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Abstract—Cone-beam spiral Computed Tomography (CT)
naturally extends longitudinal coverage, yet its transverse
Field of View (FOV) remains constrained, causing projection
truncation at high geometric magnification. We present an
offset-spiral  acquisition scheme paired with a
Parker-weighted reconstruction algorithm that doubles the
usable transverse FOV without modifying hardware. The
one-sided lateral shift introduces projection redundancy,
which is compensated by a tailored weighting function,
allowing accurate recovery of truncated data through the
standard Feldkamp-Davis-Kress (FDK) pipeline. Tests on
simulated phantoms and real lithium-battery scans show that
the proposed method preserves fine structural details and
attains image quality comparable to conventional full-FOV
reconstructions (mean PSNR =32 dB, SSIM = 0.99,
MSE <0.014, FSIM and VIF<0.97). The technique is readily
deployable in existing industrial CT systems and broadens
the applicability of spiral FDK reconstruction to large,
high-aspect-ratio objects.
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L. INTRODUCTION

In the field of industrial and medical Computed
Tomography (CT), the spatial resolution of an image
represents the ability of the CT device to distinguish the
smallest size of objects. If the spatial resolution of the
imaging device is insufficient, it will not be able to
produce clear and high-quality imaging of small structures
within the object. Factors that determine the spatial
resolution of an image include the pixel size of the detector,
the focal size of the X-ray source, and the imaging
magnification ratio. The pixel size determines the spatial
sampling capability of the detector, and smaller pixel sizes
can provide higher spatial resolution, allowing for better
capture of fine details. The focal size of the X-ray source
determines the focusing ability of the X-ray beam, and
smaller focal size can concentrate the X-ray beam more,
thereby improving spatial resolution [1, 2]. The imaging
magnification ratio refers to the proportional relationship
between the size of objects in the image and their actual
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size. A higher imaging magnification ratio can magnify the
details in the image, thus improving spatial resolution. In
practical imaging, the detector and X-ray source are
already determined, and the corresponding pixel size and
focal size cannot be changed. Therefore, higher resolution
imaging can only be achieved by changing the imaging
magnification ratio.

Fig. 1. Slice images of lithium batteries with different magnification
ratios: (a) Magnification ratio is 6.129; (b) The amplification ratio is
2.112.

From Fig. 1, it can be observed that increasing the
magnification ratio leads to higher resolution images.
However, once the model of the detector is determined, its
corresponding imaging Field of View becomes limited. As
the magnification ratio increases, the limited FOV is
unable to capture the complete image of the object under
inspection. As shown in Fig. 2, under high magnification
conditions, the detector can only perform partial sampling
of the test object.
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Fig. 2. The limited FOV of detectors under high magnification ratio.

II.  RELATED THEORY

The purpose of this article is to design a Large FOV
(LFOV) algorithm based on the spiral Feldkamp-Davis-



Journal of Image and Graphics, Vol. 13, No. 6, 2025

Kress (FDK) theory. To gain a deep understanding of the
proposed algorithm, this section will first conduct an in-
depth analysis of the Filtered Back Projection (FBP)
algorithm. As the foundation of image reconstruction, the
FBP algorithm provides a key understanding of the
fundamental reconstruction principles and is a prerequisite
for understanding more advanced reconstruction
algorithms. Building upon the FBP algorithm, the study of
the basic theory of circular trajectory FDK represents an
important transition from two-dimensional to three-
dimensional reconstruction. The analysis of the circular
trajectory FDK algorithm can provide important
theoretical support for understanding the spiral FDK
algorithm. Finally, this section introduces the principles of
the spiral FDK reconstruction algorithm.

The introduction of cone-beam X-ray source and flat-
panel detector has brought significant changes to the field
of CT. Compared to traditional fan-beam sources, cone-
beam sources demonstrate superior performance in terms
of radiation utilization efficiency and image acquisition,
effectively reducing radiation dose while also improving
image reconstruction speed. In addition, the application of
three-dimensional reconstruction techniques allows for
obtaining higher precision volumetric data, overcoming
the limitations of traditional two-dimensional
reconstruction methods in longitudinal resolution.

The FDK algorithm is a reconstruction method designed
specifically for cone-beam circular trajectory scanning,
providing an efficient and approximate solution. This
algorithm is known for its simplicity and fast processing
capabilities, and has become one of the most widely used
techniques in modern industrial CT applications,
especially in the field of 3D filtered back projection
reconstruction [3]. For cone-beam CT, the key of the FDK
algorithm lies in treating the cone-beam source as a
superposition of multiple fan-beam sources tilted at
different angles, particularly in the central plane (i.e., the
plane where the cone angle is zero), where the algorithm’s
data reconstruction is consistent with the precise
reconstruction method for fan-beam scanning. However,
when dealing with non-central planes, appropriate
adjustments to the fan-beam scanning FBP algorithm are

required to obtain approximate reconstruction results [4, 5].

Larger projection magnification ratio is usually required
to accurately capture their internal structure when
performing CT imaging on long objects. Due to the size
limitation of the flat-panel detector in the longitudinal
direction, circular trajectory scanning often fails to obtain
complete longitudinal projection data of the object. To
address this issue, the spiral trajectory scanning method
has been designed, which extends the imaging range in the
longitudinal direction and allows for the acquisition of
complete projection data in a single scan. Reconstruction
algorithms for spiral scanning trajectories mainly include
analytical algorithms and iterative algorithms, among
which analytical algorithms are more commonly used in
practical applications. These algorithms include both exact
reconstruction and approximate reconstruction methods,
and among the approximate reconstruction methods, the
FDK algorithm stands out for its clear mathematical
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derivation, efficient reconstruction efficiency, good noise
resistance, and excellent spatial resolution, making it one
of the most commonly used cone-beam CT reconstruction
algorithms. The original FDK algorithm is designed for
standard circular trajectories, and the spiral FDK
algorithm applicable to spiral trajectory reconstruction is
developed through subsequent improvements by
researchers. The spiral FDK algorithm demonstrates its
efficient reconstruction accuracy when dealing with larger
cone angles of the X-ray beam [6, 7].

Central‘plane

Fig. 3. Schematic diagram of spiral CT.

The scanning system of cone-beam spiral CT is shown
in Fig. 3 where R is defined as the radius from the X-ray
source to the axis of rotation, D is the distance from the X-
ray source to the detector, and P is the pitch of the spiral
scan. The rotation angle of the X-ray source around the
central axis is denoted by 8, and the spiral path of the X-

. . P
ray source can be described by (Rcos 8, Rsin 9,2—9) . As the
T
X-ray source moves from position ¢ to 6,, we can
capture data q(6,u,,v,) of the projection point O on the
flat detector that corresponds to the detected point
S(x,y,z) . The relationship between these data and the
target function f'(x, y,z) that needs to be reconstructed can

be expressed by formula (1), which is the core of the spiral
FDK. In this way, a three-dimensional target function can
be reconstructed from a series of two-dimensional
projections, providing an effective image reconstruction
method for spiral CT scanning [8, 9].
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In Eq. (1), ur and vy represent the coordinates during

back projection, 13(9, u,v) denotes the weighted and
filtered data obtained from the original projection data.
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p(6,u,v) = (J% -p(6,u, v)) X h(u) (2)

III. PROPOSED METHOD

The spiral scanning can effectively solve the problem of
longitudinal truncation in imaging of long objects.
However, the conventional reconstruction algorithm of
spiral FDK cannot effectively address the problem of
transverse truncation in imaging under high magnification
conditions. Based on the principle of the spiral FDK, it is
known that interpolation of projection data within a 180-
degree range above and below the reconstructed slice is
required during the reconstruction of the tomographic
image. Then, the circular trajectory FDK reconstruction
algorithm and the interpolated projection are used for the
reconstruction process. Therefore, this section analyzes
the problem of truncated projection reconstruction using
the circular trajectory cone-beam scanning geometry as an
example and designs a spiral offset scanning scheme
without changing the imaging conditions. Corresponding
modifications are made to the spiral reconstruction
algorithm.

A.  The Geometry of Image Acquisition Systems

As shown in Fig. 4(a), S represents the X-ray source,
CD represents the detector, Os represents the projected
position of the central ray on the detector, MN represents
the position of the rotator, O represents the rotation center,
and OO; represents the distance of the rotator’s offset. In
order to improve the imaging range, the rotator can be
offset according to the scheme shown in Fig. 4(b), while
ensuring that the imaging FOV can cover at least half of
the scanning area.
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Fig. 4. Comparison between conventional scanning and offset scanning.

As shown in Fig. 4, under the same conditions, the
radius of the imaging FOV for the conventional scanning
is R. After the rotator is horizontally displaced, the imaging
FOV is R;, where:

500,
JO,D" +500,

From Eq. (3), it can be concluded that when the rotaror
is moved to the position of point M or point N in Fig. 4(a),
the imaging FOV reaches its maximum. In Fig. 4(b),
AMAO and AMBO; are similar triangles, and BO, =2MO ,

therefore R, =2R, thus the maximum imaging FOV can

R =R+00,- (3)

be expanded by a factor of 1.
B.  Parker Weights

Fig. 5. Diagram of redundant areas in offset scan.

Taking the central plane as an example, for conventional
scanning geometry, the entire scanning process involves a
360-degree rotation of the rotator, resulting in the X-ray
penetration path being repeated twice. However, for offset
scanning, due to the truncation of the projection, only the
localized region is within the FOV of the detector at a
single projection angle. As shown in Fig. 5, during the 360-
degree scanning process, the A SCS; region is penetrated
by the X-ray only once, while the A SDS; region is
penetrated twice. If the collected projections are directly
used for reconstruction, the participation of partially
repeated projections in the back projection process can
lead to image distortion.

To investigate the influence of unilateral truncation of
projected images in offset scan on the quality of
reconstructed images, a virtual CT imaging experiment is
designed to acquire simulated data. The specific
parameters are shown in Table I.

TABLE I. MAIN PARAMETERS OF SIMULATION EXPERIMENT

Samples Projections Size FDD (mm) Magnification ratio Offset (mm) Pixel size (mm)
1 720 512x512 1250 1.25 0 0.2
2 720 512x512 1250 1.5625 20 0.2

For the projections generated based on the parameters
in Table I, reconstruction is performed using the spiral
FDK algorithm, and the reconstructed images are shown
in Fig. 6. It can be clearly observed that direct
reconstruction of the image using truncated projections
allows for the overall contour of the object to be restored,
with higher resolution in the foreground region. However,
the overall brightness of the image is distorted, and the
image details are deformed, with the central region
exhibiting a ring artifact.
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Fig. 6. Comparison of reconstruction results: (a) reconstruction result of
complete projections; (b) rconstruction result of unilateral truncated
projection.
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In the turntable-offset scanning mode, the repeatedly
sampled projections can be visualised in a -6 coordinate
system, where the vertical axis represents the rotation
angle f and the horizontal axis the fan angle 6, as shown
in Fig. 7. The shaded area marks the redundant-projection
region. Eq. (6) demonstrates that the Parker weighting
makes the summed weights in this redundant region equal

to 1 [10].
A 8

edundancy
Region

—&
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Fig. 7. lllustration of the redundant region in the single-offset turntable
mode (where  denotes the rotation angle of the turntable).
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As shown in Fig. 7, the symbol ¢ in formula (4)
represents the region of projection redundancy; S
represents the ray source; » represents the angle
between other rays and the central ray; 6 represents the
angle between the ray and SO, where SO is the ray passing
through the rotation center; D is the vertical distance
between the ray source and the detector. SO in formula (5

represents the distance from the X-ray source to the center
of the turntable.

(b)

S Y

Fig. 8. Schematic diagram of offset scanning geometry: (a) the rotator
shifted to the right to the left, (b) the rotator shifted to the right.

The offset direction for Fig. 8 is defined as follows: with
the center of the detector as the reference, if the projection
position of the rotator on the detector is to the left of the
detector’ center, the offset direction is leftward; otherwise,
it is rightward. From Fig. 8, it can be deduced that,
0=y —a ,therefore, p(B,0) can be expressed as p(B,7):

when the rotator is shifted to the left:
—-s<p<e¢ = A <r<d,. 2o,

when the rotator is shifted to the right:
—-e<p<e¢ = 204, SV < A -
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C. Implementation Steps

As mentioned above, for the projection truncation, it is
necessary to use the designed Parker function to weight the
original projections, and then use the spiral FDK algorithm
to perform back projection on the weighted projection
images to complete the image reconstruction. The
following is the workflow for spiral FDK reconstruction
of unilateral truncation projections:

1) Determine the offset distance of the rotator.
2) Expand the projection images.

Fig. 9. lllustration of detector extension: (a) the rotator is centered (b)
the rotator shifted to the right.

As shown in Fig. 9, it can obtain the complete FOV of
the circular region by expanding the detector along the CD
direction. The radius of the FOV is denoted as r, and the
radius of the circular region is denoted as R. For the
imaging position in Fig. 9(a), there are partial regions on
both sides of the circular region that are not within the FOV,
with a length beyond the FOV denoted as R-r .
Offsetting the rotator to the right with an offset distance
denoted as offser according to Fig. 9(b), the length
beyond the FOV on the right side is R —r + offser . When
reconstructing the image, the size of the slice image is
determined based on the width of the projection. If the size
of the projection image is not modified, the reconstructed
image will be truncated which is shown in Fig. 6(b).
Therefore, it is necessary to widen the projection image,
and the length of the widening can be calculated using
formula (5).

Len = (R —r + offset) x ratio

O]

. SO
ratio =——
SO

In formula (7), Len represents the length of the
projection expansion, while ratio denotes the
magnification ratio.

3) Apply Parker weights to the projection images

according to Eq. (4).
4) Perform filtering on the weighted images.
5) Reconstruct the slices according to Eq. (1).

IV. EXPERIMENTS AND ANALYSIS

A. Experiment of Reconstruction

To verify the performance of the proposed algorithm,
this section conducts a controlled experiment. The
controlled experiment included simulated data and real
lithium battery data. The simulated data are generated
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using open-source code (copyright owned by the
University of Bath and the European Organization for

Organization). The specific experimental parameters are
shown in Table II.

Nuclear Research: European Nuclear Research
TABLE II. MAIN EXPERIMENTAL PARAMETERS OF UNILATERAL TRUNCATED RECONSTRUCTION
Sample Projections Size Pitch Magnification ratio Offset (mm) Turns
Simulation module 2160 512x512 1250 1.25 100 3
lithium battery 1440 957x991 1250 7.978 997 2

To assess the quality of the reconstructed images,
normal spiral scanning is employed to acquire complete
projection data. Subsequently, the projection images are
artificially cropped to obtain truncated projection images.
The complete projections are reconstructed using the spiral
FDK algorithm, while the proposed method is utilized to
reconstruct the truncated projection images. For the
experiments conducted on real lithium batteries, the same
conventional spiral scanning technique is employed to
obtain complete projection data, and a control
experimental group is generated using the same approach.
The results of the control experiment are shown in Figs. 10
and 11.

Projection Filter image

ll 153
L B | NH

Unilateral
truncation

From the comparative experiments of Figs. 10 and 11,
it can be observed that the reconstructed images using the
proposed algorithm for unilaterally truncated projections
exhibit high quality, accurately preserving the details in
the images. In order to quantitatively analyze the quality
of the reconstructed images, the Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity Index Measure
(SSIM), Mean Squared Error (MSE), Feature Similarity
Index Measure (FSIM) and Visual Quality Fidelity (VIF)
are computed for the images reconstructed based on the
offset scanning data [11, 12], using the complete
projection images reconstructed from real lithium battery
data as the reference, as shown in Table III:

Slice 1 Slice 2 Slice 3

u“!"
|||||||||||

Fig. 10. Reconstruction of simulation data.

Projection Filter image

Groundtruth

|

Unilateral
truncation

Slice 1

I

Slice 2

Fig. 11. Reconstruction of lithium battery data.

TABLE III. QUANTITATIVE ANALYSIS OF ALGORITHM PERFORMANCE

Slice PSNR SSIM MSE FSIM VIF
1 32471 0.9923 0.0123 0.9837 0.9711
2 33.774 0.9914 0.0095 0.9799 0.9687
3 33.323 0.9907 0.0139 0.9768 0.9693

From Table III, it can be observed that the reconstructed
images exhibit a high similarity to the standard images.
Particularly, the SSIM are all as high as 0.99, and the FSIM
values are all above 0.975, indicating that the algorithm is
capable of effectively recovering the details and structures
of the images. All VIF scores exceed 0.965, demonstrating
that the proposed algorithm expands the imaging field
while preserving both fine details and structural integrity
in the reconstructed images. Additionally, in order to
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visually assess the similarity between the reconstructed
and standard images, the grayscale curves are plotted for
the three tomographic images separately, as shown in
Fig. 12. Tt can be seen that the grayscale curves of the
tomographic images reconstructed from the offset scans
almost overlap with those reconstructed from the standard
scans, thus validating the effectiveness of the proposed
method.
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Fig. 12. Grayscale of lithium battery: (a) slice 1; (b) slice 2; (c) slice 3.

To enhance generality, authenticity, and credibility of

[}
e the experiments, three additional sets of experiments are
g()'(’ designed in this study, resulting in the acquisition of three
= sets of real offset spiral data. During the experiments, the
sample coverage within the detector’s FOV is achieved by
02 | horizontally moving the turntable, ensuring that only a
0 Mt £ bt portion of the area is covered. The specific parameters of
: 2000 400 o00r  WO0r 1000 the experiments are shown in Table IV:
Pixel coordinates
TABLE IV. MAIN PARAMETERS OF GENERAL EXPERIMENTS
Sample Projections Size Pitch Magnification ratio Offset Turns
1 1440 484x1024 203.67 1.358 115 2
2 2160 623x1023 270.25 2.162 155 3
3 1440 775%945 1004.92 7.178 130 2
Projection Filter image Slice 1 Slice 2 Slice 3
Fig. 13. Reconstruction of supplementary experimental data.
TABLE V. QUANTITATIVE ANALYSIS OF ALGORITHM PERFORMANCE
Sample Slice PSNR SSIM MSE FSIM VIF
1 35.439 0.9936 0.0083 0.9866 0.9743
1 2 35.174 0.9921 0.0114 0.9812 0.9719
3 35.787 0.9929 0.0093 0.9839 0.9742
1 32.689 0.9907 0.0152 0.9724 0.9684
2 2 33.264 0.9930 0.0171 0.9773 0.9691
3 33.812 0.9925 0.0087 0.9811 0.9718
1 33.687 0.9919 0.0157 0.9874 0.9783
3 2 34.224 0.9923 0.0101 0.9835 0.9737
3 34.311 0.9905 0.0176 0.9858 0.9759
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As shown in Fig. 13, Sample 1 consists of a glass cup
and a square lithium battery placed inside it; Sample 2 is
composed of pebbles and dehydrated ginkgo fruits;
Sample 3 is a lithium battery. It can be observed that the
image reconstructed by the spiral FDK algorithm based on
Parker weighting exhibits no apparent artifacts, and the
image has high clarity and contrast. From the quantitative
analysis in Table V, it can be seen that the proposed method
can effectively reconstruct the details and structure of the
image, and the image exhibits a high signal-to-noise ratio
and similarity.

B.  Additional Algorithm Complexity

The proposed algorithm aims to expand the imaging
field of view while preserving image quality. Compared to
the traditional FDK algorithm, it introduces additional
algorithmic  complexity. The extra algorithmic
complexity—or computation time—introduced by the
proposed method relative to a conventional FDK
reconstruction comes from two sources:

Parker weighting: this stage adds an additional
processing pass over the projections, thus
increasing runtime.

Larger reconstruction grid: with the same
projection width W, a large-FOV reconstruction
must cover a wider slice because of the lateral
offset. If the rotation-axis offset is Cor, the slice
size becomes(W + Cor) x (W + Cor), whereas
standard FDK produces only a W x W image.

For the Parker-weighting pass, Table VI shows the
processing times measured for several data sets with
different image sizes and frame counts. The increase in
computational complexity for the reconstruction step is
given by the formula (8):

TABLE VI. TIME SPENT ON IMAGES OF DIFFERENT SIZES AND

QUANTITIES
Size Frames Time /ms
500 613.94
512x512 1000 1189.27
2000 2335.13
500 2105.56
10241024 1000 4089.87
2000 8112.91
500 8227.38
2048%2048 1000 15,988.27
2000 31,475.36

AddCmpty = (W + Cor)* =W?* = Cor’* +2W x Cor  (8)

As the equation shows, the additional computational
complexity in the reconstruction stage increases linearly
with both the projection width and the magnitude of the
turntable offset.

C. FOV Limitations

In a cone-beam CT system, the FOV is constrained not
only by the detector size but also by the magnification used
during imaging. As shown in Fig. 14, let the detector width
be DetecLen, the source-to-detector distance SOs, and the
source-to-rotation-center distance SO. Under these
conditions, when the rotation stage is given a unilateral
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(one-sided) offset, the maximum FOV-—namely, the
diameter D of the transverse circumscribed circle—
satisfies the following Egs. (9) and (10):

N

Fig. 14. Geometric diagram of cone beam CT system.

Ratio = g
SO,
M0 = CO, _ DetecLen ©)
Ratio  2- Ratio
0 =arc tan(w)
2-S0O
R=MO-cos@
D=2-R =2|R+00, - 505 (10)

\IOSD2 + SiOS2

From Eq. (2), it can be concluded that as the
magnification factor increases, the field of view decreases
proportionally. In practical industrial CT inspection tasks,
for large-sized workpieces with low spatial resolution
requirements, it is recommended to position the object
closer to the detector during scanning to reduce the
magnification factor and expand the imaging field of view.

V. CONCLUSION AND DISCUSSION

In response to the problem of limited transverse FOV in
high magnification conditions, this study expands the
imaging FOV along the transverse direction by combining
spiral scanning and offset scanning methods without
changing the hardware configuration of the imaging
system. By analyzing the symmetry of the projection
images acquired over 360 degrees, the detector’s imaging
FOV can be extended up to twice its maximum size using
Parker weights, while obtaining reconstruction image
quality comparable to standard under projection truncation.
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