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Abstract—This paper presents the development of a vision-
based automated positioning system for machining processes.
To achieve accurate positioning and obtain geometric
information of machined parts, the relationship between the
image coordinate system and the world coordinate system
was established through a coordinate calibration process. In
this study, a camera was mounted above the working
platform to capture images of the machining area. Noise
introduced by image subtraction was removed using
thresholding operations, followed by edge detection methods
to determine the contours of the machined parts. Wind
deflectors were used as a case study. A quadratic
transformation method was investigated and applied for
coordinate calibration. In this process, when the camera
resolutions in the OX and OY axes were 0.632 mm/pixel and
0.761 mm/pixel, respectively, the total positioning errors in
the OX and OY axes were 1.108 mm and 1.271 mm,
respectively. Experimental results demonstrate that the
proposed system provides a robust and effective solution for
positioning during the machining process.

Keywords—image processing, machine vision, positioning
system, edge milling

I. INTRODUCTION

In traditional industries, machines are usually operated
and controlled directly by workers. However, with
technological advancements, many automation tasks have
replaced human operators. In machining processes,
different workpieces are typically fixed using jigs and
fixtures, which can lead to position deviations. Therefore, a
reliable positioning system is essential to address this issue
and machine vision-based automatic positioning systems
are applied to improve the chamfering process, enhance
product quality, and optimize production costs.

In recent years, machine vision systems have been
widely applied in manufacturing to enhance both quality
and productivity [1-3]. Machine vision integrates
illumination, image processing, and analysis to enable non-
contact localization, characterization, and manipulation of
stationary or moving objects. Features such as size, shape,
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and color are used to differentiate between acceptable and
defective objects [4]. This method is inspired by the human
vision system, which detects various types of objects. The
acquired information is transmitted to a personal computer
via the mainframe computer’s signal line, where the spatial
positioning of the measured object is calculated within the
world coordinate system [5].

Nowadays, machine vision is widely used in quality
inspection, non-contact measurement systems, industrial
automation, electronic semiconductors, medical applications,
defect detection, and more. For instance, Dworkin and
Nye [6] developed a machine vision algorithm for measuring
hot-formed parts. In their study, CCD cameras were used to
capture monochrome and color images under visible light.
The images were then acquired, processed through threshold
operations, and analyzed. Derganc et al. [7] proposed a
machine vision system for the automatic measurement of
bearing eccentricity. Similarly, Shuxia et al. [8] introduced a
machine vision-based method to measure the cutting device’s
diameter and the maximum rotating diameter of a mini-
milling machine. Additionally, Hsu et al. [9] developed an
automatic optical inspection system for detecting and
classifying defects in dental floss picks.

Among machine vision applications, the study of Ali et
al. [10] is very useful for improving precision measurement.
The proposed system is to measure gear profile to replace
traditional methods which may face danger in measurement
process. Besides, the existing methods are either time
consuming or expensive. Experimental results of the
proposed system were compared with the existing systems.
These results showed that their method has great
advantages over existing methods in practical application.
Rejc et al. [11] proposed an automated visual inspection
system for dimensional measurements of a protector. A
linear and a polynomial approximation were used for
defining edges of selected protector structures. Pixel to
metric unit transformation was performed by using a higher
order polynomial approximation. The measurement
accuracy of the proposed system is in the range of +0.02
mm. The measurement time is less than a second. However,
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it cannot replace the current measurement system. It can be
only used in the company testing laboratory. Martinez et
al. [12] presented a quality inspection system for machined
metal parts using an image fusion technique. The machine
vision system, including one of its main devices, the
lighting system performs the detection of flaws on textured
surfaces. The proposed system works effectively with a low
value of false rejections. An algorithm for automatic
inspection of leadframes to detect stamping defects was
presented using machine vision [13]. The algorithm used
blobs analysis, morphological closing and image
subtraction for detecting stamping defects. The proposed
system in this study includes a CCD camera, back-lighting
source, a computer integrated frame grabber and a
conveyor system. The research showed that the system can
detect stamping defects on the leadframes a success rate of
98.7%. Machine vision camera systems are typically used
for automated inspection of Pressure-Sensitive Paint
(PSP) [14]. This research showed relevant imaging
characteristics and also showed the applicability of such
imaging technology for PSP. The results show that the
proposed machine vision system has advanced to such a
state that it can now be used for quantitative measurements
of a PSP system which can be implemented for under
£1000. Zhang et al. [15] presented a high precision quality
inspection system for steel bars using machine vision. In
this study, the Sub-Pixel Boundary Location Method
(SPBLM) and Fast Stitch Method (FSM) were proposed.
Steel bar diameter, spacing, and quantity were detected.
The results show that the proposed system has a high
accuracy for calculating diameter and spacing. Lee et
al. [16] propose an intelligent vision-based Automated
Guided Vehicle (AGV) system utilizing fiducial markers.
They explore a low-cost and efficient vehicle guidance
method using a consumer-grade webcam and fiducial
markers. The system employs markers that include a capital
letter or a triangle to indicate direction. These markers are
easy to produce, manipulate, and maintain. The information
encoded in the markers is used to guide the vehicle.
Experimental results show that the system achieved a
recognition rate of 98.87%.

Vision-based measurement is a promising solution for
real-time, non-contact measurement, and numerous studies
have focused on this approach for both measurement and
object detection. For example, Qia et al. [17] proposed an
intelligent length measurement method for hot forgings.
This work combined sub-pixel edge detection with green
laser scanning. First, green laser depth information was
used to establish a measurement model. Then, a sub-pixel
edge detection algorithm was developed to accurately
extract the light bar edge information, enabling the
calculation of the forging’s length. Finally, the relative
positional relationship between the forging and the light bar
was analyzed, and an advanced measurement algorithm
was presented. In a study by Xiong et al. [18], a Canny edge
detection algorithm was proposed to address challenges
such as image edge noise, poor contrast, and weak edges
caused by the complex production environment during the
Z-block visual imaging process. This method employed
Blob analysis for denoising and Region of Interest (ROI)

positioning, and optimized the gradient strength and
direction calculations as well as the local dynamic
threshold selection. As a result, high-accuracy edge
detection was achieved. In addition, a contour fitting
method with sub-pixel accuracy was applied to perform
high-precision dimensional measurements. Experimental
results showed that the proposed method achieved an
average center point positioning error of (5, 5) pixels and
an average dimensional measurement error of (0.03, 0.03)
mm. An advanced post-processing algorithm was proposed
that dynamically modulates detection thresholds based on
the distance from the ego object [19]. Their method
employed a neural network with self-adaptive thresholding,
which significantly reduced false negatives while also
decreasing false positives. Experimental results
demonstrated that this approach is effective for 3-D object
detection and holds promise for applications in field
robotics.

Besides, recently advancements in Artificial Intelligence
(Al)-based or Machine Learning (ML)-enhanced vision
systems have also significantly improved non-contact
measurement systems in terms of accuracy, flexibility, and
robustness. Al models now could perform precise two-
Dimensional (2-D) and three-Dimensional (3-D)
measurements from image data, replacing or enhancing
traditional rule-based machine vision [20] or deep learning
could improve depth and distance estimation from single or
stereo images [21].

With the growing demand for industrial automation in
the manufacturing sector, machine vision has become
increasingly important. In this study, a machine vision
system was applied to an automated positioning system
during the machining process of wind deflectors.
Automation enhances the system’s flexibility by adjusting
the boundaries of the wind deflectors based on the offset
and angular deflection of the machining parts. A camera
was used to capture images of three different types of wind
deflectors. Prior to image capture, the camera was
calibrated to improve accuracy. The captured images were
then processed using filtering, thresholding, and other
techniques. After obtaining the desired images, the
coordinate relationship between the image coordinate
system and the world coordinate system was established
using the quadratic transformation method. Camera
calibration work was also investigated to enhance the
accuracy of the calibration process and minimize image
distortion, as these factors directly impact the precision of
the system.

II. RESEARCH METHODOLOGY

A. Image Processing

In image processing technology for vision-based
inspection systems, accurately extracting objects from the
initial image is both essential and critical. To effectively
isolate the object of interest, it must be separated from the
background. In this study, images were captured and then
processed using a thresholding operation. The success of
thresholding depends on selecting an appropriate threshold
value. If the value is set too high, important object details
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may be lost and if it is too low, unwanted background
elements may remain. Therefore, a suitable threshold value
must be determined to eliminate most of the noise while
preserving the object of interest. In this work, the threshold
value is predefined by the user through a menu in a custom-
developed program. This method enables the extraction of
relevant image data for subsequent processing.

This study used a Logitech C525 CMOS camera to get
image data. The camera was connected to a computer via
USB. The camera specifications are shown in Table 1.

TABLE I. SPECIFICATIONS OF C525 CMOS CAMERA

No. Specifications
1 HD video calling (1280x720 pixels) with recommended
system
2 HD video capture: Up to 1280x720 pixels
3 Logitech Fluid Crystal™ Technology
4 Autofocus
5 Photos: Up to 8 megapixels
6 Hi-Speed USB 2.0 certified

B.  Background Image and Edge Detection

In this work, background subtraction techniques are
employed as an effective method for distinguishing
foreground objects from the background [22]. This
approach is widely used for detecting moving objects. First,
a background model is established. Then, the foreground is
extracted to identify the target object. Finally, the desired
image is generated, as shown in Fig. 1.

Fig. 1 illustrates the presence of noise that must be
removed. To address this issue, a thresholding operation was
applied to eliminate most of the noise. The threshold value
was determined through image subtraction. In this study, to
define an appropriate threshold range for extracting the
foreground object, only threshold values with more than 20
occurrences were considered, and reference points
appearing more than 100 times were used. Based on this
analysis, a minimum threshold value of 106 and a maximum
of 129 were selected. This process preserves the shape of the
wind deflectors while removing extraneous information
from the image, as shown in Fig. 2.

Fig. 1. Image subtraction.

Fig. 2. Binarized image.

If the threshold value is set too high, parts of the
workpiece image may be lost; conversely, if it is set too
low, irrelevant scene details may not be adequately filtered
out. To further enhance boundary detection, the Canny
algorithm was applied. This algorithm is widely used for
edge detection due to its simplicity and robustness. It is
based on three key criteria: a low error rate, good
localization, and a single response per edge [23]. Using this
method, the detected edges closely align with the actual
object boundaries, as shown in Fig. 3.

Fig. 3. Canny edge detection.

C. Determining Types of Wind Deflectors

Three types of wind deflectors were used in this study.
To classify each type, key geometric properties perimeter,
area, and compactness were calculated based on the
object’s boundary. Compactness is an intrinsic property of
an object and is invariant to geometric transformations such
as translation, rotation, and scaling. Bribiesca [24]
introduced a method for calculating the shape ratio of an
object using its perimeter and area to characterize the
geometry of machined parts. Following this approach, the
compactness of each 2-D object in this study was measured
using the following ratio:

P2
4z A

(1)

where C denotes compactness, P is the perimeter, and 4 is
the area of the object.

This approach ensures accurate classification of wind
deflectors, which is essential for automation in machining
processes. Based on the boundary of each wind deflectors,
the perimeter, area, and compactness were calculated. The
experimental results are presented in Tables II-IV, and the
error distributions are illustrated in the histograms shown
in Figs. 4-6.

Figs. 4-6 show that the total error in the average
compactness was highest for type C at 5.92 mm. The total
error for type A was 5.8 mm, while type B exhibited the
lowest total error at 2.62 mm. By -calculating and
comparing the compactness values of the three wind
deflectors types, they were successfully classified and
recognized within the automated positioning system.

TABLE II. PERIMETER (PIXEL) OF TYPES OF WIND DEFLECTORS

Types Average Maximum Minimum Positive error  Negative error
A 983.69 997.25 979.94 13.56 3.75
B 1094.17 1098.48 1090.82 431 3.35
C 1274.76 1276.15 1273.23 1.39 1.53




Journal of Image and Graphics, Vol. 14, No. 1, 2026

TABLE III. AREA (PIXEL?) OF TYPES OF WIND DEFLECTORS

Types Average Maximum Minimum Positive error  Negative error
A 8462 8588 8414 126 48
B 9821.7 9992 9706 170.3 115.7
C 12,003.3 12,328 11,788 324.67 215.33
TABLE IV. COMPACTNESS OF TYPES OF WIND DEFLECTORS
Types Average Maximum Minimum Positive error  Negative error
A 114.36 117.99 112.19 3.63 2.17
B 121.9 123.08 120.46 1.18 1.44
C 135.4 137.94 132.02 2.54 3.38
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130 are set to zero. Py(xo, y0), Pi(x1, yr) represent the start and
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115 ﬁ deflection angle are zero. S represents the offset, and 6 is
110 the angle deflection of the wind deflectors, calculated using
Egs. (2) and (3).
TypeA  TypeB  TypeC

Fig. 6. Average compactness error.

D. Determining Position of Work-Piece

In Computer Numerical Control (CNC) machining, the
boundary limits of the wind deflectors are defined by the
positions of its start and end points. Accurate determination
of these points is crucial, as they directly influence the
precision of the positioning process. These points are
identified based on the displacement and angular deflection
of the wind deflectors, which are mounted on the same
fixture, as illustrated in Figs. 7 and 8.

S =% 5+ (2.7 @)

0= sin” {(xl —x )0 =3) =01 ) —xs)} )
(xg _xs) _(ye _yv)

E. Coordinate Calibration Method

1) Calibration pattern
In this method, a calibration pattern is used to determine
the relationship between the image coordinate system and
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the world coordinate system. The calibration pattern
contains 910 points, each with a diameter of 10.5 mm. All
points are sequentially numbered, and the distance between
adjacent points is 19 mm along both the OX and OY axes,
as shown in Fig. 9.

26

Fig. 9. Size information of the calibration pattern (mm).

2) Quadratic transformation

There are several methods related to coordinate
calibration for vision-based inspection systems, such as
camera calibration and perspective transformation.
However, these methods require the determination of many
parameters and are affected by lens distortions, including
radial and tangential distortions [25, 26]. Therefore, in this
study, quadratic transformation and regression analysis
were investigated and applied. This approach establishes
the relationship between the image coordinates of point
I(x,y) and the world coordinates of point W(X, Y), as

described by Eq. (4), and provides sufficient accuracy for
the calibration process [27].

X:a1x2+blxy+c]y2 +ex+ fiy+g

{ ) ) (4)
Y=a,x"+bxy+c,y +e,x+ f,y+g,
where a;, by, ci, er, fi, g1 and as, by, c2, ez, f>, g are
transformation factors.

To complete the coordinate transformation between the
world coordinate system and the image coordinate system,
the least squares method is applied, as shown in Eq. (5).

Sy = ZLI[X - (alxl.z +bx.y, +c ¥’ +ex, + fiy, + gl)J2
\ , ©
S, = Zizl[Y—(azxf +hxy, + e,y vex,+ f,y,+ g, )}

where Sy and Sy are summation of the error square with
respect to the X and Y coordinate.

With this method, the error analysis results are shown in
Figs. 10 and 11. These results indicate that the error in the
OX axis ranged from —0.934 mm to 0.590 mm, with a total
error of 1.524 mm. In the OY axis, the error ranged from
0.578 mm to 0.797 mm, with a total error of 1.375 mm. The
camera resolution was 0.731 mm/pixel and 0.905 mm/pixel
in the OX and OY axes, respectively.
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Fig. 10. Error in OX axis using regression analysis.
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Fig. 11. Error in OY axis using regression analysis.

3) Camera calibration

Calibration accuracy is critical in machine vision
because it directly impacts coordinate precision. After
completing camera calibration, image coordinates can be
accurately transformed into world coordinates. In this work,
to test the angle between the camera lens and the work
plane, the camera position was fixed in the world
coordinate system and rotated to appropriate angles around
the OX and OY axes. Subsequently, a binary image was
generated, and center points were determined, as shown in
Figs. 12 and 13.

Fig. 12. Rotate the camera around OY axis.
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Fig. 13. Rotate the camera around OX axis.

Fig. 14 shows that the margin of error was small and
stability was maintained before the 600" point; however,
after that, the error curve fluctuated irregularly. Fig. 15
illustrates that before the 600" point, the error converged to
zero. The error curve changes after rotating the camera
around the OY axis of the world coordinate system by a
certain angle, as shown in Fig. 12. Subsequently, the
coordinates of the center points were determined using a
binary image.

Figs. 14-17 show that when the camera was rotated
around the OY axis, the error along the OY axis initially
decreased to zero but then gradually increased. In contrast,
when the camera was rotated around the OX axis, the error
curve rose slowly. Different camera angles resulted in
varying error levels. The smallest error was observed when
the camera was positioned perpendicular to the working
platform.

Error 200
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-100

1 101 201 301 401 501 601 701 801 901
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Fig. 14. Error in OX axis after rotating camera around OY axis.

Error 20
(mm)

-15

-20

1 101 201 301 401 501 601 701 801 901

Number of points

Fig. 15. Error in OY axis after rotating camera around OY axis.
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Fig. 16. Error in OX axis after rotating camera around OX axis.
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Fig. 17. Error in OY axis after rotating camera around OX axis.

The wind deflectors were set up as shown in Fig. 18,
where they are located nearly at the center of the image.
The error analysis focused on the central area of interest,
while other regions indicated in the image were
disregarded.

—

Fig. 18. Image of the wind deflectors.

Figs. 19 and 20 show that, from 315% point to 515" point,
the error range in the OX axis was from —0.909 mm to
1.322 mm and the total error was 2.231 mm. In the OY axis,
the error ranges from —1.407 mm to 1.408 mm and the total
error was 2.815 mm. When compared to the total error over
the previous 910 points, these values are significantly
smaller. The total error primarily arises from image
distortion caused by the camera. Greater deviations
correspond to increased distortion. Points near the optical
center of the camera exhibit negligible or no distortion;
therefore, the workpiece should be positioned at the center
of the image to minimize errors.
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Error 15 error was 1.201°. Experimental results show that when
(mm) . ..
0 errors were small, they did not significantly affect the
accuracy of the positioning system, therefore these errors
05 were within an accepted range.
0o TABLE V. REPETITION OF 30 TIMES FOR THE DEFLECTION MEASURED
- VALUE OF ANGLE 0°
Deflection Angle Values
-10 0.096, 0.574, 0.569, 0.287, —0.093, 0.368,
315 365 415 465 515 0.286, 0.570, 0.064, 0.096, 0.177, 0.173,
Number of points 0° (Unit *) 0.096, —0.082, 0.546, 0.001, —0.370, 0.326,
Fig. 19. Error in OX axis 0.097,-0.176 —0.572, 0.287, —0.569, 0.538,
& 2 ’ 0.286, 0.569, 0.546, 0.483, —0.013, 0.091
Error 1.5
(mm) TABLE VI. REPETITION OF 30 TIMES FOR THE DEFLECTION MEASURED
1.0 VALUE OF ANGLE 2°
05 Deflection Angle Values
i 1.437,2.013, 2.005, 2.481, 2.188, 2.005,
’ 1.746, 1.381, 1.696, 2.398, 2.387, 1.281,
05 2° (Unit *) 2.372,1.329, 1.439, 1.940, 1.955, 1.381,
1.381,2.527,2.247, 1.872,2.501, 1.987,
-10 2.112,1.478,2.105, 1.911, 1.842, 1.909
-1.5
315 365 415 465 515 TABLE VII. REPETITION 30 TIMES FOR THE DEFLECTION MEASURED

Number of points

Fig. 20. Error in OY axis.

III. RESULTS AND DISCUSSION

A. Deflection Angle of the Wind Deflectors

Because the wind deflectors were fixed during the
machining process, deflection of the angle was not
considered as too large. It was about 2°, 0°, and —2°. So, to
check the angle (2°, 0°, —2°), the measurement process was
repeated 30 times. Tables V-VII show that when the angle
was determined to be 0°, the error value was from 0.574°
to —0.572°. The total error was 1.146°. When the angle was
2°, the error value was from 2.572° to —1.281°. The total
error was 1.246°. When the angle was —2°, the error value
of wind deflector was from —1.573° to —2.738°. The total

VALUE OF ANGLE —2°

Values
—2.015,-2.539, —1.568, —2.704, —2.694,
—1.848,-1.937,-2.129, —2.738, —1.688,
—1.586,—-1.691, —1.673, —2.372, —2.087,
-1.562,-1.977,-2.343, —-1.682, —1.653,
—2.139,-1.537,-2.589, —2.310, —1.832,
—1.839, —1.542, —2.178,-2.433, —1.801

Deflection angle

~2° (Unit °)

B.  Improvement of the Image Resolution and
Calibration Error

To improve image resolution, the height of the camera
was lowered, and the area enclosed by the boundary
perimeter was re-measured. Subsequently, the compactness
was calculated. The camera resolution was adjusted to
0.632 mm/pixel and 0.761 mm/pixel along the OX and OY
axes, respectively. These results are shown in
Tables VIII- X.

TABLE VIII. PERIMETER (PIXEL) OF TYPES OF WIND DEFLECTORS

Type Average Maximum Minimum Positive error  Negative error
A 1063.3 1211 928 147.7 1353
B 1349.23 1359 1339 9.77 10.23
C 1527.8 1569 1490 41.2 37.8
TABLE IX. AREA (PIXEL?) OF TYPES OF WIND DEFLECTORS
Type  Average Maximum Minimum Positive error  Negative error
A 10,078.1 13,009 7553 2930.9 2525.1
B 14,864.77 15,157 14,585 292.23 279.77
C 17,495.03 18,521 16,345 1025.97 1150.03
TABLE X. COMPACTNESS OF TYPES OF WIND DEFLECTORS
Type Average Maximum Minimum Positive error  Negative error
A 113.05 116.42 110.3 3.37 2.75
B 122.47 123.58 121.49 1.11 0.98
C 133.47 136 130.82 2.53 2.56

Tables VIII-X show that Type A, which has the smallest
perimeter and area, exhibited the highest total error in

average compactness, with a value of 6.12. Type B had the
lowest total error in average compactness, at 2.09, while

21
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Type C’s total error was 5.09. The error distributions are
illustrated in the histograms shown in Figs. 21-23.
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Fig. 21. Average perimeter error after raising the resolution.
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Fig. 22. Average area error after raising the resolution.
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Fig. 23. Average compactness error after raising the resolution.

Moreover, to reduce coordinate transformation error, 43
calibration points and regression analysis were used to
replace the previously determined 910 points. After
changing the camera resolution, the error in the OX axis
ranged from 0.606 mm to —0.502 mm, resulting in a total
error of 1.108 mm, as shown on Fig. 24. Similarly, the error
in the OY axis ranged from 0.684 mm to —0.587 mm, with
a total error of 1.271 mm, as shown in Fig. 25. The results
obtained from the regression analysis showed a significant
improvement compared to the previous results, with the
total error reduced to 0.416 mm and 0.104 mm in the OX
and OY axes, respectively. Therefore, a higher camera
resolution led to lower errors.

22
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Fig. 24. Error in OX axis after improving the resolution of the
regression analysis.
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Fig. 25. Error in OY axis after improving the resolution of the
regression analysis.

IV. CONCLUSION

In this study, a machine vision-based positioning system
for wind deflectors was successfully developed. The key
conclusions are as follows:

The background subtraction method proved effective for
isolating the wind deflectors from the working platform
during image processing.

In calibration work, experimental results showed that the
coordinate transformation error increases as the angle
between the camera mirror axis and the working platform
grows. The error and image distortion are minimized when
the camera is located perpendicular to the working platform.

Camera resolution significantly impacts coordinate
calibration accuracy. With resolutions of 0.632 mm/pixel
and 0.761 mm/pixel in the OX and OY axes, total errors of
1.108 mm and 1.271 mm were observed, respectively.

To further reduce calibration errors, future work will
focus on using higher resolution cameras and implementing
controlled lighting conditions in the machine vision system
to improve image resolution and increase measurement
accuracy.
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