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Abstract—Repeatable data hiding enables multiple 
embedding operations on digital images without 
accumulating distortion. However, existing frameworks reset 
all the Least Significant Bits (LSBs) to zero for embedding 
cost assignment. This discards LSB information, reducing 
imperceptibility. This paper proposes an improved method 
that achieves distortion invariance without full LSB-zeroing. 
Instead, it selectively resets only a portion of LSBs, 
generating a partial LSB-zeroed image. This preserves the 
original LSB values in non-modifiable regions. By ranking 
pixels based on embedding costs derived from the partial 
LSB-zeroed image, our method ensures the same set of pixels 
is consistently modified across multiple embeddings. As a 
result, both repeatability and improved imperceptibility are 
achieved. 
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I. INTRODUCTION

Data hiding constitutes a critical aspect within the realm 
of multimedia security by embedding information 
imperceptibly into covers, e.g., video, image, audio. 
Content-adaptive steganography, such as High-pass, Low-
pass, and Low-pass (HILL) [1], Wavelet Obtained 
Weights WOW (WOW) [2], Spatial Universal Wavelet 
Relative Distortion (SUNIWARD) [3], assigns embedding 
costs to favor texturally complex regions, improving 
concealment. Recent advances in deep learning have 
significantly enhanced data hiding performance, enabling 
higher embedding capacities and improved security over 
traditional methods [4–6]. Meanwhile, steganalysis has 
also evolved, with deep neural networks now offering 
superior detection accuracy through automated feature 
extraction [7–8]. 

Nowadays, perceptual quality metrics are used to assess 
visual distortion introduced by data hiding techniques [9]. 
Additionally, multi-platform steganographic systems, such 
as those employing random-LSB strategies, have been 
applied to our daily lives [10]. 

Reversible data hiding techniques allow exact recovery 
of the original cover image after data extraction [11–16], 
However, these methods generally require full restoration 
of the cover before any new embedding, limiting their 
applicability in scenarios demanding repeatable 
embedding. 
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To address this limitation, Wang et al. [17] introduced 
a novel framework that allows sequential embedding 
operations without requiring prior knowledge of previous 
modifications. Their approach resets all LSBs of the image 
to zero and calculates embedding costs based on this LSB-
zeroed image. While effective for ensuring repeatability, 
this approach discards original LSB information, which is 
essential for enhancing imperceptibility and evading 
steganalysis. Moreover, embedding costs derived from the 
LSB-zeroed image are slightly distorted and fail to 
accurately reflect the statistical characteristics of the 
original cover.  

This paper proposes an improved repeatable method 
that preserves LSB information in non-modifiable regions 
while still maintaining repeatability. By partially resetting 
LSBs and optimizing cost allocation, our method enhances 
imperceptibility without sacrificing reusability. 

The remainder of this paper is organized as follows. 
Section II details the proposed method. Section III presents 
experimental results and analysis. Section IV concludes 
the paper. 

II. IMPROVED REPEATABLE DATA HIDING METHOD 

A. Repeatable Data Hiding in [17]

The repeatable data hiding proposed in [17] allows
embedding data into the LSBs of digital images while 
maintaining consistent distortion over multiple embedding 
iterations. The key idea is to ensure invariant embedding 
cost and pixel modification locations across embeddings. 

Let I be an M × N cover image, where each pixel I(u, v), 
u ∊ {1, …, M}, v ∊ {1, …, N}) is an 8-bit integer in the
range [0, 255]. Denote I′ = {I′(u, v)} as the binary LSB
plane of I, where I′(u, v) = I(u, v) mod 2. The framework
embeds a capacity of m bits into I, with payload γ = m

MN
measured in bits per pixel (bpp), which satisfies 0 ≤ γ ≤ 1. 

Wang et al. [17] first deduce that for distortion 
invariance, the LSB flipping probability p(u, v) of each 
pixel must either be 0.5 or 0. 

Then, they propose an embedding framework as shown 
in Fig. 1. The initial task is resetting all LSBs of the cover 
image to zero, producing an LSB-zeroed image. Next, 
steganographic methods (e.g., HILL, SUNIWARD) 
compute the embedding cost α0(u, v) of each pixel in the 
LSB-zeroed image. After that, pixels are sorted in 

Journal of Image and Graphics, Vol. 13, No. 6, 2025

621doi: 10.18178/joig.13.6.621-629



ascending order of α0(u, v), and the top m pixels are 
marked as modifiable. Finally, Eq. (1) assigns the final 
embedding costs α(u, v),  

,ݑሺߙ ሻݒ  ൌ  ൜1,   Iሺu, vሻ is modifiable
∞, otherwise

   (1)

Fig. 1. Embedding framework in [17]. 

And the additional data is embedded into I with LSB 
flipping probability that satisfies Eq. (2), 

p(u, v) = ൜0.5,  Iሺu, vሻ is modifiable
0, otherwise

   (2) 

Although this framework ensures repeatability by fixing 
the modifiable pixels, it suffers from a major drawback: 
the complete LSB-zeroing step erases original LSB 
information. This significantly degrades imperceptibility 
and introduces distortion into the cost map, which may not 
accurately reflect the original image statistics. 

B. Improved Method

To overcome the limitations of [17], LSB information
should be preserved under the condition that the location 
of the modifiable pixels still remains the same during 
multiple embeddings. That means when the pixels are 
sorted in ascending order of their embedding cost α0(u, v) 
before assigning the final embedding cost α(u, v), the same 
set of pixels is ranked in the first m positions. This can 
guarantee the locations of the modifiable pixels are the 
same during multiple embeddings. 

To achieve this, we propose an improved embedding 
framework that adopts an adaptive partial LSB resetting 
strategy, as illustrated in Fig. 2. The framework proceeds 
as follows: 

Firstly, the LSB of cover image is set as zero, which 
generates an LSB-zeroed image. This LSB-zeroed image 
is utilized to generate an initial embedding cost α0(u, v) 
using specific steganographic methods. In this paper, we 
choose HILL and SUNIWARD as an example to calculate α0(u, v).  

Secondly, all pixels of the cover image are sorted in 
ascending order of α0(u, v) and divided into three 
categories. The top m pixels with minimal α0(u, v) are 
marked as modifiable pixels. The next m·β pixels are 
designated as compensating pixels, where β is a 
compensating parameter. Remaining pixels are non-
modifiable pixels.  

Thirdly, a partial LSB-zeroed image Iሚ  is {ሚ(u, v)ܫ} = 
generated by selectively resetting LSBs of modifiable and 
compensating pixels. Non-modifiable pixels retain their 
original LSB values. Formally, the partial LSB-zeroed 
image satisfies. 

ሚ(u, v) = ቐܫ Iሺu, vሻ - I’(u, v),
if I(u, v) ∈ {modifiable ∪ compensating}

Iሺu, vሻ, otherwise
 (3) 

Finally, a refined embedding cost α1(u, v) is computed 
from Iሚ . The final m modifiable pixels are selected by 
sorting α1(u, v). Then, the final embedding costs α(u, v), 
which ultimately indicate which pixels can be modified, 
are assigned using Eq. (1). The additional data can be 
embedded into I with LSB flipping probability that 
satisfies Eq. (2). 

The use of compensating pixels creates a buffer that 
mitigates the influence of prior LSB changes in non-
modifiable pixels across multiple embeddings. But this 
will also lead to the distortion of embedding cost in turn. 
Thus, an equilibrium point between imperceptibility and 
repeatability should be found. More details about the 
compensating parameter will be discussed in Section III. 
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The process of adding additional data into cover image 
begins with the data embedder generating a matrix H ∈ 
{0, 1}m×MN. The matrix H is constructed to have full rank, 
i.e., R(H) = m, ensuring the system of linear equations

defined by H is solvable. The LSB of stego image is 
systematically vectorized into a binary sequence. 

I’ = ൣ I’ሺ1ሻ, I’ሺ2ሻ, …, I’ሺMNሻ൧T  ∈  ሼ0, 1ሽMN×1  (4) 

Fig. 2. Improved embedding framework. 

where each element corresponds to the LSB of a pixel at 

position ቀቔr-1

N
ቕ  + 1, r - ቔr-1

N
ቕ Nቁ, where r ∊ {1, 2, …, MN} 

and “⌊∙⌋” stands for the floor rounding operation. During 
embedding, the secret messages ࢝ ൌ ሾݓሺ1ሻ, ,ሺ2ሻݓ … , ሺ݉ሻሿ்ݓ  can be embedded into I by 
enforcing the Eq. (5). 

w ൌ  HI’     (5) 

To satisfy this equation, each row of H is treated as a 
parity-check equation, the linear combination should be 
satisfied.    

wሺtሻ  ൌ  ∑ hሺt, rሻ ∙ I’ሺrሻMN
rୀ1       (6) 

where t ∊ {1, 2, …, m}. 
If this condition is not met, the algorithm flips the LSB 

of a modifiable pixel I(r) where h(t, r) = 1, iterating until 
all equations are satisfied. As mentioned above, the 

modifiable pixels are predefined based on their embedding 
costs. 

For extraction, the data embedder sends a data hiding 
key to the receiver, from which the same H can be 
reconstructed. The additional data w can be directly 
computed through Eq. (5) from the stego image’s LSB 
vector.  

III. EXPERIMENTAL RESULT

To validate the improvement of our method, we conduct 
comprehensive experiments under standardized conditions. 
Initially, the experimental environments are set up. 
Subsequently, we ascertain the values of compensating 
parameter β. Finally, we analyze the quality of stego image 
and make comparison with the method in Ref. [17].  
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A. Experiment Setup 

We conducted experiments using the UCID dataset [18]. 
This dataset contains 1338 uncompressed color images, 
each sized 512×384 pixels. All images were converted to 
grayscale to serve as cover images. Additionally, several 
standard test images widely used in image processing were 
included, as shown in Fig. 3. For our proposed method, 
embedding costs were assigned following the procedure in 
Subsection II.B. Specifically, the initial costs were 
calculated using the HILL and SUNIWARD. For 
comparative evaluation, we employed the repeatable data 
hiding method described in [17]. 

 

   
(a)                                       (b) 

  
(c)                                      (d) 

Fig. 3. Several popular images used in image processing (a) Baboon; (b) 
Barbara; (c) Goldhill; (d) Lena. 

B. Optimization of Compensating Parameter 

To balance the trade-off between repeatability and 
imperceptibility, we systematically determine the optimal 
compensating parameter β through a data-driven approach. 
According to our following experiment results, the 
compensating parameter β should be dynamically adjusted 
across payloads to maintain optimal imperceptibility while 
preserving repeatability.  

As defined in Subsection II.B, β governs the proportion 
of compensating pixels reset during partial LSB-zeroing. 
Let m = γ⋅MN denote the number of modifiable pixels. The 
number of compensating pixels is m⋅β = β⋅γ⋅MN. To ensure 
feasibility, the combined count of modifiable and 
compensating pixels must satisfy. 

γ⋅MN + β⋅γ⋅MN < MN                         (7) 

Then we have 

β < 
1

γ
 – 1                                  (8) 

Since β ≥ 0, the valid range is 0 ≤ β < 
1

γ
 – 1. The valid 

ranges of β for selected payload values are listed in Table I. 
JSD (Jensen-Shannon Divergence) [19] is adopted to 
quantify the statistical deviation between cover and stego 
images. The range of JSD is 0 ≤ JSD ≤ 1. Lower JSD 
means less difference between the cover image and stego 

image. Thus, our work is to determine a proper β to make 
JSD of the stego image as low as possible. 

In this experiment, the payload for each image is set as 
γ ∊ {0.1, 0.2, …, 1} bpp. For each payload γ, β is evaluated 
across its valid range with a granularity of 0.01. For each 
(γ, β) pair, we execute sequentially K = 5 times 
embeddings on J = 100 UCID images. After the k-th 
embedding (k = 1, 2, …, 5) on the j-th image (j = 1, 2, …, 
100), the JSD of the stego image JSDj, k(γ, β) is computed. 
For each image j and embedding time k with certain 
payload γ, identify β that minimizes JSD as:   

 
βj, k(γ) = min{JSDj, k(γ, β)}                       (9) 

 

After βj, k(γ) across 100 images and 5 embedding times are 

collected, the final β෠(γ) is calculated as: ߚመ(γ) = 1

J·K
∑ ∑ βj, k(γ)

K
k=1

J
j=1                     (10) 

The result of ߚመ(γ) is shown in Table I. However, in real-
world scenarios, the payload is a various value tailored to 
the size of additional information. Thus, to generalize the 
empirically determined optimal compensating parameter 
from discrete payloads γ ∊ {0.1, 0.2, …, 1.0} bpp to a 
continuous domain γ ∊ (0, 1], piecewise linear 
interpolation is employed. This method constructs a 
continuous function β(γ) by linearly connecting adjacent 
discrete data points (γi, ߚመi) . Mathematically, for any 
γ ∊ [γi, γi+1], the interpolated value is defined as: 

βሺγሻ = ߚመi + ఉ෡i+1 - ఉ෡i

γi+1 -  γi ൫γ - γi൯                      (11) 

where γi  and  γi+1  are consecutive payload values from 
Table I. 

TABLE I. VALID RANGES AND OPTIMAL β FOR DIFFERENT PAYLOADS 

Payload (bpp) Range of β ࢼ෡(γ) 
0.1 [0, 9.00) 3.48 
0.2 [0, 4.00) 1.77 
0.3 [0, 2.33) 1.25 
0.4 [0, 1.50) 0.73 
0.5 [0, 1.00) 0.56 
0.6 [0, 0.67) 0.34 
0.7 [0, 0.43) 0.22 
0.8 [0, 0.25) 0.13 
0.9 [0, 0.11) 0.06 
1.0 0 0 

 

As shown in Fig. 4, the curve of β(γ) strictly respects the 
experimentally observed monotonic relationship between 
β and γ, where β decreases as γ increases, reflecting the 
need to minimize compensatory resets at higher payloads 
to avoid statistical anomalies. Linear interpolation 
maintains this trend by ensuring negative slopes between 
adjacent points, consistent with empirical results. 
Additionally, piecewise linear interpolation avoids 
overfitting noise and unnecessary oscillations.  
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Fig. 4. The curve of β(γ).  

C. Imperceptibility 

The imperceptibility of stego images is rigorously 
evaluated using five complementary metrics: PSNR (Peak 
Signal to Noise Ratio), SSIM (Structural Similarity Index 
Measurement) [20], AB-SSIM (Attention-Based SSIM), 
KLD (Kullback-Leibler Divergence), and JSD. The ranges 
of PSNR, SSIM, AB-SSIM, and KLD are 0 < PSNR ≤ +∞, 
0 ≤ SSIM ≤ 1, 0 ≤ AB-SSIM ≤ 1, and 0 < KLD ≤ +∞, 
respectively. AB-SSIM enhances SSIM by using a spatial 
attention module, which focuses on ‘where’ is an 
informative part [21]. Spatial attention assigns higher 
weights to perceptually critical regions. This weighting 
strategy better aligns with human visual perception by 
emphasizing distortions in visually salient areas. Higher 
PSNR, SSIM, and AB-SSIM indicate better preservation 
of structural and luminance information, while lower JSD 
and KLD reflect minimized statistical deviations between 
cover and stego images.  

Experimental results, as detailed in Tables II and III, 
demonstrate the effectiveness of our method when using 
the HILL cost assignment method. Across payloads 
ranging from 0.1 to 1.0 bpp, our method consistently 
achieves PSNR values exceeding 50 dB and SSIM values 
approaching the ideal value of 1.0, with UCID dataset 
averages maintaining this performance trend. 

The trade-off between imperceptibility and embedding 
capacity is observed in Tables II and III. Higher payloads 
necessitate more modifications, leading to gradual 
reductions in PSNR and SSIM. Our method maintains 
practical usability even at maximum capacity (1.0 bpp). 

TABLE II. PSNR (dB) OF OUR METHOD WITH PAYLOADS {0.1, 0.2, …, 
1} BPP 

Payload (bpp) Baboon Barbara Goldhill Lena UCID 

0.1 61.20 61.10 61.20 61.10 61.14 
0.2 58.10 58.10 58.20 58.10 58.12 
0.3 56.40 56.40 56.40 56.40 56.39 
0.4 55.20 55.10 55.10 55.10 55.10 
0.5 54.20 54.20 54.10 54.20 54.15 
0.6 53.40 53.30 53.40 53.40 53.38 
0.7 52.70 52.70 52.70 52.70 52.70 
0.8 52.10 52.10 52.10 52.10 52.10 
0.9 51.60 51.60 51.60 51.60 51.60 
1.0 51.20 51.20 51.20 51.20 51.20 

TABLE III. SSIM OF OUR METHOD WITH PAYLOADS {0.1, 0.2, …, 1} 

BPP 

Payload (bpp) Baboon Barbara Goldhill Lena UCID 
0.1 0.9999 0.9999 0.9999 0.9999 0.9999 
0.2 0.9999 0.9999 0.9997 0.9995 0.9995 
0.3 0.9999 0.9998 0.9996 0.9991 0.9990 
0.4 0.9999 0.9994 0.9994 0.9984 0.9980 
0.5 0.9998 0.9983 0.9990 0.9972 0.9964 
0.6 0.9997 0.9971 0.9987 0.9958 0.9937 
0.7 0.9996 0.9959 0.9982 0.9941 0.9888 
0.8 0.9994 0.9947 0.9978 0.9921 0.9809 
0.9 0.9990 0.9931 0.9971 0.9899 0.9692 
1.0 0.9985 0.9912 0.9934 0.9877 0.9509 

 

In our proposed method, by setting proper compensating 
parameter β historical modifications are partially erased. 
This partial erasure offsets distortion arising from varying 
embedding costs across operations. Consequently, overall 
distortion from data hiding is minimized. As a result, the 
PSNR, SSIM, and AB-SSIM values will hardly decrease 
during multiple embeddings. To validate this, we measure 
these metrics on Lena with payloads γ ∊ {0.1, 0.3, …, 0.9} 
bpp under sequential embeddings. As demonstrated in 
Fig. 5, all metrics remain essentially invariant during 9 
embeddings, confirming the method’s repeatability. The 
slight fluctuations are attributable to the inherent 
randomness of embedded binary sequences.   

Furthermore, comparative analysis of Fig. 5(b) and 5(c) 
reveals that AB-SSIM maintains higher values than SSIM, 
especially at larger payloads, demonstrating better 
imperceptibility to visually salient regions. This is because 
our method restricts modifications to low-risk areas, which 
preserves structural integrity in visually salient regions 
weighted heavily by AB-SSIM.  
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Fig. 5. Imperceptibility of our method for (a) PSNR; (b) SSIM; (c) AB-

SSIM on Lena with multiple embeddings. 

To evaluate the imperceptibility improvements of our 
method, we also provide a group of imperceptibility 
comparisons with the method in [17], shown in Figs. 6–9 
and Tables IV and V. 
 

 

 
Fig. 6. Imperceptibility comparisons of our method and the method in 

[17] for (a) JSD; (b) KLD tested on Baboon, Lena. 

 

 
Fig. 7. Imperceptibility comparisons of our method and the method in 

[17] for (a) JSD; (b) KLD tested on Goldhill, Barbara. 

 

 
Fig. 8. Imperceptibility comparisons of our method and the method in [17] 
for average (a) JSD; (b) KLD tested on the image in UCID using HILL. 
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Fig. 9. Imperceptibility comparisons of our method and the method in [17] 
for average (a) JSD; (b) KLD tested on the image in UCID using 
SUNIWARD. 

The line plots of Figs. 8 and 9 exhibited significant 
overlap due to the excessively large scale of the data points. 
Thus, we also employ a data table (shown in Tables IV and 
V) to present the numerical results. 

It can be seen that our method achieves significantly 
lower JSD and KLD values across all tested payloads γ ∊ 
{0.1, 0.2, …, 1} bpp. The reason is that the adaptive partial 
LSB resetting strategy, which preserves the information of 
the original LSB plane in non-modifiable regions, unlike 
the global LSB-zeroing in [17]. Therefore, the 

imperceptibility of our method is better than the method 
in [17].  

To validate generalizability beyond HILL, we replicated 
the imperceptibility analysis using the SUNIWARD cost 
assignment. Fig. 9. presents the average JSD and KLD 
results for SUNIWARD on the UCID dataset. Consistent 
with the HILL results in Fig. 8, our method achieves lower 
JSD and KLD values compared to [17] across all payloads. 
Numerical results are detailed in Tables IV and V. This 
demonstrates that the proposed partial LSB resetting 
strategy effectively preserves statistical characteristics 
regardless of the underlying cost function 

To statistically validate the imperceptibility 
improvements, we conducted Wilcoxon signed-rank tests 
on JSD and KLD metrics at payload γ = 0.5 bpp using 
HILL cost assignment. The tests were performed on UCID 
images comparing our method against [17]. The null 
hypothesis (H₀) stated no difference in distortion between 
two methods, while the alternative hypothesis (H₁) 
asserted lower distortion with our method.  

As shown in Table VI, significantly negative z-values 
with p < 0.001 confirm our method produces substantially 
lower distortion. Large effect sizes (|r| > 0.8) and negative 
median differences demonstrate not only statistical 
significance but also practical relevance of these 
improvements. 

TABLE IV. AVERAGE JSD TESTED ON THE IMAGE IN UCID 

Steganographic 
Methods  

Payload (bpp) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

HILL 
[17]-UCID 2.978×10−5 5.670×10−5 8.488×10−5 1.160×10−4 1.523×10−4 2.013×10−4 2.844×10−4 4.333×10−4 7.747×10−4 

Proposed-UCID 2.969×10−5 5.654×10−5 8.471×10−5 1.158×10−4 1.517×10−4 2.001×10−4 2.771×10−4 4.157×10−4 7.473×10−4 

SUNIWARD 
[17]-UCID 4.551×10−5 8.049×10−5 1.131×10−4 1.467×10−4 1.832×10−4 2.265×10−4 2.748×10−4 3.677×10−4 5.455×10−4 

Proposed-UCID 4.420×10−5 8.017×10−5 1.129×10−4 1.451×10−4 1.793×10−4 2.224×10−4 2.730×10−4 3.672×10−4 5.344×10−4 

TABLE V. AVERAGE KLD TESTED ON THE IMAGE IN UCID 

Steganographic 
Methods 

Payload (bpp) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

HILL 
[17]-UCID 1.115×10−4 2.212×10−4 3.331×10−4 4.552×10−4 5.992×10−4 7.891×10−4 1.104×10−3 1.660×10−3 2.915×10−3 

Proposed-UCID 1.114×10−4 2.206×10−4 3.328×10−4 4.544×10−4 5.962×10−4 7.855×10−4 1.080×10−3 1.600×10−3 2.816×10−3 

SUNIWARD 
[17]-UCID 1.757×10−4 3.138×10−4 4.449×10−4 5.753×10−4 7.207×10−4 8.923×10−4 1.081×10−3 1.442×10−3 2.127×10−3 

Proposed-UCID 1.710×10−4 3.116×10−4 4.435×10−4 5.694×10−4 7.065×10−4 8.758×10−4 1.075×10−3 1.440×10−3 2.086×10−3 

TABLE VI. WILCOXON SIGNED-RANK TEST RESULTS  

Metric z-value p-value r Median Difference 

JSD −3.734 0.0002 −0.880 −9.13×10−6 

KLD −3.418 0.0006 −0.806 −1.87×10−5 

D. Undetectability 

We further assess the undetectability of our method 
against conventional steganalysis using Spatial Rich 
Model (SRM) [22] and Subtractive Pixel Adjacency 
Matrix (SPAM) [23] feature sets. For each payload level γ ∊ {0.3, 0.5} bpp (commonly adopted in steganographic 

benchmarking), we embed data using our proposed 
method and the method in [17] respectively. The average 
SRM and SPAM feature values across all test images are 
then computed for both methods. 

A portion of the SRM and SPAM feature values is 
illustrated in Figs. 10 and 11. The near-overlapping points 
indicate no significant divergence between the two 
methods. This demonstrates that our method preserves the 
same level of undetectability as [17], despite eliminating 
full LSB-zeroing. This is because Wang [17] already 
achieves high security, the effect of our refinement is 
relatively limited. Consequently, our method maintains 
undetectability while addressing the imperceptibility 
limitations of the original framework. 
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Fig. 10. Comparisons of SRM feature values at payload (a) 0.3 bpp (b) 

0.5 bpp. 

 

 
Fig. 11. Comparisons of SPAM feature values at payload (a) 0.3 bpp (b) 

0.5 bpp. 

IV. CONCLUSION 

This paper presents an improved framework for 
repeatable data hiding that addresses the imperceptibility 
limitations of prior methods. By adopting a selective LSB 
resetting strategy, our approach retains the original LSB 
values in non-modifiable regions, significantly reducing 
visual and statistical distortion. The introduction of 
compensating pixels ensures that embedding cost 
consistency is maintained across multiple embeddings, 
thereby preserving repeatability. 

In future work, we will explore cross-media repeatable 
embedding, extending the current method beyond static 
images to audio, video, and other modalities. Moreover, as 
shown in Table I, the compensating parameter β currently 
only depends on the load γ and does not consider the 
difference in image content. Thus, designing an image-
dependent β estimation strategy remains an important 
research direction. Finally, since our current 
undetectability evaluation is based on traditional feature 
sets such as SRM and SPAM, future work will focus on 
assessing robustness against advanced deep learning-
based classifiers.    

Repeatable data hiding enhances the flexibility of secure 
multimedia communication frameworks. However, it also 
poses ethical concerns. Responsible development and 
deployment are essential to ensure these technologies 
serve legitimate privacy and security applications. 
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