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Abstract—Repeatable data hiding enables multiple
embedding operations on digital images without
accumulating distortion. However, existing frameworks reset
all the Least Significant Bits (LSBs) to zero for embedding
cost assignment. This discards LSB information, reducing
imperceptibility. This paper proposes an improved method
that achieves distortion invariance without full LSB-zeroing.
Instead, it selectively resets only a portion of LSBs,
generating a partial LSB-zeroed image. This preserves the
original LSB values in non-modifiable regions. By ranking
pixels based on embedding costs derived from the partial
LSB-zeroed image, our method ensures the same set of pixels
is consistently modified across multiple embeddings. As a
result, both repeatability and improved imperceptibility are
achieved.
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I. INTRODUCTION

Data hiding constitutes a critical aspect within the realm
of multimedia security by embedding information
imperceptibly into covers, e.g., video, image, audio.
Content-adaptive steganography, such as High-pass, Low-
pass, and Low-pass (HILL) [1], Wavelet Obtained
Weights WOW (WOW) [2], Spatial Universal Wavelet
Relative Distortion (SUNIWARD) [3], assigns embedding
costs to favor texturally complex regions, improving
concealment. Recent advances in deep learning have
significantly enhanced data hiding performance, enabling
higher embedding capacities and improved security over
traditional methods [4—6]. Meanwhile, steganalysis has
also evolved, with deep neural networks now offering
superior detection accuracy through automated feature
extraction [7-8].

Nowadays, perceptual quality metrics are used to assess
visual distortion introduced by data hiding techniques [9].
Additionally, multi-platform steganographic systems, such
as those employing random-LSB strategies, have been
applied to our daily lives [10].

Reversible data hiding techniques allow exact recovery
of the original cover image after data extraction [11-16],
However, these methods generally require full restoration
of the cover before any new embedding, limiting their
applicability in scenarios demanding repeatable
embedding.

Manuscript received May 20, 2025; revised June 19, 2025; accepted July
23,2025; published November 25, 2025.

doi: 10.18178/joig.13.6.621-629

To address this limitation, Wang et al. [17] introduced
a novel framework that allows sequential embedding
operations without requiring prior knowledge of previous
modifications. Their approach resets all LSBs of the image
to zero and calculates embedding costs based on this LSB-
zeroed image. While effective for ensuring repeatability,
this approach discards original LSB information, which is
essential for enhancing imperceptibility and evading
steganalysis. Moreover, embedding costs derived from the
LSB-zeroed image are slightly distorted and fail to
accurately reflect the statistical characteristics of the
original cover.

This paper proposes an improved repeatable method
that preserves LSB information in non-modifiable regions
while still maintaining repeatability. By partially resetting
LSBs and optimizing cost allocation, our method enhances
imperceptibility without sacrificing reusability.

The remainder of this paper is organized as follows.
Section II details the proposed method. Section III presents
experimental results and analysis. Section IV concludes
the paper.

II. IMPROVED REPEATABLE DATA HIDING METHOD

A. Repeatable Data Hiding in [17]

The repeatable data hiding proposed in [17] allows
embedding data into the LSBs of digital images while
maintaining consistent distortion over multiple embedding
iterations. The key idea is to ensure invariant embedding
cost and pixel modification locations across embeddings.

Let I be an M x N cover image, where each pixel /(u, v),
ued{l,.., M}, ve{l, .., N})is an 8-bit integer in the
range [0, 255]. Denote I' = {I'(u, v)} as the binary LSB
plane of I, where /'(u, v) = I(u, v) mod 2. The framework

embeds a capacity of m bits into I, with payload y = MﬂN

measured in bits per pixel (bpp), which satisfies 0 <y < 1.

Wang et al [17] first deduce that for distortion
invariance, the LSB flipping probability p(u, v) of each
pixel must either be 0.5 or 0.

Then, they propose an embedding framework as shown
in Fig. 1. The initial task is resetting all LSBs of the cover
image to zero, producing an LSB-zeroed image. Next,
steganographic methods (e.g., HILL, SUNIWARD)
compute the embedding cost aa(u, v) of each pixel in the
LSB-zeroed image. After that, pixels are sorted in
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ascending order of adu, v), and the top m pixels are
marked as modifiable. Finally, Eq. (1) assigns the final
embedding costs a(u, v),

bits

1, I(u,v) is modifiable
00, otherwise

alu,v) = { @)
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Fig. 1. Embedding framework in [17].

And the additional data is embedded into I with LSB
flipping probability that satisfies Eq. (2),

0.5, I(u, v) is modifiable
0, otherwise

p = | @

Although this framework ensures repeatability by fixing
the modifiable pixels, it suffers from a major drawback:
the complete LSB-zeroing step erases original LSB
information. This significantly degrades imperceptibility
and introduces distortion into the cost map, which may not
accurately reflect the original image statistics.

B.  Improved Method

To overcome the limitations of [17], LSB information
should be preserved under the condition that the location
of the modifiable pixels still remains the same during
multiple embeddings. That means when the pixels are
sorted in ascending order of their embedding cost ao(u, v)
before assigning the final embedding cost a(u, v), the same
set of pixels is ranked in the first m positions. This can
guarantee the locations of the modifiable pixels are the
same during multiple embeddings.

To achieve this, we propose an improved embedding
framework that adopts an adaptive partial LSB resetting
strategy, as illustrated in Fig. 2. The framework proceeds
as follows:

Firstly, the LSB of cover image is set as zero, which
generates an LSB-zeroed image. This LSB-zeroed image
is utilized to generate an initial embedding cost an(u, v)
using specific steganographic methods. In this paper, we
choose HILL and SUNIWARD as an example to calculate

aou, v).
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Secondly, all pixels of the cover image are sorted in
ascending order of afu, v) and divided into three
categories. The top m pixels with minimal alu, v) are
marked as modifiable pixels. The next m-f pixels are
designated as compensating pixels, where f is a
compensating parameter. Remaining pixels are non-
modifiable pixels.

Thirdly, a partial LSB-zeroed image I = {I(u, v)} is
generated by selectively resetting LSBs of modifiable and
compensating pixels. Non-modifiable pixels retain their
original LSB values. Formally, the partial LSB-zeroed
image satisfies.

I(M, V) - [,(u’ V);
I(u, v) = {if I(u, v) € {modifiable U compensating} (3)
I(u, v), otherwise

Finally, a refined embedding cost a;(u, v) is computed
from I. The final m modifiable pixels are selected by
sorting a;(u, v). Then, the final embedding costs a(u, v),
which ultimately indicate which pixels can be modified,
are assigned using Eq. (1). The additional data can be
embedded into I with LSB flipping probability that
satisfies Eq. (2).

The use of compensating pixels creates a buffer that
mitigates the influence of prior LSB changes in non-
modifiable pixels across multiple embeddings. But this
will also lead to the distortion of embedding cost in turn.
Thus, an equilibrium point between imperceptibility and
repeatability should be found. More details about the
compensating parameter will be discussed in Section III.
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The process of adding additional data into cover image
begins with the data embedder generating a matrix H €
{0, 1}'”XMN . The matrix H is constructed to have full rank,
i.e., R(H) = m, ensuring the system of linear equations

Start

= —]o|e
— =]o|e

o =]~ |~

bits

defined by H is solvable. The LSB of stego image is
systematically vectorized into a binary sequence.

I= [11(1),1‘(2), ...,1‘(MN)]T € {0, 1M1 4)
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Fig. 2. Improved embedding framework.

where each element corresponds to the LSB of a pixel at
.- r-1 r-1
position (IWJ +1,7r- lWJ N), where r € {1, 2, ..., MN}
and “|-]” stands for the floor rounding operation. During
embedding, the secret messages w =
[w(),w(2),...,w(m)]" can be embedded into I by
enforcing the Eq. (5).
w = HI ®)
To satisfy this equation, each row of H is treated as a
parity-check equation, the linear combination should be

satisfied.
w(®) = XNt r) -1 (r) (6)

where t € {1,2, ..., m}.

If this condition is not met, the algorithm flips the LSB
of a modifiable pixel /(r) where A(z, r) = 1, iterating until
all equations are satisfied. As mentioned above, the

modifiable pixels are predefined based on their embedding
costs.

For extraction, the data embedder sends a data hiding
key to the receiver, from which the same H can be
reconstructed. The additional data w can be directly
computed through Eq. (5) from the stego image’s LSB
vector.

III. EXPERIMENTAL RESULT

To validate the improvement of our method, we conduct
comprehensive experiments under standardized conditions.
Initially, the experimental environments are set up.
Subsequently, we ascertain the values of compensating
parameter 5. Finally, we analyze the quality of stego image
and make comparison with the method in Ref. [17].
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A. Experiment Setup

We conducted experiments using the UCID dataset [18].
This dataset contains 1338 uncompressed color images,
each sized 512x384 pixels. All images were converted to
grayscale to serve as cover images. Additionally, several
standard test images widely used in image processing were
included, as shown in Fig. 3. For our proposed method,
embedding costs were assigned following the procedure in
Subsection II.B. Specifically, the initial costs were
calculated using the HILL and SUNIWARD. For
comparative evaluation, we employed the repeatable data
hiding method described in [17].

Fig. 3. Several popular images used in image processing (a) Baboon; (b)
Barbara; (c) Goldhill; (d) Lena.

B.  Optimization of Compensating Parameter

To balance the trade-off between repeatability and
imperceptibility, we systematically determine the optimal
compensating parameter /5 through a data-driven approach.
According to our following experiment results, the
compensating parameter  should be dynamically adjusted
across payloads to maintain optimal imperceptibility while
preserving repeatability.

As defined in Subsection I1.B, § governs the proportion
of compensating pixels reset during partial LSB-zeroing.
Let m = y-MN denote the number of modifiable pixels. The
number of compensating pixels is m-f = f-y-MN. To ensure
feasibility, the combined count of modifiable and
compensating pixels must satisfy.

y-MN + B-y-MN < MN 7

Then we have
ﬂ<i71 ®)
Since f = 0, the valid range is 0 < < i — 1. The valid
ranges of /5 for selected payload values are listed in Table I.
JSD (Jensen-Shannon Divergence) [19] is adopted to
quantify the statistical deviation between cover and stego

images. The range of JSD is 0 < JSD < 1. Lower JSD
means less difference between the cover image and stego
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image. Thus, our work is to determine a proper  to make
JSD of the stego image as low as possible.

In this experiment, the payload for each image is set as
y€{0.1,0.2, ..., 1} bpp. For each payload y, f is evaluated
across its valid range with a granularity of 0.01. For each
(y, p) pair, we execute sequentially K 5 times
embeddings on J = 100 UCID images. After the k-th
embedding (k=1, 2, ..., 5) on the j-th image (j =1, 2, ...,
100), the JSD of the stego image JSD;, «(y, B) is computed.
For each image j and embedding time k& with certain
payload y, identify £ that minimizes JSD as:

B; () = min{JSD; (7, B)}

©)

After B, (y) across 100 images and 5 embedding times are
S A~
collected, the final S(y) is calculated as:

b= XL ZK B, ) (10)

The result of ﬁ’ (y) is shown in Table I. However, in real-
world scenarios, the payload is a various value tailored to
the size of additional information. Thus, to generalize the
empirically determined optimal compensating parameter
from discrete payloads y € {0.1, 0.2, ..., 1.0} bpp to a
continuous domain y € (0, 1], piecewise linear
interpolation is employed. This method constructs a
continuous function f(y) by linearly connecting adjacent
discrete data points (y,, B, . Mathematically, for any
? €[y, 7,,,], the interpolated value is defined as:

p) =i+ L (y-) (11)

where y, and y, , are consecutive payload values from
Table I.

TABLE I. VALID RANGES AND OPTIMAL 3 FOR DIFFERENT PAYLOADS

Payload (bpp) Range of B®
0.1 [0, 9.00) 3.48
0.2 [0, 4.00) 1.77
0.3 [0,2.33) 125
0.4 [0, 1.50) 0.73
0.5 [0, 1.00) 0.56
0.6 [0, 0.67) 0.34
0.7 [0, 0.43) 0.22
0.8 [0, 0.25) 0.13
0.9 [0,0.11) 0.06
1.0 0 0

As shown in Fig. 4, the curve of f(y) strictly respects the
experimentally observed monotonic relationship between
p and p, where S decreases as y increases, reflecting the
need to minimize compensatory resets at higher payloads
to avoid statistical anomalies. Linear interpolation
maintains this trend by ensuring negative slopes between
adjacent points, consistent with empirical results.
Additionally, piecewise linear interpolation avoids
overfitting noise and unnecessary oscillations.
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C. Imperceptibility

The imperceptibility of stego images is rigorously
evaluated using five complementary metrics: PSNR (Peak
Signal to Noise Ratio), SSIM (Structural Similarity Index
Measurement) [20], AB-SSIM (Attention-Based SSIM),
KLD (Kullback-Leibler Divergence), and JSD. The ranges
of PSNR, SSIM, AB-SSIM, and KLD are 0 < PSNR < +co,
0<SSIM<1,0<AB-SSIM <1, and 0 < KLD < +o0,
respectively. AB-SSIM enhances SSIM by using a spatial
attention module, which focuses on ‘where’ is an
informative part [21]. Spatial attention assigns higher
weights to perceptually critical regions. This weighting
strategy better aligns with human visual perception by
emphasizing distortions in visually salient areas. Higher
PSNR, SSIM, and AB-SSIM indicate better preservation
of structural and luminance information, while lower JSD
and KLD reflect minimized statistical deviations between
cover and stego images.

Experimental results, as detailed in Tables II and III,
demonstrate the effectiveness of our method when using
the HILL cost assignment method. Across payloads
ranging from 0.1 to 1.0 bpp, our method consistently
achieves PSNR values exceeding 50 dB and SSIM values
approaching the ideal value of 1.0, with UCID dataset
averages maintaining this performance trend.

The trade-off between imperceptibility and embedding
capacity is observed in Tables II and III. Higher payloads
necessitate more modifications, leading to gradual
reductions in PSNR and SSIM. Our method maintains
practical usability even at maximum capacity (1.0 bpp).

TABLE II. PSNR (dB) OF OUR METHOD WITH PAYLOADS {0.1,0.2, ...,

1} BPP
Payload (bpp) Baboon Barbara Goldhill Lena UCID
0.1 61.20 61.10 61.20 61.10 61.14
0.2 58.10 58.10 58.20 58.10  58.12
0.3 56.40 56.40 56.40 56.40  56.39
0.4 55.20 55.10 55.10 55.10  55.10
0.5 54.20 54.20 54.10 5420 54.15
0.6 53.40 53.30 53.40 5340  53.38
0.7 52.70 52.70 52.70 5270  52.70
0.8 52.10 52.10 52.10 52.10  52.10
0.9 51.60 51.60 51.60 51.60  51.60
1.0 51.20 51.20 51.20 51.20 51.20

TABLE III. SSIM OF OUR METHOD WITH PAYLOADS {0.1,0.2, ..., 1}

BPP
Payload (bpp) Baboon Barbara Goldhill Lena UCID
0.1 0.9999 0.9999 0.9999  0.9999 0.9999
0.2 0.9999 0.9999 0.9997  0.9995 0.9995
0.3 0.9999 0.9998 0.9996 0.9991 0.9990
0.4 0.9999 0.9994 0.9994 0.9984 0.9980
0.5 0.9998 0.9983 0.9990 0.9972 0.9964
0.6 0.9997 0.9971 0.9987 0.9958 0.9937
0.7 0.9996 0.9959 0.9982 0.9941 0.9888
0.8 0.9994 0.9947 0.9978 0.9921 0.9809
0.9 0.9990 0.9931 0.9971 0.9899 0.9692
1.0 0.9985 0.9912 0.9934 0.9877 0.9509

In our proposed method, by setting proper compensating
parameter £ historical modifications are partially erased.
This partial erasure offsets distortion arising from varying
embedding costs across operations. Consequently, overall
distortion from data hiding is minimized. As a result, the
PSNR, SSIM, and AB-SSIM values will hardly decrease
during multiple embeddings. To validate this, we measure
these metrics on Lena with payloads y € {0.1,0.3, ..., 0.9}
bpp under sequential embeddings. As demonstrated in
Fig. 5, all metrics remain essentially invariant during 9
embeddings, confirming the method’s repeatability. The
slight fluctuations are attributable to the inherent
randomness of embedded binary sequences.

Furthermore, comparative analysis of Fig. 5(b) and 5(c)
reveals that AB-SSIM maintains higher values than SSIM,
especially at larger payloads, demonstrating better
imperceptibility to visually salient regions. This is because
our method restricts modifications to low-risk areas, which
preserves structural integrity in visually salient regions
weighted heavily by AB-SSIM.
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Fig. 5. Imperceptibility of our method for (a) PSNR; (b) SSIM; (c) AB-
SSIM on Lena with multiple embeddings.
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To evaluate the imperceptibility improvements of our
method, we also provide a group of imperceptibility
comparisons with the method in [17], shown in Figs. 6-9

and Tables IV and V.
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Fig. 6. Imperceptibility comparisons of our method and the method in
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Fig. 9. Imperceptibility comparisons of our method and the method in [17]
for average (a) JSD; (b) KLD tested on the image in UCID using
SUNIWARD.

The line plots of Figs. 8 and 9 exhibited significant
overlap due to the excessively large scale of the data points.
Thus, we also employ a data table (shown in Tables IV and
V) to present the numerical results.

It can be seen that our method achieves significantly
lower JSD and KLD values across all tested payloads y €

imperceptibility of our method is better than the method
in [17].

To validate generalizability beyond HILL, we replicated
the imperceptibility analysis using the SUNIWARD cost
assignment. Fig. 9. presents the average JSD and KLD
results for SUNIWARD on the UCID dataset. Consistent
with the HILL results in Fig. 8, our method achieves lower
JSD and KLD values compared to [17] across all payloads.
Numerical results are detailed in Tables IV and V. This
demonstrates that the proposed partial LSB resetting
strategy effectively preserves statistical characteristics
regardless of the underlying cost function

To statistically validate the imperceptibility
improvements, we conducted Wilcoxon signed-rank tests
on JSD and KLD metrics at payload y = 0.5 bpp using
HILL cost assignment. The tests were performed on UCID
images comparing our method against [17]. The null
hypothesis (Hy) stated no difference in distortion between
two methods, while the alternative hypothesis (H;)
asserted lower distortion with our method.

As shown in Table VI, significantly negative z-values
with p <0.001 confirm our method produces substantially
lower distortion. Large effect sizes (|r] > 0.8) and negative

{0.1,0.2, ..., I} bpp. The reason is that the adaptive partial ~ median differences demonstrate not only statistical
LSB resetting strategy, which preserves the information of  sjgnificance but also practical relevance of these
the original LSB plane in non-modifiable regions, unlike  improvements.
the global LSB-zeroing in [17]. Therefore, the
TABLE IV. AVERAGE JSD TESTED ON THE IMAGE IN UCID
Steganographic
Motoqe | Payload (bpp) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
HILL [17]-UCID  2.978x107 5.670x107 8.488x107° 1.160x107* 1.523x107* 2.013x107* 2.844x107* 4.333x107* 7.747x10°*
Proposed-UCID 2.969x107° 5.654x107° 8.471x107° 1.158x107* 1.517x107* 2.001x10™* 2.771x10™* 4.157x10™* 7.473x10™*
[17]-UCID  4.551x107 8.049x107 1.131x107* 1.467x107* 1.832x107* 2.265x107* 2.748x107* 3.677x10* 5.455x10°*
SUNIWARD
Proposed-UCID 4.420x107° 8.017x107° 1.129x107* 1.451x107* 1.793x107* 2.224x10™* 2.730x10™* 3.672x10™* 5.344x107*
TABLE V. AVERAGE KLD TESTED ON THE IMAGE IN UCID
Steganographic
Mot Payload (bpp) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
[17]-UCID  1.115x107* 2.212x107* 3.331x107* 4.552x107* 5.992x10* 7.891x10* 1.104x107° 1.660x107° 2.915x107°
HILL
Proposed-UCID 1.114x107* 2.206x107* 3.328x107* 4.544x10* 5.962x10°* 7.855x10™* 1.080x107 1.600x107 2.816x1073
[17]-UCID  1.757x107* 3.138x107* 4.449x10™* 5.753x107* 7.207x10* 8.923x10* 1.081x107° 1.442x107° 2.127x10°*
SUNIWARD
Proposed-UCID 1.710x107* 3.116x107* 4.435x107* 5.694x107* 7.065x107* 8.758x10™* 1.075x107> 1.440x107 2.086x107
TABLE VI. WILCOXON SIGNED-RANK TEST RESULTS benchmarking), we embed data using -our proposed
method and the method in [17] respectively. The average
Metric  z-value  p-value r Median Difference SRM and SPAM feature values across all test images are
1SD 3734 0.0002 0,850 9. 13%10°° then computed for both methods.
’ ‘ ’ ’ A portion of the SRM and SPAM feature values is
KLD  -3.418  0.0006  —0.806 —1.87x10°7° illustrated in Figs. 10 and 11. The near-overlapping points

D. Undetectability

We further assess the undetectability of our method
against conventional steganalysis using Spatial Rich
Model (SRM) [22] and Subtractive Pixel Adjacency
Matrix (SPAM) [23] feature sets. For each payload level y
€ {0.3, 0.5} bpp (commonly adopted in steganographic
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indicate no significant divergence between the two
methods. This demonstrates that our method preserves the
same level of undetectability as [17], despite eliminating
full LSB-zeroing. This is because Wang [17] already
achieves high security, the effect of our refinement is
relatively limited. Consequently, our method maintains
undetectability while addressing the imperceptibility
limitations of the original framework.
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IV. CONCLUSION

This paper presents an improved framework for
repeatable data hiding that addresses the imperceptibility
limitations of prior methods. By adopting a selective LSB
resetting strategy, our approach retains the original LSB
values in non-modifiable regions, significantly reducing
visual and statistical distortion. The introduction of
compensating pixels ensures that embedding cost
consistency is maintained across multiple embeddings,
thereby preserving repeatability.

In future work, we will explore cross-media repeatable
embedding, extending the current method beyond static
images to audio, video, and other modalities. Moreover, as
shown in Table I, the compensating parameter f currently
only depends on the load y and does not consider the
difference in image content. Thus, designing an image-
dependent S estimation strategy remains an important
research  direction.  Finally, since our current
undetectability evaluation is based on traditional feature
sets such as SRM and SPAM, future work will focus on
assessing robustness against advanced deep learning-
based classifiers.

Repeatable data hiding enhances the flexibility of secure
multimedia communication frameworks. However, it also
poses ethical concerns. Responsible development and
deployment are essential to ensure these technologies
serve legitimate privacy and security applications.
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