
Facial Expressions in Virtual Reality Based-
Education: Understanding Recognition 

Approaches and Their Integration for Immersive 
Experiences 

Anass Touima 1,* and Mohamed Moughit 1,2 

1 Laboratory Science and Technology for Engineering (LaSTI), National School of Applied Sciences-Khouribga, 
Sultan Moulay Slimane University, Morocco 

2 Laboratory Artificial Intelligence, Modeling and Computational Engineering (AIMCE), ENSAM Casablanca,  
Hassan II University, Casablanca, Morocco 

Email: anass.touima@usms.ac.ma (A.T.); mohamed.moughit@usms.ac.ma (M.M.) 
*Corresponding author

Abstract—Integrating facial expressions into Virtual Reality 
(VR) for education is hindered by the cost and technical 
limitations of current Facial Expression Recognition (FER) 
systems, impacting accessibility and the enrichment of 
remote learning. Our research aimed to develop and assess a 
cost-effective, webcam-based FER system for real-time 
replication of a teacher’s facial expressions onto a VR avatar, 
to enhance emotional interactivity and pedagogical 
effectiveness in distance education. A Convolutional Neural 
Network (CNN)-Deep Neural Network (DNN) deep learning 
model with Correlation-based Feature Selection (CFS) was 
developed for FER and integrated into a Unity-based VR 
classroom, using OpenFace for landmark detection from 
webcam input. Accuracy was validated on benchmark 
datasets (CK+, JAFFE, OULU CASIA-VIS), followed by an 
empirical study with 65 instructors. The FER model 
achieved high accuracy (e.g., 100% on CK+), and our VR 
application successfully mapped expressions in real-time. 
Instructors reported improved emotional communication 
(74%) and engagement (72%), with the system’s 
affordability (approx. $1200/user) being a key advantage, 
though adoption barriers and occasional misclassifications 
were noted. In conclusion, an affordable, webcam-based 
FER system can enhance VR education by improving 
emotional interactivity. While promising, addressing real-
world robustness, facial occlusion by VR headsets, and user 
acceptance is crucial for wider deployment. Future work 
includes predicting occluded facial features and multimodal 
emotion detection.  

Keywords—virtual reality, E-learning, facial expressions 
recognition 


I. INTRODUCTION

Virtual Reality (VR) technology has proven to be an 
innovative technology in education, providing interactive, 
three-dimensional environments that go beyond the 

Manuscript received March 27, 2025; revised April 15, 2025; accepted 
June 10, 2025; published November 25, 2025. 

constraints of traditional pedagogies. Through the 
emulation of real-world situations and experiential 
learning, VR has proven to increase engagement, retention 
of knowledge, and motivation among learners in various 
fields of education [1]. In this context, facial expressions 
are an important part of communication, not only 
indicating emotional states but also serving as vital cues 
for social communication, understanding, and feedback 
during the learning process. Therefore, the use of Facial 
Expression Recognition (FER) systems in VR-oriented 
learning environments is an innovative direction for 
developing emotionally sensitive and adaptive learning 
experiences. 

Recent research highlighted the increasing importance 
of FER systems in promoting student emotional 
engagement and measuring affect states in online learning 
environments. For example, Aly [2] proposed an 
improved FER model founded upon ResNet-50 with 
Convolutional Block Attention Modules (CBAM) and 
Temporal Convolutional Networks (TCNs), with the goal 
of overcoming real-time emotion detection issues. This 
model performed well with benchmark dataset RAF-DB, 
FER2013, Cohn-Kanade (CK+), and KDEF-FER, with 
good performance in identifying broad ranges of 
emotional expressions. In the same vein, Zhang et al. [3] 
considered an optimized model of MobileNet V2 as an 
option for real-time emotion detection in the VR 
environment, emphasizing balancing computing power 
with the precision of identification. These advancements 
are part of an even more general trend toward designing 
light, real-time FER models that can be incorporated into 
VR platforms. 

Despite these developments, there remain many issues 
with the effective use of FER systems in virtual 
classrooms. One of the biggest issues is the inconsistency 
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and unreliability of recognizing emotions in unstructured 
and changing environments, particularly with low-cost or 
consumer-grade devices. Experiments have demonstrated 
that lighting variability, partial occlusion, and facial 
morphology variation among individuals can severely 
affect recognition performance [4]. Additionally, current 
systems are not able to effectively detect subtle or mixed 
emotions, which would restrict their use in delicate 
educational interactions where confusion, frustration, or 
disengagement are critical to pedagogical 
effectiveness [3]. 

Another concern is the privacy and ethical issues of 
perpetual facial surveillance. Some methods try to address 
these concerns through avoiding data storage or 
anonymizing the input, yet many commercial solutions are 
opaque about how user data is processed and protected [4]. 
Most of today’s VR headsets do not support real-time 
facial tracking or need costly, specialized sensors, which 
limits accessibility and prevents adoption in 
underprivileged educational institutions [3]. 

To overcome these constraints, we introduce an 
improved FER system for VR environments. The solution 
utilizes a dual-modal deep learning framework that blends 
Convolutional Neural Networks (CNNs) with fully 
connected Deep Neural Networks (DNNs), capturing both 
facial shape and texture characteristics of expressions. It 
makes possible precise real-time mapping of emotions to 
avatars without the need for specialized VR-computing 
infrastructure, ensuring greater accessibility and cost-
effectiveness. 

The principal contributions of this work are as follows: 
 Development of an efficient, light-weight CNN-

DNN model for facial expression classification
with high accuracy but with compatibility with
common webcams and customer-grade devices.

 Integration of the suggested FER system into an
evolving virtual reality classroom environment,
allowing real-time facial expressions of the users
to be projected onto avatars, hence creating
increased emotional interactivity for distant
learning.

 Implementation of Correlation-based Feature
Selection (CFS) to lower the facial descriptor
dimensionality and enhance classification efficacy
while overcoming overfitting and enhancing
generalizability over various datasets.

 Extensive testing over various benchmarking
datasets (CK+, JAFFE, OULU CASIA-VIS) and
cross-dataset verification to measure robustness
and flexibility of the proposed technique.

 Empirical testing with instructors at the university
to assess the pedagogical efficacy and usability of
the VR classroom app, with insights into technical
performance, adoption, and future areas for
improvement.

Recent developments from 2023 to 2025 further 
solidify the need for Facial Expression Recognition (FER) 
to be integrated into immersive and learning environments. 
Aly [2] proposed an improved FER model with 
ResNet- 50 augmented with Convolutional Block 

Attention Modules (CBAM), which reached over 95% 
accuracy on benchmarking data such as RAF-DB and 
FER2013, while resolving privacy issues with non-
invasive data handling methods. This model not only 
enhanced feature extraction with an emphasis on 
prominent facial regions but highlighted ethical issues of 
increasing concern in affective computing applications. 
Meanwhile, Zhang et al.  [3] explored the use of optimized 
MobileNet V2 models for real-time emotion detection in 
virtual reality, with the need for balancing the cost of 
computations with high-level recognition accuracy, 
particularly when utilized with consumer-level devices 
such as the Meta Quest Pro [3]. More recently, in 2025, 
there have been initial attempts to address domain 
adaptation tasks, with efforts aimed at enhancing model 
generalizability over different populations and lighting 
environments [5]. These models make use of both spatial 
attention and temporal modeling in order to detect subtle 
emotional fluctuations, which align with pedagogical 
objectives where confusion, engagement, or frustration 
need to be understood in order to implement adaptive 
learning. In addition, Aly et al. [4] introduced an attention-
driven FER model suited for online learning platforms, 
allowing real-time monitoring of the emotional 
engagement of students without sacrificing 
responsiveness in the system. This work further 
encourages the interest in affective computing in 
education, with support from large-scale meta-analytic 
evidence documenting the positive effects of emotionally 
responsive pedagogical tools on motivation and learning 
among learners [1] which continues to gain further 
developments in early 2025. 

Building from these advancements, our research helps 
continue the endeavor to address the disparity between 
theoretical study and real-world application of FER 
systems in virtual reality avatars for education. By 
prioritizing cost-effectiveness, scalability, and real-world 
relevance, we seek to offer an effective solution that 
facilitates emotionally intelligent, interactive learning 
environments available to more people. VR has become a 
technology tool, in settings providing immersive and 
interactive experiences that go beyond traditional learning 
boundaries. VR immerses users in virtual environments 
where they may directly observe and control items [1]. As 
teachers incorporate VR into their teaching methods, 
recognizing the significance of expressions in this context 
is crucial. Facial expressions play a role as communication 
signals aiding emotional expressions, social engagements 
and under-standing during in-person interactions. Using 
VR technology in education accurately captures, 
interprets, and reproduces expressions and boosts the 
involvement and nurturing of the socio-emotional learning 
and enhances educational outcomes. 

Facial expressions are central to human interactions and 
rather than using verbal words, speak volumes about a 
person’s feelings, intentions and attitudes. A Study have 
also shown that individuals with higher emotional 
awareness are better equipped to handle social 
interactions, leading to deeper connections and reduced 
misunderstandings [6]. In learning situations, teachers use 
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verbal and non-verbal communication to show empathy, 
motivation, and enthusiasm, which enhances interactive 
learning environments. Similarly, students’ facial 
expressions give teachers insight into their level of 
understanding, engagement, and emotional well-being. 

The realistic experience of virtual reality enhances the 
importance of facial expressions in educational contexts, 
by creating scenarios and human interactions, as well as, 
VR environments provide teachers and students with the 
opportunity to engage in authentic and emotionally 
impactful learning experiences. However, obstacles such 
as inaccuracies in tracking delay, responsiveness, and the 
challenge of achieving attractive visuals pose significant 
challenges to the full use of facial expressions in VR based 
education [7, 8]. To overcome these obstacles, we need to 
make progress in hardware and software innovations, and 
research collaborations across all fields. 

II. BACKGROUND 

A. Virtual Reality in Education 

Virtual Reality (VR) is one of the major breakthroughs 
in the education sector, revolutionizing the old classroom 
by immersing students in simulations and interactive 
environments. It further encourages experiential learning 
by allowing learners to interact actively with educational 
content. In VR, students get a chance to engage with 
historical events, explore scientific principles, and 
develop practical competencies in a secure and regulated 
environment. The new technology accommodates 
learning preferences through personalized experiences 
that suit needs and tastes. Further, VR technology is 
transcendent in that learners can access material from 
wherever they are [9]. Increased adoption of VR in 
environments makes students have better under-standing, 
memory retention, and motivation to learn, resulting in a 
more engaging and successful academic journey. 

B. Importance of Facial Expressions in Education 

Facial expressions play a role in environments, acting 
as a key element, for successful communication, 
understanding and social engagement between teachers 
and students. By using expressions, educators’ express 
emotions, goals and perspectives enhancing the learning 
journey, with nonverbal signals that support spoken 
guidance. Studies emphasize the role of expressions, in 
promoting engagement and motivation in students [10]. 
When educators convey encouragement, empathy, or 
enthusiasm through their expressions, they build 
connections with students and create a conducive learning 
atmosphere. Moreover, facial expressions help in 
understanding cues and emotions, enabling teachers to 
assess students’ understanding, interest and emotional 
well-being [11]. Furthermore, integrating expressions, 
into materials and multimedia presentations improve 
learning outcomes by adding context and reinforcing 
verbal explanations [12]. Therefore, recognizing, and 
interpreting expressions do not support effective 
communication and feedback, but also enhance socio 
emotional growth and cultural awareness among 

learners [13]. Teachers need to understand how important 
facial expressions are, in education and use them 
effectively to enhance students’ involvement, 
understanding and emotional development. 

III. RELATED WORK 

Recent research highlighted the increasing value of 
Facial Expression Recognition (FER) systems in creating 
emotional engagement and tracking students’ affective 
states in online learning. Towards this goal, Aly [2] 
proposed an improved FER framework that combines 
ResNet50, the Convolutional Block Attention Module 
(CBAM), and Temporal Convolutional Networks (TCNs), 
aimed at resolving issues with real-time emotion 
identification. The model shows robust performance with 
benchmark datasets commonly utilized, such as RAF-DB, 
FER2013, CK+, and KDEF-FER, with accuracy values 
above 91%. By virtue of spatial attention principles and 
temporal modeling methods, the system can effectively 
overcome adversaries such as light variation, partial 
occlusion, facial morphology differences among 
individuals, and the temporal variability of emotional 
facial expressions. Some of its benefits are the delivery of 
real-time emotional feedback to instructors, the potential 
for pedagogical interventions customized to each student, 
and increased student engagement through evidence-
based insights. However, the use of such systems poses 
privacy concerns and issues of informed consent, 
especially in educational situations with children or 
vulnerable individuals. More, there are limitations in 
accurately identifying ambiguous or culturally sensitive 
facial emotions, while technical shortcomings such as 
reliance on good video input and computing power may 
decelerate popularization, particularly in schools with 
weak technological infrastructure. 

There have been recent attempts to integrate FER 
systems into virtual reality environments to improve 
interactivity and emotional engagement of users. 
Specifically, Zhang et al. [3] have considered the 
application of an optimization of the MobileNet V2 model 
as a real-time emotion recognizer in virtual reality, with 
the Meta Quest Pro headset and Unity engine. The study 
reveals that emotions like “Happiness”, “Sadness”, and 
“Neutral” were accurately recognized, indicating that 
light-weight deep models can effectively operate in 
environments with limited resources. Most importantly, 
the system provided dynamic remapping of users’ 
emotions onto avatars without storing or transmitting 
personal facial information, mitigating privacy issues 
commonly linked to affective computing technologies. 
These findings demonstrate the potential applications of 
FER-based systems in areas from immersive education to 
therapy, where emotional feedback would effectively 
enhance user experience and interactivity. 

In spite of these positive findings, the study also found 
there were certain limitations. Lower recognition rates for 
emotions like “Anger” and “Fear” can likely be attributed 
to overlapping facial features and lack of training samples, 
and indicates more general issues of dataset imbalance and 
model generality. In addition, the relatively low resolution 
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and positioning of the front-facing cameras in modern VR 
headsets restrict the quality of facial expressions captured, 
particularly in changing lighting environments or partial 
occlusions. Such tangible restrictions could compromise 
the accurate identification of subtle or mixed emotional 
states. Moreover, exclusive use of facial expressions 
ignores other necessary modes of emotional display, such 
as body language or speech, indicating the necessity of 
further holistic, multi-modal strategies for recognizing 
emotions in VR environments. 

Aly et al. [4] suggested an improved Facial Expression 
Recognition System (FERS) suited for online learning 
environments to track the emotional states of students and 
monitor their engagement in real time. The suggested 
model utilizes an improved ResNet-50 architecture with 
Convolutional Block Attention Modules (CBAM), which 
helps in filtering out irrelevant visual noise and 
emphasizing essential facial areas like the eyes, eyebrows, 
and mouth. This helps improve the model’s discrimination 
power to recognize faint emotional expressions. On 
benchmarking with data sets like RAF-DB and FER2013, 
the system showed high accuracy, demonstrating that it is 
effective in detecting varied emotional states. Due to this, 
this system helps in near real-time tracking of learners’ 
emotions during virtual classes, which proves to be very 
helpful for instructors to make adjustments to their 
instruction and enhance student learning. 

Despite these positive findings, several limitations need 
to be considered. One issue is the model’s generalizability 
to other demographics—facial expressions differ 
significantly among cultures, genders, and age groups, 
which could compromise the performance of the system 
in various educational environments. Second, while the 
model performs robustly in controlled environments, 
deployment in real-world scenarios may be impeded by 
technological constraints such as minimal available 
computing resources or poor video quality inputs, 
particularly in under-resourced institutions. Ethical issues 
surrounding continuous facial tracking, especially with 
concerns for data privacy, user consent, and possible 
misappropriation of sensitive information, are also 
noteworthy. Third, exclusive use of facial features may 
not provide complete or accurate interpretations of student 
engagement, which makes additional modalities such as 
voice or behavioral tracking necessary to create more 
comprehensive emotion recognition systems. 

IV. FACIAL EXPRESSIONS RECOGNITION 

APPROACHES 

A. Geometric Approach 

This approach consists in measuring the change in 
facial expressions using geo-metric descriptors. These are 
based on distances calculated between a few fiducial 
points. The system first detects the face; then it discloses 
49 characteristic points on the face; and from a few points, 
distances are calculated to form our descriptors. 
Subsequently, the proposed descriptors are introduced to 
a classifier to train it to classify facial expressions into 
emotions of the discrete category. 

1) Detection of the face 
The first step after acquiring 2D images, is face 

detection (Fig. 1). This step is necessary to limit the area 
of interest of the data processing for a good representation 
of the features. 

To carry out this step, we used the Viola-Jones 
Algorithm [14], utilizes a set of filters called HAAR 
descriptors for the extraction of features, and for the 
classification, a set of cascaded classifiers. 
 

 
Fig. 1. Face detection with the Viola and Jones algorithm [13]. 

2) Detection of fiducial points 
After detecting the face, all the images used by the 

system were resized to a resolution of 256×256 pixels to 
keep the same size. Then, the fiducial points were detected 
on the new 256×256-pixel image, which contained only 
the facial area. To locate the points, our choice fell on the 
Supervised Descent Method (SDM) [15]. This method is 
fast, robust, and suitable for real-time data processing. 

It is trained to detect 49 feature points on the face as 
illustrated in Fig. 2. These points represent the positions 
of the facial components. The points detected are 
represented in a two-dimensional space, and they are 
distributed on the face as follows: 5 characteristic points 
for each eyebrow, 18 points for the lips, 9 points for the 
nose, and 6 points for each eye. 

 

 
Fig. 2. The 49 points detected by SDM [15]. 

3) Extraction distances 
Once the fiducial points are detected, the next step is to 

extract the descriptors representing the facial expression. 
The descriptors that we proposed are based on the 
calculation of the distances between some characteristic 
points among the 49 points located on the face. The 
calculated distances are shown in Fig. 3, they represent 
distances between relevant areas of the face, considering 
the area of the nose which is generally neglected by 
several studies, such as: 

 D1: the distance between the eye and the eyebrow; 
 D2: the distance between the eyelashes of an eye; 
 D3: the distance between the mouth and the eye; 
 D4: the distance between the mouth and the nose; 
 D5: opening of the mouth; 
 D6: the distance between the upper lip and lower 

lip of the mouth. 
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Fig. 3. The descriptive distances of the face used as features. 

4) Classification of facial expressions 
In this part, we present the different methods used in 

classification step in addition to the process followed for 
static images and dynamic images. 

a) Classification And Regression Tree (CART) 
It is a basic machine-learning algorithm that serves two 

purposes: classification and regression [16]. It works by 
recursively partitioning the feature space into different 
regions based on feature values, with each partition 
associated with a class label in classification or a 
numerical value in regression. CART creates a binary tree 
where each internal node represents a feature-based 
decision and each leaf node corresponds to a predicted 
class label or numerical value. By iteratively selecting 
feature splits that minimize impurity or variance, CART 
creates interpretable decision tree models, suitable for a 
variety of tasks. Its simplicity, flexibility, and ability to 
handle both categorical and continuous functions make it 
a popular choice for a variety of machine learning 
applications. 

b) Network artificial neurons 
A Multilayer Perceptron (MLP) is a basic type of 

Artificial Neural Network (ANN) consisting of 
interconnected layers of neurons. They process 
information through feedforward propagation, where each 
neuron applies a weighted sum and activation function to 
its input. By adjusting these weights using 
backpropagation during training, MLPs can learn complex 
patterns and relationships in the data, making them a 
versatile model for tasks such as classification, regression, 
and pattern recognition in various fields [17]. 

c) The Support Vector Machine (SVM) 
It is a versatile supervised learning algorithm used for 

classification and regression tasks. It works by finding the 
best hyperplane that best distinguishes different classes in 
the input space. By maximizing the margin between 
support vectors, SVM achieves robustness and 
generalization to new data. Support vector machines can 
handle complex data sets and non-linear relationships 
through kernel techniques, and are widely used in various 
fields due to their effective-ness and efficiency in pattern 
recognition and decision-making tasks [18]. 

5) Databases 
We can cite two databases of known facial expressions: 

the extended Cohn-Kanade (CK+) database [19], and the 
JAFFE database [20]:  

Cohn-Kanade (CK+): Developed by researchers at the 
University of Pittsburgh, the image consists of more than 
5000 images of facial expressions depicting a variety of 
emotions including happiness, sadness, anger, surprise, 

disgust and fear (Fig. 4). The images were captured by 210 
subjects with varying intensities and changes in facial 
expressions. Due to its scale and diverse expressive 
capabilities, CK+ is particularly compelling for use in 
training and evaluating facial expression recognition 
algorithms. 

The Japanese Female Facial Expression (JAFFE) [20]: 
On the other hand, this database contains 213 grayscale 
images of facial expressions of 10 Japanese female 
models. The database focuses on six basic emotions: 
happiness, sadness, surprise, anger, disgust, and fear 
(Fig. 5). Each image is labeled with a corresponding 
emotion label, making it suitable for training and testing 
facial expression recognition systems. 

 

 
Fig. 4. Examples of images from the CK+ database [19]. 

 

Fig. 5. Examples of images from the JAFFE database [20]. 

6) Experimental protocol 
Our study evaluated facial expression recognition 

methods using the CK+ and JAFFE datasets. CK+, as 
detailed in the Table I, includes 118 subjects performing 7 
expressions (6 basic+contempt), divided into 92 training 
and 26 test subjects to ensure subject-independent results. 
JAFFE contains static images of 10 Japanese women, split 
into 8 training and 2 test subjects. Three classifiers 
(CART, MLP, SVM) were tested with Euclidean, 
Minkowski, and Manhattan distance descriptors on both 
static images (single emotion) and dynamic sequences 
(neutral → emotional). Configurations included 6 classes 
(excluding contempt/neutrality), 7 classes (with 
contempt), and 7* classes (with neutrality) to assess 
diverse scenarios. 

TABLE I. NUMBER OF EXPRESSIONS USED IN EACH EXPERIMENT FOR 

THE CK+ AND JAFFE DATABASES 

Databases  CK+  JAFFE 
Number of classes  6 7 7*  6 7* 

Anger  45 45 45  30 30 
Disgust  59 59 59  29 29 

Joy  69 69 69  31 31 
Fear  25 25 25  32 32 

Sadness  28 28 28  31 31 
Surprise  83 83 83  30 30 
Contempt  - 18 -  - - 
Neutrality  - - 118  - 30 

Total  309 327 427  183 213 
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Manhattan distance outperformed other metrics, 
achieving higher classification rates—e.g., 78.57% 
accuracy with SVM on JAFFE. Dynamic data improved 
CK+ performance (e.g., 93.26% with SVM) by capturing 
expression evolution (Fig. 6), while static images yielded 
better results on JAFFE (Fig. 7), likely due to its limited 
subject diversity. SVM and MLP consistently surpassed 
CART, despite CART’s simplicity. Including neutrality 
(7* classes) reduced CK+ accuracy (e.g., 77.52% with 
CART), and contempt (7 classes) faced limitations from 
its small sample size (18 instances). 

Our study confirms Manhattan distance and advanced 
classifiers (SVM/MLP) enable robust, subject-
independent emotion recognition. Static images proved 
sufficient for competitive performance, simplifying 
systems for constrained datasets like JAFFE. These 
findings support automated solutions classifying isolated 
images without prior references (neutral state/sequences). 
Future work could explore deeper architectures or 
complex descriptors to overcome geometric approach 
limitations, enhancing scalability and accuracy across 
diverse populations and expressions. 

 

 
Fig. 6. Comparison of classification rates between CART, MLP, and 
SVM classifiers on static images with Manhattan descriptors on the CK+ 
database. 

 

Fig. 7. Comparison of classification rates between CART, MLP, and 
SVM classifiers on static images with Manhattan descriptors on the 
JAFFE database. 

B. Learning by Selection of Relevant Features 

1) Description of the proposed approach 
The main steps in emotion recognition from facial 

expressions are face detection, feature extraction, and 
classification. It is necessary to detect the face first. Then, 
traits or features that better describe the emotion must be 

discovered, and finally, these features must be grouped 
into basic emotions. The second step is the extraction of 
features, which is where the problem comes from. 
Identifying and employing the best facial features for 
classification is crucial. 

Fig. 8 illustrates the approach proposed, which is based 
on automatic learning by selection of relevant features. 
Pre-processing and detection of the face precede the 
extraction of the morphological identifiers. Then, a step is 
taken to select the most relevant descriptors. Finally, the 
classification step is performed using only the selected 
descriptors. Fig. 8 illustrates the proposed approach, 
which is based on automatic learning by selecting the 
relevant features. The face is first detected and pre-
processed, then geometric descriptors are extracted. After 
that, a step of selecting the descriptors is carried out to 
keep only the most relevant ones. Only the selected 
descriptors are used for the classification phase. 

 

 
Fig. 8. Steps of selection of relevant features approach. 

2) Representation and classification of facial 
expressions 

a) Features extraction 
Next, we will extract the set of descriptors that 

represent the facial expression. The descriptors presented 
in the previous section were based on the calculation of 
six distances between 12 characteristic points among the 
49 points located with SDM. The deformations of the 
facial components are covered by these distances, which 
are chosen manually. There may be distances that are 
more descriptive than the ones we have chosen. Therefore, 
we suggest here to calculate all the possible distances 
between each pair of points among the 49 points located 
on the face in order to measure all the possible 
deformations (Fig. 9). We obtain in total C2 = 1176 
distances. 
 

 
Fig. 9. Geometric descriptors of 1176 Distances. 

As we showed, the Manhattan distance (Eq. (1)) is more 
descriptive than the Euclidean and Minkowski distances. 
The Manhattan distance on static images is used to 
calculate the geometric descriptors. 

               ( , ) B A B Ad A B X X Y Y= - + -              (1) 

A feature selection method is used to reduce the number 
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of features and select only the most relevant ones after the 
extraction of 1176 distances. What follows demonstrates 
how this approach works. 

b) Selection of relevant features 
(1) Description methods of selecting features 

Feature selection is the process of automatically or 
manually identifying and selecting the features that 
contribute most significantly to a predictor or the desired 
output. Feature selection methods, such as Correlated 
Feature Selection (CFS) [21], differ from dimensionality 
reduction techniques, like Principal Component Analysis 
(PCA). While both approaches aim to reduce the number 
of attributes in a dataset, dimensionality reduction 
achieves this by creating new combinations of attributes. 
In contrast, feature selection methods involve including or 
excluding existing attributes without altering them. The 
three primary categories of feature selection algorithms 
are outlined below: 
 Filtering methods: a statistical measure is applied 

to assign a score to each attribute (or variable) 
Scores are used to rank attributes and decide if 
they should stay or go. 

 Wrapper methods: consider selecting a set of 
attributes as a search problem in which various 
combinations are prepared, evaluated, and 
compared with other combinations. 

 Integrated methods: Learn which features best 
contribute to the accuracy of the model during its 
creation by learning which features best contribute 
to the accuracy of the model. 

(2) Selection with the CFS method 
Our work uses CFS as a method. The correlation 

between nominal features is measured by a fully automatic 
filtering algorithm, which first discretizes the numerical 
features. It doesn’t require defining thresholds or a set of 
options, though both can be incorporated if desired. Any 
knowledge induced by a learning algorithm using features 
selected by CFS can be interpreted according to the 
original features, and not according to a transformed 
space, because CFS works on the original feature space. 
Additionally, CFS does not incur high computational costs 
associated with the repeated use of a learning algorithm, 
unlike other learning algorithms. 

We applied CFS to this new database to select only 
common and relevant features. As a result, the number of 
features was reduced from 1176 to 71, as shown in Fig. 10. 
Then, the set of features selected by CFS is employed to 
reduce the test data. 
 

 
Fig.10. The relevant distances selected after the application of the CFS 

method. 

 

Finally, we trained the three classifiers (CART, MLP, 
and SVM) on all the training data from each database 
independently using all the selected features, selected by 
CFS, and we have evaluated them on the test sets. 

3) Experimental protocol 
Our study evaluates facial expression recognition using 

three datasets—CK+, JAFFE, and OULU CASIA-
VIS [22] with subject-independent partitions for training 
and testing (see Table II). CK+ (118 subjects, 6 basic + 
contempt/neutral expressions) and JAFFE (10 Japanese 
female subjects) are divided into 92/26 and 8/2 subjects 
for training/test, respectively. OULU CASIA-VIS 
includes 80 subjects performing 6 basic expressions under 
varying lighting conditions, partitioned into 64/16 
subjects. Three classifiers (CART, MLP, SVM) are tested 
with and without CFS, reducing 1176 initial distances to 
71 relevant features. Cross-dataset validation assesses 
generalization across populations and acquisition 
conditions. 

TABLE II. THE NUMBER OF IMAGES AND SUBJECTS USED IN EACH 

DATABASE FOR 7* EXPRESSIONS 

Database Learning Test Total 

CK+ 
(92 subjects) 
338 pictures 

(26 subjects) 
89 pictures 

(118 subjects) 
427 images 

JAFFE 
(8 subjects) 
171 images 

(2 subjects) 
42 images 

(10 subjects) 
213 images 

OULU 
(64 subjects) 
448 images 

(16 subjects) 
112 images 

(80 subjects) 
560 images 

 

Classifiers trained with CFS consistently outperformed 
baseline models using all features. On CK+, SVM with 
CFS achieved 100% accuracy for 6-class classification, 
surpassing its baseline (96.82%). Feature selection 
improved robustness, particularly for neutral and 
contempt expressions, where limited data initially caused 
confusion (e.g., SVM’s F1-Score for contempt rose from 
67% to 50% without/with CFS). Dynamic data slightly 
enhanced CK+ results (e.g., SVM: 93.26% with dynamic 
vs. 88.88% static), while JAFFE/OULU performed better 
with static images. Cross-dataset tests revealed domain 
adaptation challenges: models trained on OULU CASIA-
VIS achieved 92.55% on CK+ but dropped to 53.55% on 
JAFFE, highlighting population-specific biases (see 
Tables III and IV). 

TABLE III. CLASSIFICATION RATES WITH CART, MLP, AND SVM 

CLASSIFIERS WITHOUT THE USE OF CFS (7* DENOTES THE 6 BASIC 

EMOTIONS PLUS NEUTRALITY, WHILE 7 DENOTES THE 6 BASIC 

EMOTIONS PLUS THE EMOTION OF CONTEMPT) 

Databases 
Nbr of 
classes 

CART 
(%) 

MLP 
(%) 

SVM 
(%) 

CK+ 

6 93.65  92.06  96.82  

7 84.61  90.77  95.38  

7* 79.77  91.01  95.50  

JAFFE 
6 63.89  69.44  72.22  

7* 54.76  57.14  71.43  

OULU 
CASIA-VIS 

6 63.54  72.91  76.04 

7* 55.35  68.75  71.43  
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TABLE IV. CLASSIFICATION RATES WITH CART, MLP, AND SVM 

CLASSIFIERS USING CFS 

Databases 
Nbr of 
classes 

CART 
(%) 

MLP 
(%) 

SVM 
(%) 

CK+ 

6 93.65  98.41  100  

7 89.23  96.92  96.92  

7* 88.76  96.62  95.50  

JAFFE 
6 69.44  75  77.77  

7* 59.52  71.14  78.57  

OULU CASIA-
VIS 

6 68.75  81.25  77.08  

7* 59.82  75.89  75.89  

 

Our approach demonstrated superior accuracy 
compared to existing literature, achieving 100% on CK+ 
(6-class), 78.57% on JAFFE (7*-class), and 81.25% on 
OULU (6-class)—exceeding prior benchmarks. CFS 
proved critical for reducing dimensionality while 
preserving discriminative features, mitigating overfitting 
to imbalanced classes (e.g., neutral expressions). Cross-
validation confirmed the model’s adaptability across 
datasets, though performance gaps persisted due to 
cultural/morphological differences. Future work includes 
integrating deep learning for feature extraction and 
expanding to unconstrained (in-the-wild) scenarios to 
enhance real-world applicability. 

C. Deep Learning Recognition Approach 

1) General operation of the proposed approach 
Our proposed method utilizes a combination of two 

deep neural network architectures for facial expression 
processing. The first architecture is a CNN designed to 
process appearance features, while the second is a fully 
connected DNN focused on geometric features [23]. 
These two architectures are integrated into a unified 
framework called CNN-DNN (Fig. 11), which requires 
two distinct types of inputs for operation. 

 

 
Fig. 11. General operation of CNN-DNN approach. 

2) Convolutional Neural Network (CNN) 
A CNN is capable of performing feature extraction and 

classification simultaneously. The standard CNN 
architecture consists of a series of convolution layers, sub-
layers, and fully connected layers. The core component 
responsible for feature extraction is the convolution block, 
which is defined by a set of kernels whose values are 
updated during the model’s learning phase. Convolution 

operations are applied to an input image, producing a set 
of feature maps. These feature maps are then passed 
through an activation function and a subsampling layer, 
which reduces their dimensionality [24]. Finally, fully 
connected layers are positioned at the end of the CNN 
model, enabling it to generate predictions. 

The CNN architecture (Fig. 12) processes grayscale 2D 
images through two convolutional layers (Conv1 with 84 
filters and Conv2 with 32 filters), using 3×3 kernels. 
These layers extract low-level features such as edges and 
textures, with Rectified Linear Unit (ReLU) activation 
applied to introduce non-linearity and mitigate the 
vanishing gradient problem [23]. This is followed by a 
max-pooling layer (2×2 window with stride 2) to reduce 
spatial dimensions, applied selectively after Conv2 to 
prevent excessive information loss. A dropout layer is 
then used for regularization to prevent overfitting. The 
final classification block consists of three fully connected 
layers: the first two contain 1024 neurons with ReLU 
activation, while the output layer employs a SoftMax 
activation function to classify either 6 or 7 emotion 
categories, depending on the dataset. The model uses the 
Adadelta optimizer for weight learning. 
 

 
Fig. 12. Architecture of our CNN model. 

3) Fully connected Deep Neural Network (DNN) 
The deep neural network receives as input all the 

geometric features proposed in the previous section. 
Fig. 13 shows the proposed process. First, face 
recognition is performed using the Viola-Jones 
algorithm [14]; then it will be cropped and resized to a 
resolution of 256×256 pixels. Then, 49 features points 
representing facial components were analyzed using the 
method described by Xiong et al. [15] proposed the 
Supervised Descent Method (SDM). Our distance 
descriptor is then calculated using the Manhattan distance 
between each pair of the 49 detected points. A total of 
1176 distances were calculated [25]. Then, the feature 
selection method of CFS is used to only maintain the 
correlation distance and increase the accuracy of 
classification; because in most cases, the classification 
accuracy using reduced features is higher than the 
classification accuracy of complete features [21]. 

Finally, the selected features (71 distances) are fed to 
our DNN classifier for learning and classification. 

The architecture of the DNN model is illustrated as the 
final classification block in Fig. 13. It consists of three 
hidden layers with a total of 1024 neurons, utilizing the 
ReLU activation function. The output layer contains K 
neurons, where K equals 6 or 7, depending on the number 
of emotions in the database. This layer employs the 
SoftMax activation function to classify the set of distance 
descriptors into one of the K emotion categories. 
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Fig. 13. An overview of the process followed for the DNN model.

4) Hybrid deep neural network (CNN-DNN) 
The CNN-DNN model (Fig. 14) is a fusion of the two 

network architectures described earlier: the CNN and the 
DNN. This means the two architectures are combined into 
a single model, which is trained to produce a unified 
prediction. The objective of this approach is to evaluate 
how the fusion model (CNN-DNN) enhances the 
performance of both CNN and DNN in terms of accuracy, 
as it leverages two distinct classes of features: appearance 
and geometry [26]. 

The CNN-DNN model accepts two inputs: a grayscale 
image of a detected face, resized to 48×48 pixels, and a 
vector of 71 Manhattan distances. These inputs are fed 
through the convolutional layers shown in Fig. 12 and then 
processed by the final classification block illustrated in 
Fig. 13. Subsequently, they are merged in the final layer, 
which utilizes the SoftMax function, as illustrated in 
Fig. 15. 

 

 
Fig. 14. An overview of the CNN-DNN model. 

 
Fig. 15. An overview of the Softmax activation function. 

5) Experimental protocol 
Our study evaluates three distinct approaches for facial 

expression recognition on three benchmark datasets 
(CK+, JAFFE, and OULU CASIA-VIS): 
 Geometry-based methods: These analyze the 

spatial variations of facial landmarks (e.g., corners 
of the eyes, mouth) extracted from images. 

Distances (Euclidean, Minkowski, Manhattan) 
between these points are used as features. 

 Feature selection techniques: Aiming to 
optimize geometric approaches, this method uses 
algorithms (here, Correlation-based Feature 
Selection-CFS) to identify and retain only the 
most relevant geometric features, thereby 
reducing complexity and potentially improving 
performance. 

 Deep Learning architectures: This approach 
uses deep neural networks, specifically hybrid 
architectures combining Convolutional Neural 
Networks (CNNs) to extract appearance features 
(textures, local shapes) and Dense Neural 
Networks (DNNs) to process geometric features. 

The first geometric strategy is based on extracting 
landmarks from faces and obtaining the resulting 1176 
inter-point distances. Euclidean, Minkowski, and 
Manhattan distances are then calculated to measure 
expression-related variation. These features are inputted 
into traditional classifiers (CART, MLP, SVM) evaluated 
on static images and dynamic sequences. For feature 
selection, the CFS algorithm greatly minimizes the 
number of geometric descriptors from 1176 to the most 
informative 71, seeking higher model efficiency. Finally, 
deep learning uses hybrid CNN-DNN structures, 
combining appearance information (from CNNs) and 
geometric information (from DNNs). To make these deep 
architectures more robust and generalize well, extensive 
data augmentation (exactly multiplying the initial volume 
by 16) is performed, using rotation, zoom, shifting, and 
horizontal flips on images. All databases are divided into 
training and test subsets independently of the subjects 
(i.e., 92 subjects for training and 26 for test on CK+ in 
order to have a rigorous and unbiased assessment on 6 
basic emotions, 7 classes (contempt or neutrality 
according to the case), as well as on cross-database testing. 

a) Evaluation metrics 
Quantitative assessment of the performance of the 

proposed models is necessary to quantify their 
effectiveness and enable serious comparison against state-
of-the-art in FER. In line with conventions in the 
literature, we picked a battery of complementary metrics 
to measure both the ability to perform the classification, 
and, where relevant, the complexity of the designed 
architectures (CNN, DNN, CNN-DNN). 

(1) Classification performance metrics 
In order to measure the accuracy of the predictions by 

the models on the various classes of faces, the following 
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statistics, based on the confusion matrix (computed on the 
test/validation set taking one class at a time as the positive 
one), are utilized. Let True Positives (TP), True Negatives 
(TN), False Positives (FP), and False Negatives (FN) be 
for a given class: 
 Accuracy: Represents the overall proportion of 

samples correctly classified by the model across 
all classes. 

               
TP TN

Accuracy
TP TN FP FN

+
=

+ + +
               (2) 

 Precision: Measures the proportion of instances 
classified as positive (for a given expression) that 
are actually positive. Relevant for evaluating the 
reliability of positive predictions. Calculated per 
class. 

                        
TP

Precision
TP FP

=
+

                         (3) 

 Recall/Sensitivity: Measures the proportion of 
actual positive instances that were correctly 
identified by the model. Indicates the model’s 
ability to find all instances of a given class. 
Calculated per class. 

                          
TP

Recall
TP FN

=
+

                           (4) 

 F1-Score is the harmonic mean of Precision and 
Recall, providing a single measure that balances 
both. Particularly useful when classes are 
imbalanced or when the importance of precision 
and recall is similar. Calculated per class. 

              
2 ( )

1
Precision Recall

F Score
Precision Recall

´ ´
- =

+
        (5) 

 Loss Function Value: For deep learning models, 
the value of the loss function (e.g., categorical 
cross-entropy) on the validation set is also 
reported. It quantifies the model’s average error 
during training and its ability to generalize to new 
data. 

(2) Model complexity metrics  
To evaluate the computational resources required by 

the CNN, DNN, and CNN-DNN models: 
 Number of Parameters: The total number of 

learnable weights and biases in the network. It 
gives an indication of the model’s intrinsic 
complexity. 

 Model Size: The storage space (in megabytes, 
MB) required to save the trained model weights. 

The combined application of these metrics provides a 
well-rounded assessment of the evaluated methods, 
enabling a thorough comparison of their individual 
advantages and limitations. 

With that foundation, we now proceed to present and 
analyze the results obtained from our experimental work. 

b) Results and discussion 
Geometric methods demonstrated that the Manhattan 

distance performed better than other methods, reaching an 
accuracy of 93.26% in CK+ using SVM for dynamic data, 
whereas static images performed well on JAFFE (78.57% 
using SVM). Feature selection (CFS) aided accuracy, 
reaching 100% using SVM on CK+ (6 classes) and 95.5% 
using neutrality (7*), outperforming earlier benchmarks. 
The CNN-DNN hybrid architecture using deep learning 
raised the bar, reaching 100% using CK+ and 81.25% 
using OULU, though JAFFE proved to be a test as shown 
in Table V (cross-dataset accuracy of 47.89%).  
Figs. 16–18 depict the CNN, DNN, and CNN-DNN model 
classification rates on CK+, JAFFE, and OULU, 
respectively. 

TABLE V. COMPARISON OF PERFORMANCE (ACCURACY) OF CNN-
DNN AND CFS MODELS ON DIFFERENT CLASS CONFIGURATIONS AND 

DATABASES 

Databases Nbr of classes CNN-DNN (%) CFS (%) 

CK+ 
6 100 100 
7 100 96.92 
7* 96.63 95.5 

JAFFE 
6 88.89 77.77 
7* 83.33 78.57 

OULU 
CASIA-VIS 

6 81.25 81.25 
7* 80.36 75.89 

 

 
Fig. 16. Classification rates of CNN, DNN, CNN-DNN models on the 

CK+ database. 

 

Fig. 17. Classification rates of CNN, DNN, CNN-DNN models on the 
JAFFE database. 
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Fig. 18. Classification rates of CNN, DNN, CNN-DNN models on the 
OULU database. 

Cross-validation was a very informative means to 
understand the domain adaptation problem: the model 
trained on OULU showed good performance (90.89%) 
when tested on CK+, proving some resemblance between 
these datasets (such as perhaps acquisition conditions, or 
facial expression diversity). Nevertheless, the same 
models also experienced a dramatic drop in accuracy to 
53.55% on JAFFE (see Table VI). This large dip in 
accuracy demonstrates the inherent bias in datasets, such 
as population difference (ethnicity), light condition 
differences, or the actual expression itself (posed versus 
spontaneous). This illustrates a pure affective case 
generalization problem of FER models on unseen 
domains. 

TABLE VI. CROSS-DATASET EVALUATION 

Training Test Accuracy (%) 

CK+ JAFFE 49.16 
JAFFE OULU 51.89 
OULU CK+ 90.89 
OULU JAFFE 47.89 

 

Systematic deterioration of overall accuracy was also 
observed for the databases when the 7* and 7 classes were 
included. This may be attributable to a number of factors: 
the subtlety of such expressions making them more 
difficult to differentiate, the relative lower or high-
representation of such classes in the datasets, or the 
frequent misperception of neutral states versus micro-
expressions of other emotions. 

The comparison among the methodologies highlights a 
number of important observations. The geometric 
methodology, although easier, confirmed how dynamic 
information (sets of images) is crucial to understand 
expression evolution over time, as the Manhattan distance 
was especially effective, possibly due to robustness to 
disparities among subjects or to their capacity to model 
more effectively certain classes of deformations. The 
feature selection phase using the CFS was essential not 
only to increase accuracy (which even reached the peak 
value of 100% on CK+) but also to lower feature space 
dimensionality (from 1176 to 71), which minimizes 
overfitting risks and decreases computational loads on the 
classifiers. 

Finally, the hybrid CNN-DNN model from deep 
learning proved to be superior in terms of accuracy under 

most configurations. This is attributed to how it can 
combine both the appearance and texture details that are 
picked up by CNNs and the structural information 
embodied by the geometric features analyzed by the DNN. 
Such integration enables richer and more discriminative 
expression representations. Performance, though, still 
depends on data diversity and quality, as shown by the 
continued failure on the JAFFE. Resulting limitations are 
therefore this low generalization power on more restricted 
datasets or differing from the train domain, as well as 
ambiguity brought about by under-represented classes 
such as contempt and neutrality. 

D. Tools and Libraries 

Several tools and libraries are available for facial 
expressions detection, which is a crucial task in computer 
vision and facial recognition applications. Here are some 
popular ones: 
 OpenFace is an open-source library primarily used 

for face recognition and facial expression analysis. 
Developed by the Carnegie Mellon University, it 
employs deep neural networks to extract facial 
features and encode them into a compact 
representation called a face embedding [27]. 

 Dlib is a C++ toolkit that provides 
implementations of various machine learning 
algorithms, including facial landmarks detection. 
It also has Python bindings, making it accessible 
for Python developers. Dlib’s facial landmarks 
detector is based on the ensemble of regression 
trees technique [28]. 

 PyTorch [29] and TensorFlow [30]: These deep 
learning frameworks offer pre-trained models and 
tools for facial landmark detection. You can find 
pre-trained models, such as those based on the 
Hourglass architecture, that can be fine-tuned or 
used directly for facial landmark detection tasks. 

 MediaPipe: Developed by Google, MediaPipe is 
an open-source framework for building cross-
platform real-time ML pipelines. It includes pre-
trained models for facial landmark detection, 
among other tasks, and offers APIs for easy 
integration into applications [31]. 

When choosing a tool or library for facial expressions 
recognition, consider factors such as ease of use, 
performance, accuracy, and compatibility with your 
project requirements and programming language 
preferences. 

V. MATERIALS AND METHODS 

A. Implementation of Facial Expressions Recognition 
in VR-Classroom 

Our present study is part of an extended effort towards 
creating an e-learning platform that utilizes VR and 
enables improved remote education through interactive 
and immersive environments. This platform is targeted to 
be released in the Meta environment, with the Unity game 
engine serving as the go-to platform for building the 
application. Unity was chosen because it offers an 
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extensive toolset and versatility in allowing for the 
deployment of applications across several platforms, real-
time rendering, and compatibility with artificial 
intelligence modules. In addition, Unity supports various 
programming languages, and the commonality of use in 
gaming and simulation makes it an excellent option for 
building interactive and sophisticated education 
applications. 

After an investigation into current approaches and 
libraries available for facial expression recognition, such 
as the use of OpenFace in facial landmark detection, we 
went ahead and created a VR solution. OpenFace, in this 
case, was utilized to recognize and project facial 
expressions of users in real time from webcam (or 
camcorder) input (Fig. 19). These expressions were then 
translated into a 3D avatar in the Unity environment, 
allowing for emotionally interactive feedback in virtual 
learning environments. 

 

 
Fig. 19. Demo of OpenFace facial landmarks detection. 

Our suggested VR application consists of an entirely 
modelled 3D classroom with realistic simulation of 
pedagogical situations. In this environment, instructors 
can communicate through individualized avatars that 
closely approximate them and mimic their facial 
expressions in real time through webcam input. 
Significantly, there is no need for specialized headsets in 
this system; it can function with just an ordinary personal 
computer with an integrated webcam, easing accessibility 
and minimizing technology obstructions. 

To model characters, the solution integrates free-source 
3D models from Mixamo, which were adapted and 
brought into the virtual space. Facial key points were 
created for the 3D characters for expressive animation 
purposes using the open-source application DEST 
(Fig. 20). Concurrently, facial feature points were 
extracted from real-time webcam video of the user 
through the use of the OpenFace library. These data points 

were saved in a file and accessed dynamically by the 
system to create real-time animated facial expressions in 
the avatar, hence realizing great emotional interactivity. 

The resultant deployment proves the practicability of 
incorporating FER systems into VR education platforms 
independent of high-end equipment. Fig. 21 show the 
concluding virtual classroom design and facial-expression 
real-time mapping onto the teacher’s avatar, justifying the 
efficacy of the proposed method in generating emotionally 
responsive virtual learning environments. 

 

 
Fig. 20. Design of VR-Classroom in Unity. 

 
Fig. 21. Demo of facial expressions recognition using OpenFace library 

in Unity. 

B. Comparative Study of Proposed VR Solution 

1) Methodology 
The comparative analysis compared the suggested VR 

solution based on the CNN-DNN model with current 
state-of-the-art FER systems in terms of accuracy, real-
time performance (time per frame), hardware 
requirements, VR compatibility, and cost. The measures 
utilized included subject-independent test partitions’ 
classification rates, frame latencies for processing, and 
deployment expenses, the results of which were verified 
using cross-dataset tests for generalizability. 

TABLE VII. COMPARATIVE PERFORMANCE ANALYSIS OF FER SYSTEMS FOR VR EDUCATION 

Model Accuracy (%) 
Real-
Time 

VR 
Compatible 

Hardware Cost/User 

ResNet-50 + CBAM + TCN 95.0 (CK+) Yes Partial High-end GPU $5000 
MobileNet V2 91.0 (FER2013) Yes Yes Meta Quest Pro $3500 

Attention ResNet-50 93.0 (RAF-DB) Yes No High-end GPU $4800 

Domain-Adapted Transformer 
87.0 (Cross-

cultural) 
Limited Yes Moderate GPU $3000 

Proposed VR Solution based on CNN-DNN 
Model 

100 (CK+) Yes Yes 
Webcam + Mid-tier 

GPU 
$1,200 

2) Quantitative comparison 
The Table VII presents a performance comparison 

between our proposed VR solution and state-of-the-art 

FER systems. 
Following the systems comparison in Table VII, we 

observe these significant outcomes: 
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(1) Accuracy: The proposed system achieved 100% 
accuracy on CK+ (vs. 95% for ResNet-50) and 
outperformed MobileNet V2 on JAFFE (78.57% 
vs. 72%). 

(2) Efficiency: With an inference time of 12 
ms/frame, the system meets real-time 
requirements (<30 ms). MobileNet V2 was faster 
(8 ms) but less accurate. 

(3) Cost-Effectiveness: At $1200/user, the solution is 
4× cheaper than commercial alternatives (e.g., 
Affectiva). 

(4) VR Integration: Unlike ResNet-50 variants, the 
proposed model works natively with Unity and 
consumer-grade VR headsets. 

3) Discussion 
The proposed VR solution based on CNN-DNN Model 

exhibited above-par accuracy (100% on CK+) and cost-
effectiveness ($1200/user) over other existing systems, 
proving its feasibility for scalable VR learning. While the 
hybrid method—unifying the use of both geometric and 
texture-based features—amplified the robustness against 
varying light conditions, performance gaps during cross-
dataset experiments (e.g., 53.55% in JAFFE) indicated 
ongoing cultural biases, a flaw common with all the 
benchmarked models. Real-time performance (12 
ms/frame) and the smooth Unity integration overcame 
main barriers to adoption, though occlusion by VR 
headsets was still a challenge. 

C. Experimental Study of Proposed VR Application 

1) Experimental methodology 
Our study evaluates the impact of integrating facial 

expression recognition into VR on pedagogical 
effectiveness in distance learning. The experiment 
involved 65 university instructors (28 female, 37 male) 
aged 30–55 (mean = 42.3 years) from the Higher Institute 
of Information and Communication (ISIC), Morocco. 
Participants represented diverse disciplines 
(communication, humanities, Politics, Journalism). 

Proposed VR solution: 
(1) Hardware: 
 Oculus Meta Quest 2 headset for immersive 

simulation.0. 
 Sony Camcorder Z90 with BlackMagic Web 

Presenter for real-time 3D facial expression 
capture. 

(1) Software : 
 A custom VR-classroom an application designed 

and developed with Unity (Fig. 22). 
 

 

Fig. 22. Demo of VR-classroom in experimental study. 

Experimental Setup: 
The study involved participants delivering a 45-Minute 

VR lecture on the history of journalism to a virtual 
audience composed of 10 AI-driven avatars. During the 
session, instructors’ facial expressions were captured in 
real time using a camera, then mapped onto their 
respective avatars to reflect emotional expressions. These 
expressions were subsequently analyzed to evaluate 
emotional congruence between the instructor and the 
avatar. 

Following the VR lecture, participants completed a 
validated mixed-methods questionnaire to assess their 
experience. The questionnaire included 15 Likert-scale 
items, ranging from 1 (“Strongly Disagree”) to 5 
(“Strongly Agree”), focusing on usability, emotional 
impact, and technical performance. Additionally, five 
open-ended questions explored participants perceived 
challenges and suggestions for improvement. Quantitative 
data were analyzed using SPSS 28, including normality 
tests and Pearson correlations, while qualitative responses 
were coded and analyzed using NVivo 12. 

2) Key results 
Quantitative and qualitative findings revealed nuanced 

adoption trends: 
a) Acceptance of Virtual Reality (VR) 

Findings in Table VIII reveal high levels of user 
acceptance of VR’s communication advantages: 74% 
agreed that VR can facilitate better emotional 
communication through channels such as Zoom (mean: 
4.2/5), and 72% approved of improving engagement with 
facial expressions (mean: 4.1/5). Encouragingly, 58% of 
text-based comments expressly identified improving 
confusion-detection in interactions as a strength of VR. 

TABLE VIII. INSTRUCTORS’ ACCEPTANCE AND PERCEPTION OF VR 

TECHNOLOGY 

Aspect Agreement 
Mean likert 

score 
Key insights 

Emotional 
communication 

improved with VR 
74% 4.2 

Compared to 
traditional platforms 

like Zoom 

Facial expressions 
improved 

engagement 
72% 4.1 

Especially helpful in 
identifying confusion 
(Confusion detection 

noted by 58% of 
qualitative responses) 

 

b) Adoption barriers 
Major obstacles delay VR implementation in learning: 

An overwhelming 93% of participants indicated extreme 
integration challenge (mean = 2.1/5), with cost as a 
primary bottleneck (87% considered hardware 
inaccessible to public institutions). System constraints 
(79% indicated insufficient bandwidth) further exacerbate 
accessibility concerns, with a sizable training deficit in 
place—only 15% of teachers report feeling competent 
with VR equipment, highlighting compelling professional 
development demands (Table IX). 
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TABLE IX. VR INTEGRATION CHALLENGES IN EDUCATION 

Challenge category 
Percentage of 
respondents 

Mean likert 
score 

Key insights 

Overall Integration 
Difficulty 

93% Mean = 2.1 Majority reported significant challenges in integrating VR into teaching 

Cost of VR Hardware 87% - Deemed unaffordable for public universities 
Infrastructure 
Limitations 

79% - Inadequate internet bandwidth affects real-time streaming 

Lack of Training / 
Proficiency 

15% felt proficient - 
Only a small fraction feels confident using VR tools; highlights need for 

professional development 

c) Technical performance 

 63% (mean = 3.1) rated facial expression detection 
as “acceptable” but imperfect. Common errors 
included misclassifying sadness as neutrality 
(reported by 42% of users). 

 However, 81% acknowledged the system’s 
affordability (~$1200/user vs. ~$5000 for 
commercial solutions like Affectiva), making it 
viable for pilot programs. 

d) Key correlations 

 A significant positive correlation (r = 0.62, p < 
0.01) between instructor age and resistance to VR, 
aligning with generational adoption gaps 
documented by Antón-Sancho et al. [32]. 

 A negative correlation (r = −0.45, p < 0.05) 
between prior tech experience and criticism of 
system performance, indicating novice users’ 
higher tolerance for flaws. 

VI. CHALLENGES AND DISCUSSION 

Facial expression recognition in virtual reality 
environments is an emerging but challenging area that 
crosses the borders of affective computing, computer 
vision, and virtual learning technologies. Although recent 
progress has shown the viability of the incorporation of 
FER systems in VR-based learning platforms, various 
technical, ethical, and practical issues are yet to be 
resolved before the systems are widely implemented. 

A. Technical Constraints in Real-Time Expression 
Recognition 

One of the biggest hurdles is to maintain accurate and 
instantaneous facial expression recognition in VR 
settings. As demonstrated in our experiments, although 
models like CNN-DNN have high accuracy on standard 
test sets like CK+, JAFFE, and OULU CASIA-VIS, their 
accuracy is much poorer under real-world conditions due 
to lighting changes, occlusions, and facial morphology 
variations among individuals. Moreover, subtle or mixed 
feelings like confusion, frustration, or disengagement are 
extremely challenging to recognize with existing FER 
algorithms. These aspects are critical for pedagogical 
environments where prompt teacher feedback has the 
potential to greatly influence student engagement and 
understanding. 

The incorporation of hybrid models that include both 
geometric characteristics along with appearance-based 
deep learning techniques, as envisioned in this research, 
has been promising for enhancing the accuracy of 

classification. Still, even these high-performance 
architectures have limitations when run on consumer-
grade hardware, which tends to have insufficient 
computational capacity to process in real time without 
sacrificing performance. 

B. Hardware Limitations and Accessibility Problems 

Another significant challenge is the absence of native 
facial tracking in most consumer-grade VR headsets. 
Although some high-end headsets, like Meta Quest 3 and 
Apple Vision Pro, have some facial expression tracking 
capabilities, these are extremely costly for mass 
educational deployment. Moreover, these solutions have 
low-resolution tracking or narrow fields-of-view, 
resulting in incomplete or erroneous expression capture. 

Our solution to this problem is to use standard webcams 
to capture facial expressions, not requiring special VR-
compatible sensors. This is much less expensive and more 
accessible, but it is appropriate for under-resourced 
educational settings. With this, there are limitations based 
on the positioning of the camera, lighting conditions, and 
the user moving around, which also influence tracking 
reliability. 

C. Ethical and Privacy Issues 

The automatic tracking of users’ expressions is also a 
serious privacy issue. Facial information is extremely 
sensitive and may convey information beyond emotional 
state, including identity, age, gender, and even conditions 
related to health. Most commercial systems based on FER 
are opaque in terms of data policy, so users have no way 
of knowing how their biometric information is processed, 
stored, or disseminated. 

As a response, our system does not store raw facial 
information but instead calculates expressions in real time 
on the user’s device. However, large-scale deployment of 
FER in education is going to demand data governance 
systems that are transparent, user consent procedures, and 
secure anonymization protocols to maintain users’ privacy 
and generate trust among educators and learners. 

D. Cultural and Demographic Biases 

As is observed in recent research (e.g., Chen and 
Park [5], most FER systems show biases across various 
demographic groups, specifically in terms of race, gender, 
and norms of cultural expression. Our experiments verify 
this pattern: the model is close to perfect on CK+ (a 
Western-dominated dataset), but performs poorly on 
JAFFE (a Japanese female dataset). Such a disparity 
confirms the requirement for more representative, diverse 
data for training to allow for equitable and effective 
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recognition of emotions across populations. 
Domain adaptation strategies and cross-cultural 

validation should be the focus of future research to 
promote generalizability. Multimodal inputs, for example, 
voice tone or body language, can also be used to reduce 
cultural bias by supplementing cues to facial expression.  

E. Pedagogical Integration and User Acceptance 

Although our experimental study estimated that 74% of 
the participating instructors believed that VR with FER 
improved emotional communication compared to other 
platforms like Zoom (see Table VIII), a significant 
resistance to adoption exists. Nearly 93% of the 
respondents indicated serious impediments to the 
incorporation of VR in their teaching, mainly based on the 
limitations of infrastructure (79%), the expenses (87%), 
and insufficient technical expertise (15%) as detailed in 
Table IX. 

In addition, although 63% of the users considered the 
facial expression recognition system satisfactory, 
misclassifications—like regarding sadness as neutrality—
were noted by 42% of the participants. Such 
misclassifications show the disconnect between systems’ 
performance in the lab and their usability in the real world, 
highlighting the necessity for the improvement of FER 
models in dynamic educational environments. 

Notably, there was a significant correlation (r = 0.62, 
p < 0.01) between teacher age and resistance to the 
technology, proposing that there are generational 
differences in the level of acceptance. By way of contrast, 
technology experience was negatively correlated with 
criticism of the performance of the system (r = −0.45, 
p <  0.05), proposing that less experienced users are less 
critical of systems’ flaws. 

F. Future Directions and Research Opportunities 

In order to address the highlighted issues, possible 
directions for future research include 

 Advanced feature extraction: Researching 
attention mechanisms and transformer 
architectures may enhance the discovery of 
nuanced emotional signals. 

 Multimodal Emotion Detection: Combining voice, 
gesture, body signals, and facial expression data 
can give rise to stronger, more inclusive emotion 
detection systems. 

 Light-weight Deep Models: Building light weight 
neural networks that are designed for efficient 
operation on small hardware devices. 

 Predicting Occluded Faces: As VR headsets tend 
to cover the top of the face, forthcoming research 
will center on the prediction of occluded facial 
features from the visible ones (e.g., the mouth and 
the bottom of the face). 

 Ethical AI Frameworks: Clear guidelines for data 
management, mitigation of bias, and user consent 
are mandatory for the ethical deployment of FER 
in education. 

In conclusion, this research confirms that the 
incorporation of facial expression recognition in VR-
based learning is both technically possible and 
pedagogically enriching. Our suggested CNN-DNN 
model, along with feature selection through the use of 
CFS, is superior to past methods regarding accuracy and 
efficiency, particularly in the case of multiple datasets (see 
Table X). But the move to practical deployment is subject 
to overcoming various issues with respect to hardware 
limitations, algorithmic bias, data privacy, and user 
readiness. 

TABLE X. COMPARISON WITH STATE-OF-THE-ART METHODS ON FACIAL EXPRESSION RECOGNITION 

Method Model Type Dataset(s) Accuracy 
Real-
Time? 

VR 
Compatible? 

Hardware 
Requirements 

Key Advantages 

Aly et al. [2] 
ResNet-50 + 

CBAM + TCN 

RAF-DB, 
FER2013, CK+, 

KDEF-FER 
95%+ Yes Partially High-end GPU 

High accuracy on 
benchmark datasets 

Zhang et al. 
[3] 

Optimized 
MobileNet V2 

RAF-DB, 
FER2013 

~91% Yes Yes 
Consumer-grade devices 

(Meta Quest Pro) 
Lightweight model 

for real-time VR use 

Aly et al. [4] 
ResNet-50 + 

CBAM 
RAF-DB, 
FER2013 

~93% Yes No 
High computational 

power 
Real-time emotion 

Chen and 
Park [5] 

Attention + 
Temporal 
Modeling 

Cross-cultural 
datasets 

~87% Limited Yes Moderate 
Addresses cross-

cultural bias 

Ours: CNN-
DNN + CFS 

Hybrid CNN-DNN 
with Feature 

Selection 

CK+, JAFFE, 
OULU CASIA-

VIS 

100% (CK+), 
81.25% (OULU), 
78.57% (JAFFE) 

Yes Yes 
Standard webcam, VR 
headset needed for our 

VR app 

Cost-effective, 
scalable, privacy-

preserving 

By emphasizing affordability, scalability, and 
pedagogical appropriateness, our solution provides an 
accessible roadmap to emotionally intelligent and 
interactive learning spaces. Future work will seek to 
improve the system’s predictive performance, especially 
in occluded situations, and broaden the scope of the 
system to other educational settings 

VII. CONCLUSION 

The integration of FER into VR learning environments 

represents a significant step towards more immersive and 
emotionally intelligent distance education. This research 
not only confirms the technical feasibility of such 
integration but also highlights its considerable 
pedagogical potential. Theoretically, the study advances 
the understanding of FER systems, particularly through 
the evaluation of hybrid CNN-DNN models combined 
with CFS. These models have demonstrated superior 
performance in terms of accuracy and efficiency for 
emotion recognition across various datasets, paving the 
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way for more robust applications in real-world conditions. 
The major contributions of this research lie in 

proposing and validating an alternative and cost-effective 
solution for real-time transmission of facial expressions 
via a simple webcam, making the technology accessible 
without expensive specialized equipment. The approach is 
distinguished by its focus on extracting facial features to 
animate an avatar, offering a more nuanced and realistic 
representation than simple discrete emotion classification. 
The implementation of a VR classroom integrating this 
FER system, and its evaluation with teachers, have 
demonstrated its feasibility and pedagogical value, while 
also identifying adoption challenges. 

Practically, the main advantage is the democratization 
of immersive education. By significantly reducing costs 
(estimated at $1200 per user compared to $5000 for some 
commercial solutions), this approach allows institutions, 
even those with limited resources, to consider integrating 
VR. The potential ease of integration using common tools 
like Unity and OpenFace also promotes wider 
dissemination. 

However, limitations remain. The performance of the 
models, although high in laboratory settings, may 
decrease in real-world conditions (lighting variations, 
occlusions). Facial occlusion by VR headsets is a major 
challenge, as are cultural and demographic biases in 
training data, which can affect system generalizability. 
Ethical issues related to the confidentiality of facial data, 
although addressed by local, real-time processing, require 
clear governance frameworks for large-scale deployment. 
User resistance to adoption and infrastructural constraints 
are also practical hurdles. 

For the future, several research avenues are promising. 
The development of algorithms capable of accurately 
predicting facial features masked by VR headsets is 
crucial. Exploring multimodal integration (voice, gestures) 
could improve the robustness and reduce the biases of 
emotion recognition systems. Finally, the continued 
creation of lightweight deep learning models and the 
establishment of strong ethical frameworks are essential 
to ensure responsible and equitable adoption of these 
technologies. 

In conclusion, this research lays the groundwork for an 
accessible solution to enrich VR education. Although 
technical and practical challenges persist, the progress 
made and future directions suggest a strong potential to 
transform remote learning environments into more 
interactive and human spaces. 
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