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Abstract—Cone-beam spiral Computed Tomography (CT) 
naturally extends longitudinal coverage, yet its transverse 
Field of View (FOV) remains constrained, causing projection 
truncation at high geometric magnification. We present an 
offset-spiral acquisition scheme paired with a 
Parker-weighted reconstruction algorithm that doubles the 
usable transverse FOV without modifying hardware. The 
one-sided lateral shift introduces projection redundancy, 
which is compensated by a tailored weighting function, 
allowing accurate recovery of truncated data through the 
standard Feldkamp-Davis-Kress (FDK) pipeline. Tests on 
simulated phantoms and real lithium-battery scans show that 
the proposed method preserves fine structural details and 
attains image quality comparable to conventional full-FOV 
reconstructions (mean PSNR ≈ 32 dB, SSIM ≈ 0.99, 
MSE < 0.014, FSIM and VIF<0.97). The technique is readily 
deployable in existing industrial CT systems and broadens 
the applicability of spiral FDK reconstruction to large, 
high-aspect-ratio objects. 

Keywords—industrial CT, spiral FDK, unilateral truncation, 
lithium battery, Parker weights 

I. INTRODUCTION

In the field of industrial and medical Computed 
Tomography (CT), the spatial resolution of an image 
represents the ability of the CT device to distinguish the 
smallest size of objects. If the spatial resolution of the 
imaging device is insufficient, it will not be able to 
produce clear and high-quality imaging of small structures 
within the object. Factors that determine the spatial 
resolution of an image include the pixel size of the detector, 
the focal size of the X-ray source, and the imaging 
magnification ratio. The pixel size determines the spatial 
sampling capability of the detector, and smaller pixel sizes 
can provide higher spatial resolution, allowing for better 
capture of fine details. The focal size of the X-ray source 
determines the focusing ability of the X-ray beam, and 
smaller focal size can concentrate the X-ray beam more, 
thereby improving spatial resolution [1, 2]. The imaging 
magnification ratio refers to the proportional relationship 
between the size of objects in the image and their actual 

size. A higher imaging magnification ratio can magnify the 
details in the image, thus improving spatial resolution. In 
practical imaging, the detector and X-ray source are 
already determined, and the corresponding pixel size and 
focal size cannot be changed. Therefore, higher resolution 
imaging can only be achieved by changing the imaging 
magnification ratio. 

(a) (b)

Fig. 1. Slice images of lithium batteries with different magnification 
ratios: (a) Magnification ratio is 6.129; (b) The amplification ratio is 
2.112. 

From Fig. 1, it can be observed that increasing the 
magnification ratio leads to higher resolution images. 
However, once the model of the detector is determined, its 
corresponding imaging Field of View becomes limited. As 
the magnification ratio increases, the limited FOV is 
unable to capture the complete image of the object under 
inspection. As shown in Fig. 2, under high magnification 
conditions, the detector can only perform partial sampling 
of the test object. 

②

①

③④ ⑤

⑥

① Detector  ② X-Ray source
③ The first position of the workpiece
④ The second position of the workpiece

⑤ Projection corresponding to the first position
⑥ Projection corresponding to the second position

Fig. 2. The limited FOV of detectors under high magnification ratio. 

II. RELATED THEORY

The purpose of this article is to design a Large FOV 
(LFOV) algorithm based on the spiral Feldkamp-Davis-
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Kress (FDK) theory. To gain a deep understanding of the 
proposed algorithm, this section will first conduct an in-
depth analysis of the Filtered Back Projection (FBP) 
algorithm. As the foundation of image reconstruction, the 
FBP algorithm provides a key understanding of the 
fundamental reconstruction principles and is a prerequisite 
for understanding more advanced reconstruction 
algorithms. Building upon the FBP algorithm, the study of 
the basic theory of circular trajectory FDK represents an 
important transition from two-dimensional to three-
dimensional reconstruction. The analysis of the circular 
trajectory FDK algorithm can provide important 
theoretical support for understanding the spiral FDK 
algorithm. Finally, this section introduces the principles of 
the spiral FDK reconstruction algorithm. 

The introduction of cone-beam X-ray source and flat-
panel detector has brought significant changes to the field 
of CT. Compared to traditional fan-beam sources, cone-
beam sources demonstrate superior performance in terms 
of radiation utilization efficiency and image acquisition, 
effectively reducing radiation dose while also improving 
image reconstruction speed. In addition, the application of 
three-dimensional reconstruction techniques allows for 
obtaining higher precision volumetric data, overcoming 
the limitations of traditional two-dimensional 
reconstruction methods in longitudinal resolution. 

The FDK algorithm is a reconstruction method designed 
specifically for cone-beam circular trajectory scanning, 
providing an efficient and approximate solution. This 
algorithm is known for its simplicity and fast processing 
capabilities, and has become one of the most widely used 
techniques in modern industrial CT applications, 
especially in the field of 3D filtered back projection 
reconstruction [3]. For cone-beam CT, the key of the FDK 
algorithm lies in treating the cone-beam source as a 
superposition of multiple fan-beam sources tilted at 
different angles, particularly in the central plane (i.e., the 
plane where the cone angle is zero), where the algorithm’s 
data reconstruction is consistent with the precise 
reconstruction method for fan-beam scanning. However, 
when dealing with non-central planes, appropriate 
adjustments to the fan-beam scanning FBP algorithm are 
required to obtain approximate reconstruction results [4, 5]. 

Larger projection magnification ratio is usually required 
to accurately capture their internal structure when 
performing CT imaging on long objects. Due to the size 
limitation of the flat-panel detector in the longitudinal 
direction, circular trajectory scanning often fails to obtain 
complete longitudinal projection data of the object. To 
address this issue, the spiral trajectory scanning method 
has been designed, which extends the imaging range in the 
longitudinal direction and allows for the acquisition of 
complete projection data in a single scan. Reconstruction 
algorithms for spiral scanning trajectories mainly include 
analytical algorithms and iterative algorithms, among 
which analytical algorithms are more commonly used in 
practical applications. These algorithms include both exact 
reconstruction and approximate reconstruction methods, 
and among the approximate reconstruction methods, the 
FDK algorithm stands out for its clear mathematical 

derivation, efficient reconstruction efficiency, good noise 
resistance, and excellent spatial resolution, making it one 
of the most commonly used cone-beam CT reconstruction 
algorithms. The original FDK algorithm is designed for 
standard circular trajectories, and the spiral FDK 
algorithm applicable to spiral trajectory reconstruction is 
developed through subsequent improvements by 
researchers. The spiral FDK algorithm demonstrates its 
efficient reconstruction accuracy when dealing with larger 
cone angles of the X-ray beam [6, 7]. 

X-ray 
source

Central plane

 
Fig. 3. Schematic diagram of spiral CT. 

The scanning system of cone-beam spiral CT is shown 
in Fig. 3 where R is defined as the radius from the X-ray 
source to the axis of rotation, D is the distance from the X-
ray source to the detector, and P is the pitch of the spiral 
scan. The rotation angle of the X-ray source around the 
central axis is denoted by , and the spiral path of the X-

ray source can be described by cos , sin ,
2

P
R R

 


（ ）. As the 

X-ray source moves from position 1   to 2  , we can 

capture data ( , , )f fq u v  of the projection point Q on the 

flat detector that corresponds to the detected point 
( , , )S x y z  . The relationship between these data and the 

target function ( , , )f x y z that needs to be reconstructed can 
be expressed by formula (1), which is the core of the spiral 
FDK. In this way, a three-dimensional target function can 
be reconstructed from a series of two-dimensional 
projections, providing an effective image reconstruction 
method for spiral CT scanning [8, 9]. 
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In Eq. (1),	ݑ௙	 and ݒ௙	 represent the coordinates during 

back projection, ߠ)~݌, ,ݑ  denotes the weighted and  (ݒ
filtered data obtained from the original projection data. 
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,ߠ)~݌ ,ݑ (ݒ = ቆ ஽ඥ஽మା௨మା௩మ ⋅ ,ߠ)݌ ,ݑ ቇ(ݒ × ℎ(ݑ)  (2) 

III. PROPOSED METHOD 

The spiral scanning can effectively solve the problem of 
longitudinal truncation in imaging of long objects. 
However, the conventional reconstruction algorithm of 
spiral FDK cannot effectively address the problem of 
transverse truncation in imaging under high magnification 
conditions. Based on the principle of the spiral FDK, it is 
known that interpolation of projection data within a 180-
degree range above and below the reconstructed slice is 
required during the reconstruction of the tomographic 
image. Then, the circular trajectory FDK reconstruction 
algorithm and the interpolated projection are used for the 
reconstruction process. Therefore, this section analyzes 
the problem of truncated projection reconstruction using 
the circular trajectory cone-beam scanning geometry as an 
example and designs a spiral offset scanning scheme 
without changing the imaging conditions. Corresponding 
modifications are made to the spiral reconstruction 
algorithm. 

A. The Geometry of Image Acquisition Systems 

As shown in Fig. 4(a), S represents the X-ray source, 
CD represents the detector, Os represents the projected 
position of the central ray on the detector, MN represents 
the position of the rotator, O represents the rotation center, 
and OO1 represents the distance of the rotator’s offset. In 
order to improve the imaging range, the rotator can be 
offset according to the scheme shown in Fig. 4(b), while 
ensuring that the imaging FOV can cover at least half of 
the scanning area. 

S

C D

M N
R
R1

O
O1

Os

S

C D

M N
R

O

Os

(a) (b)

A
B

 
Fig. 4. Comparison between conventional scanning and offset scanning. 

As shown in Fig. 4, under the same conditions, the 
radius of the imaging FOV for the conventional scanning 
is R. After the rotator is horizontally displaced, the imaging 
FOV is R1, where: 

1 1 2 2

S

S S

SOO
R R OO

O D SOO
  


         (3) 

From Eq. (3), it can be concluded that when the rotaror 
is moved to the position of point M or point N in Fig. 4(a), 
the imaging FOV reaches its maximum. In Fig. 4(b), △MAO and △MBO1 are similar triangles, and 1 2BO MO , 

therefore 1 2R R , thus the maximum imaging FOV can 

be expanded by a factor of 1. 

B. Parker Weights 
S

C D
O'S1

S

C D
O'

S2

O O

(b)(a)

 
Fig. 5. Diagram of redundant areas in offset scan. 

Taking the central plane as an example, for conventional 
scanning geometry, the entire scanning process involves a 
360-degree rotation of the rotator, resulting in the X-ray 
penetration path being repeated twice. However, for offset 
scanning, due to the truncation of the projection, only the 
localized region is within the FOV of the detector at a 
single projection angle. As shown in Fig. 5, during the 360-
degree scanning process, the △ ܥܵ ଵܵ region is penetrated 
by the X-ray only once, while the △ ܦܵ ଵܵ  region is 
penetrated twice. If the collected projections are directly 
used for reconstruction, the participation of partially 
repeated projections in the back projection process can 
lead to image distortion. 

To investigate the influence of unilateral truncation of 
projected images in offset scan on the quality of 
reconstructed images, a virtual CT imaging experiment is 
designed to acquire simulated data. The specific 
parameters are shown in Table I. 

TABLE I. MAIN PARAMETERS OF SIMULATION EXPERIMENT  

Samples Projections Size FDD（mm） Magnification ratio Offset (mm) Pixel size (mm) 
1 720 512×512 1250 1.25 0 0.2 
2 720 512×512 1250 1.5625 20 0.2 

 

For the projections generated based on the parameters 
in Table I, reconstruction is performed using the spiral 
FDK algorithm, and the reconstructed images are shown 
in Fig. 6. It can be clearly observed that direct 
reconstruction of the image using truncated projections 
allows for the overall contour of the object to be restored, 
with higher resolution in the foreground region. However, 
the overall brightness of the image is distorted, and the 
image details are deformed, with the central region 
exhibiting a ring artifact. 

(b)(a)

 
Fig. 6. Comparison of reconstruction results: (a) reconstruction result of 
complete projections; (b) rconstruction result of unilateral truncated 
projection. 
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In the turntable-offset scanning mode, the repeatedly 
sampled projections can be visualised in a β-θ coordinate 
system, where the vertical axis represents the rotation 
angle β and the horizontal axis the fan angle θ, as shown 
in Fig. 7. The shaded area marks the redundant-projection 
region. Eq. (6) demonstrates that the Parker weighting 
makes the summed weights in this redundant region equal 
to 1 [10]. 

θ

β

 

Redundancy 
Region

0  
Fig. 7. Illustration of the redundant region in the single-offset turntable 

mode (where β denotes the rotation angle of the turntable). 
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1arctan( )
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SO
         (5) 

ଵଶ ቀ݊݅ݏ ቀ గఏିଶఌቁ + 1ቁ + ଵଶ ቀ݊݅ݏ ቀିగఏିଶఌቁ + 1ቁ = 1 (6) 

As shown in Fig. 7, the symbol    in formula (4) 
represents the region of projection redundancy; S 
represents the ray source;    represents the angle 
between other rays and the central ray;   represents the 
angle between the ray and SO, where SO is the ray passing 
through the rotation center; D is the vertical distance 
between the ray source and the detector. SO in formula (5) 
represents the distance from the X-ray source to the center 
of the turntable.  
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Fig. 8. Schematic diagram of offset scanning geometry: (a) the rotator 

shifted to the right to the left, (b) the rotator shifted to the right. 

The offset direction for Fig. 8 is defined as follows: with 
the center of the detector as the reference, if the projection 
position of the rotator on the detector is to the left of the 
detector’ center, the offset direction is leftward; otherwise, 
it is rightward. From Fig. 8, it can be deduced that,
    , therefore, ( , )p   can be expressed as ( , )p   : 

when the rotator is shifted to the left: 
max max- 2             , 

when the rotator is shifted to the right: 
max max2 -            . 

C. Implementation Steps 

As mentioned above, for the projection truncation, it is 
necessary to use the designed Parker function to weight the 
original projections, and then use the spiral FDK algorithm 
to perform back projection on the weighted projection 
images to complete the image reconstruction. The 
following is the workflow for spiral FDK reconstruction 
of unilateral truncation projections: 

1) Determine the offset distance of the rotator.  
2)  Expand the projection images. 

S

C D

O O1

O'

S

C D

M NO

R

r

(a) (b)

 
Fig. 9. Illustration of detector extension: (a) the rotator is centered (b) 

the rotator shifted to the right. 

As shown in Fig. 9, it can obtain the complete FOV of 
the circular region by expanding the detector along the CD 
direction. The radius of the FOV is denoted as r, and the 
radius of the circular region is denoted as R. For the 
imaging position in Fig. 9(a), there are partial regions on 
both sides of the circular region that are not within the FOV, 
with a length beyond the FOV denoted as R r  . 
Offsetting the rotator to the right with an offset distance 
denoted as offset   according to Fig. 9(b), the length 
beyond the FOV on the right side is R r offset  . When 
reconstructing the image, the size of the slice image is 
determined based on the width of the projection. If the size 
of the projection image is not modified, the reconstructed 
image will be truncated which is shown in Fig. 6(b). 
Therefore, it is necessary to widen the projection image, 
and the length of the widening can be calculated using 
formula (5). 

'

( )Len R r offset ratio

SO
ratio

SO

   





     (7) 

In formula (7), Len represents the length of the 
projection expansion, while ratio denotes the 
magnification ratio. 

3) Apply Parker weights to the projection images 
according to Eq. (4). 

4)  Perform filtering on the weighted images. 
5)  Reconstruct the slices according to Eq. (1). 

IV. EXPERIMENTS AND ANALYSIS 

A. Experiment of Reconstruction 

To verify the performance of the proposed algorithm, 
this section conducts a controlled experiment. The 
controlled experiment included simulated data and real 
lithium battery data. The simulated data are generated 
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using open-source code (copyright owned by the 
University of Bath and the European Organization for 
Nuclear Research: European Nuclear Research 

Organization). The specific experimental parameters are 
shown in Table II. 

TABLE II. MAIN EXPERIMENTAL PARAMETERS OF UNILATERAL TRUNCATED RECONSTRUCTION 

Sample Projections Size Pitch Magnification ratio Offset (mm) Turns 
Simulation module 2160 512×512 1250 1.25 100 3 

lithium battery 1440 957×991 1250 7.978 997 2 
 

To assess the quality of the reconstructed images, 
normal spiral scanning is employed to acquire complete 
projection data. Subsequently, the projection images are 
artificially cropped to obtain truncated projection images. 
The complete projections are reconstructed using the spiral 
FDK algorithm, while the proposed method is utilized to 
reconstruct the truncated projection images. For the 
experiments conducted on real lithium batteries, the same 
conventional spiral scanning technique is employed to 
obtain complete projection data, and a control 
experimental group is generated using the same approach. 
The results of the control experiment are shown in Figs. 10 
and 11. 

From the comparative experiments of Figs. 10 and 11, 
it can be observed that the reconstructed images using the 
proposed algorithm for unilaterally truncated projections 
exhibit high quality, accurately preserving the details in 
the images. In order to quantitatively analyze the quality 
of the reconstructed images, the Peak Signal-to-Noise 
Ratio (PSNR), Structural Similarity Index Measure 
(SSIM), Mean Squared Error (MSE), Feature Similarity 
Index Measure (FSIM) and Visual Quality Fidelity (VIF) 
are computed for the images reconstructed based on the 
offset scanning data [11, 12], using the complete 
projection images reconstructed from real lithium battery 
data as the reference, as shown in Table III: 

 
Projection Filter image Slice 1 Slice 2 Slice 3

Groundtruth

Unilateral 
truncation

 
Fig. 10. Reconstruction of simulation data. 

Projection Filter image Slice 1 Slice 2 Slice 3

Unilateral 
truncation

Groundtruth

 
Fig. 11. Reconstruction of lithium battery data. 

TABLE III. QUANTITATIVE ANALYSIS OF ALGORITHM PERFORMANCE 

Slice PSNR SSIM MSE FSIM VIF 
1 32.471 0.9923 0.0123 0.9837 0.9711 
2 33.774 0.9914 0.0095 0.9799 0.9687 
3 33.323 0.9907 0.0139 0.9768 0.9693 

 

From Table III, it can be observed that the reconstructed 
images exhibit a high similarity to the standard images. 
Particularly, the SSIM are all as high as 0.99, and the FSIM 
values are all above 0.975, indicating that the algorithm is 
capable of effectively recovering the details and structures 
of the images. All VIF scores exceed 0.965, demonstrating 
that the proposed algorithm expands the imaging field 
while preserving both fine details and structural integrity 
in the reconstructed images. Additionally, in order to 

visually assess the similarity between the reconstructed 
and standard images, the grayscale curves are plotted for 
the three tomographic images separately, as shown in 
Fig. 12. It can be seen that the grayscale curves of the 
tomographic images reconstructed from the offset scans 
almost overlap with those reconstructed from the standard 
scans, thus validating the effectiveness of the proposed 
method. 
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(a)

(b)

  

(c)

 
Fig. 12. Grayscale of lithium battery: (a) slice 1; (b) slice 2; (c) slice 3. 

To enhance generality, authenticity, and credibility of 
the experiments, three additional sets of experiments are 
designed in this study, resulting in the acquisition of three 
sets of real offset spiral data. During the experiments, the 
sample coverage within the detector’s FOV is achieved by 
horizontally moving the turntable, ensuring that only a 
portion of the area is covered. The specific parameters of 
the experiments are shown in Table IV: 

TABLE IV. MAIN PARAMETERS OF GENERAL EXPERIMENTS 

Sample Projections Size  Pitch Magnification ratio Offset Turns 
1 1440 484×1024 203.67 1.358 115 2 
2 2160 623×1023 270.25 2.162 155 3 
3 1440 775×945 1004.92 7.178 130 2 

Projection Filter image Slice 1 Slice 2 Slice 3

1

2

3

 
Fig. 13. Reconstruction of supplementary experimental data. 

TABLE V. QUANTITATIVE ANALYSIS OF ALGORITHM PERFORMANCE 

Sample Slice PSNR SSIM MSE FSIM VIF 

1 
1 35.439 0.9936 0.0083 0.9866 0.9743 
2 35.174 0.9921 0.0114 0.9812 0.9719 
3 35.787 0.9929 0.0093 0.9839 0.9742 

2 
1 32.689 0.9907 0.0152 0.9724 0.9684 
2 33.264 0.9930 0.0171 0.9773 0.9691 
3 33.812 0.9925 0.0087 0.9811 0.9718 

3 
1 33.687 0.9919 0.0157 0.9874 0.9783 
2 34.224 0.9923 0.0101 0.9835 0.9737 
3 34.311 0.9905 0.0176 0.9858 0.9759 
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As shown in Fig. 13, Sample 1 consists of a glass cup 
and a square lithium battery placed inside it; Sample 2 is 
composed of pebbles and dehydrated ginkgo fruits; 
Sample 3 is a lithium battery. It can be observed that the 
image reconstructed by the spiral FDK algorithm based on 
Parker weighting exhibits no apparent artifacts, and the 
image has high clarity and contrast. From the quantitative 
analysis in Table V, it can be seen that the proposed method 
can effectively reconstruct the details and structure of the 
image, and the image exhibits a high signal-to-noise ratio 
and similarity. 

B. Additional Algorithm Complexity 

The proposed algorithm aims to expand the imaging 
field of view while preserving image quality. Compared to 
the traditional FDK algorithm, it introduces additional 
algorithmic complexity. The extra algorithmic 
complexity—or computation time—introduced by the 
proposed method relative to a conventional FDK 
reconstruction comes from two sources: 

 Parker weighting: this stage adds an additional 
processing pass over the projections, thus 
increasing runtime. 

 Larger reconstruction grid: with the same 
projection width W, a large-FOV reconstruction 
must cover a wider slice because of the lateral 
offset. If the rotation-axis offset is Cor, the slice 
size becomes(ܹ + (ݎ݋ܥ × (ܹ +  whereas，(ݎ݋ܥ
standard FDK produces only a ܹ ×ܹ image. 

For the Parker-weighting pass, Table VI shows the 
processing times measured for several data sets with 
different image sizes and frame counts. The increase in 
computational complexity for the reconstruction step is 
given by the formula (8):  

TABLE VI. TIME SPENT ON IMAGES OF DIFFERENT SIZES AND 

QUANTITIES 

Size Frames Time /ms 

512×512 
500 613.94 
1000 1189.27 
2000 2335.13 

1024×1024 
500 2105.56 
1000 4089.87 
2000 8112.91 

2048×2048 
500 8227.38 
1000 15,988.27 
2000 31,475.36 

2 2 2( ) 2     AddCmpty W Cor W Cor W Cor   (8) 

As the equation shows, the additional computational 
complexity in the reconstruction stage increases linearly 
with both the projection width and the magnitude of the 
turntable offset. 

C. FOV Limitations 

In a cone-beam CT system, the FOV is constrained not 
only by the detector size but also by the magnification used 
during imaging. As shown in Fig. 14, let the detector width 
be DetecLen, the source-to-detector distance SOs, and the 
source-to-rotation-center distance SO. Under these 
conditions, when the rotation stage is given a unilateral 

(one-sided) offset, the maximum FOV—namely, the 
diameter D of the transverse circumscribed circle—
satisfies the following Eqs. (9) and (10): 

C D

S

Os

R1
R

M N

θ

θ O O1

 
Fig. 14. Geometric diagram of cone beam CT system. 
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 
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        (9) 

1 1 2 2
2 2 S

S S

SO
D R R OO

O D SO

 
        

    (10) 

From Eq. (2), it can be concluded that as the 
magnification factor increases, the field of view decreases 
proportionally. In practical industrial CT inspection tasks, 
for large-sized workpieces with low spatial resolution 
requirements, it is recommended to position the object 
closer to the detector during scanning to reduce the 
magnification factor and expand the imaging field of view. 

V. CONCLUSION AND DISCUSSION 

In response to the problem of limited transverse FOV in 
high magnification conditions, this study expands the 
imaging FOV along the transverse direction by combining 
spiral scanning and offset scanning methods without 
changing the hardware configuration of the imaging 
system. By analyzing the symmetry of the projection 
images acquired over 360 degrees, the detector’s imaging 
FOV can be extended up to twice its maximum size using 
Parker weights, while obtaining reconstruction image 
quality comparable to standard under projection truncation.  
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