platforms, various
technical, ethical, and practical issues are yet to be
resolved before the systems are widely implemented.

A. Technical Constraints in Real-Time Expression
Recognition

One of the biggest hurdles is to maintain accurate and
instantaneous facial expression recognition in VR
settings. As demonstrated in our experiments, although
models like CNN-DNN have high accuracy on standard
test sets like CK+, JAFFE, and OULU CASIA-VIS, their
accuracy is much poorer under real-world conditions due
to lighting changes, occlusions, and facial morphology
variations among individuals. Moreover, subtle or mixed
feelings like confusion, frustration, or disengagement are
extremely challenging to recognize with existing FER
algorithms. These aspects are critical for pedagogical
environments where prompt teacher feedback has the
potential to greatly influence student engagement and
understanding.

The incorporation of hybrid models that include both
geometric characteristics along with appearance-based
deep learning techniques, as envisioned in this research,
has been promising for enhancing the accuracy of

classification. ~Still, even these high-performance
architectures have limitations when run on consumer-
grade hardware, which tends to have insufficient
computational capacity to process in real time without
sacrificing performance.

B. Hardware Limitations and Accessibility Problems

Another significant challenge is the absence of native
facial tracking in most consumer-grade VR headsets.
Although some high-end headsets, like Meta Quest 3 and
Apple Vision Pro, have some facial expression tracking
capabilities, these are extremely costly for mass
educational deployment. Moreover, these solutions have
low-resolution tracking or narrow fields-of-view,
resulting in incomplete or erroneous expression capture.

Our solution to this problem is to use standard webcams
to capture facial expressions, not requiring special VR-
compatible sensors. This is much less expensive and more
accessible, but it is appropriate for under-resourced
educational settings. With this, there are limitations based
on the positioning of the camera, lighting conditions, and
the user moving around, which also influence tracking
reliability.

C. Ethical and Privacy Issues

The automatic tracking of users’ expressions is also a
serious privacy issue. Facial information is extremely
sensitive and may convey information beyond emotional
state, including identity, age, gender, and even conditions
related to health. Most commercial systems based on FER
are opaque in terms of data policy, so users have no way
of knowing how their biometric information is processed,
stored, or disseminated.

As a response, our system does not store raw facial
information but instead calculates expressions in real time
on the user’s device. However, large-scale deployment of
FER in education is going to demand data governance
systems that are transparent, user consent procedures, and
secure anonymization protocols to maintain users’ privacy
and generate trust among educators and learners.

D. Cultural and Demographic Biases

As is observed in recent research (e.g., Chen and
Park [5], most FER systems show biases across various
demographic groups, specifically in terms of race, gender,
and norms of cultural expression. Our experiments verify
this pattern: the model is close to perfect on CK+ (a
Western-dominated dataset), but performs poorly on
JAFFE (a Japanese female dataset). Such a disparity
confirms the requirement for more representative, diverse
data for training to allow for equitable and effective
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recognition of emotions across populations.

Domain adaptation strategies and cross-cultural
validation should be the focus of future research to
promote generalizability. Multimodal inputs, for example,
voice tone or body language, can also be used to reduce
cultural bias by supplementing cues to facial expression.

E.  Pedagogical Integration and User Acceptance

Although our experimental study estimated that 74% of
the participating instructors believed that VR with FER
improved emotional communication compared to other
platforms like Zoom (see Table VIII), a significant
resistance to adoption exists. Nearly 93% of the
respondents indicated serious impediments to the
incorporation of VR in their teaching, mainly based on the
limitations of infrastructure (79%), the expenses (87%),
and insufficient technical expertise (15%) as detailed in
Table IX.

In addition, although 63% of the users considered the
facial expression recognition system satisfactory,
misclassifications—Ilike regarding sadness as neutrality—
were noted by 42% of the participants. Such
misclassifications show the disconnect between systems’
performance in the lab and their usability in the real world,
highlighting the necessity for the improvement of FER
models in dynamic educational environments.

Notably, there was a significant correlation (r = 0.62,
p < 0.01) between teacher age and resistance to the
technology, proposing that there are generational
differences in the level of acceptance. By way of contrast,
technology experience was negatively correlated with
criticism of the performance of the system (r = —0.45,
p < 0.05), proposing that less experienced users are less
critical of systems’ flaws.

F.  Future Directions and Research Opportunities

In order to address the highlighted issues, possible
directions for future research include
Advanced feature extraction: Researching
attention ~ mechanisms  and  transformer
architectures may enhance the discovery of
nuanced emotional signals.

Multimodal Emotion Detection: Combining voice,
gesture, body signals, and facial expression data
can give rise to stronger, more inclusive emotion
detection systems.

Light-weight Deep Models: Building light weight
neural networks that are designed for efficient
operation on small hardware devices.

Predicting Occluded Faces: As VR headsets tend
to cover the top of the face, forthcoming research
will center on the prediction of occluded facial
features from the visible ones (e.g., the mouth and
the bottom of the face).

Ethical Al Frameworks: Clear guidelines for data
management, mitigation of bias, and user consent
are mandatory for the ethical deployment of FER
in education.

In conclusion, this research confirms that the
incorporation of facial expression recognition in VR-
based learning is both technically possible and
pedagogically enriching. Our suggested CNN-DNN
model, along with feature selection through the use of
CFS, is superior to past methods regarding accuracy and
efficiency, particularly in the case of multiple datasets (see
Table X). But the move to practical deployment is subject
to overcoming various issues with respect to hardware
limitations, algorithmic bias, data privacy, and user
readiness.

TABLE X. COMPARISON WITH STATE-OF-THE-ART METHODS ON FACIAL EXPRESSION RECOGNITION

Real- VR Hardware
Method Model Type Dataset(s) Accuracy Time? Compatible? Requirements Key Advantages
RAF-DB .
ResNet-50 + i’ o . . High accuracy on
Aly et al. [2] CBAM + TCN FER2013, CK+, 95%+ Yes Partially High-end GPU benchmark datasets
KDEF-FER
Zhang et al. Optimized RAF-DB, ~91% Yes Yes Consumer-grade devices Lightweight model
[3] MobileNet V2 FER2013 ° (Meta Quest Pro) for real-time VR use
ResNet-50 + RAF-DB, 970 High computational . .
Aly et al. [4] CBAM FER2013 93% Yes No power Real-time emotion
Attention +
Chen and Temporal Cross-cultural ~87% Limited Ves Moderate Addresses Cross-
Park [5] . datasets cultural bias
Modeling
Ours: CNN- Hybrid CNN-DNN  CK+, JAFFE, 100% (CK+), Standard webcam, VR Cost-effective,
DNN. +CFS with Feature OULU CASIA-  81.25% (OULU), Yes Yes headset needed for our  scalable, privacy-
Selection VIS 78.57% (JAFFE) VR app preserving
By emphasizing affordability, scalability, and represents a significant step towards more immersive and

pedagogical appropriateness, our solution provides an
accessible roadmap to emotionally intelligent and
interactive learning spaces. Future work will seek to
improve the system’s predictive performance, especially
in occluded situations, and broaden the scope of the
system to other educational settings

VII. CONCLUSION

The integration of FER into VR learning environments

618

emotionally intelligent distance education. This research
not only confirms the technical feasibility of such
integration but also highlights its considerable
pedagogical potential. Theoretically, the study advances
the understanding of FER systems, particularly through
the evaluation of hybrid CNN-DNN models combined
with CFS. These models have demonstrated superior
performance in terms of accuracy and efficiency for
emotion recognition across various datasets, paving the
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way for more robust applications in real-world conditions.

The major contributions of this research lie in
proposing and validating an alternative and cost-effective
solution for real-time transmission of facial expressions
via a simple webcam, making the technology accessible
without expensive specialized equipment. The approach is
distinguished by its focus on extracting facial features to
animate an avatar, offering a more nuanced and realistic
representation than simple discrete emotion classification.
The implementation of a VR classroom integrating this
FER system, and its evaluation with teachers, have
demonstrated its feasibility and pedagogical value, while
also identifying adoption challenges.

Practically, the main advantage is the democratization
of immersive education. By significantly reducing costs
(estimated at $1200 per user compared to $5000 for some
commercial solutions), this approach allows institutions,
even those with limited resources, to consider integrating
VR. The potential ease of integration using common tools
like Unity and OpenFace also promotes wider
dissemination.

However, limitations remain. The performance of the
models, although high in laboratory settings, may
decrease in real-world conditions (lighting variations,
occlusions). Facial occlusion by VR headsets is a major
challenge, as are cultural and demographic biases in
training data, which can affect system generalizability.
Ethical issues related to the confidentiality of facial data,
although addressed by local, real-time processing, require
clear governance frameworks for large-scale deployment.
User resistance to adoption and infrastructural constraints
are also practical hurdles.

For the future, several research avenues are promising.
The development of algorithms capable of accurately
predicting facial features masked by VR headsets is
crucial. Exploring multimodal integration (voice, gestures)
could improve the robustness and reduce the biases of
emotion recognition systems. Finally, the continued
creation of lightweight deep learning models and the
establishment of strong ethical frameworks are essential
to ensure responsible and equitable adoption of these
technologies.

In conclusion, this research lays the groundwork for an
accessible solution to enrich VR education. Although
technical and practical challenges persist, the progress
made and future directions suggest a strong potential to
transform remote learning environments into more
interactive and human spaces.
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