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Abstract—This paper presents the development of a vision-
based automated positioning system for machining processes. 
To achieve accurate positioning and obtain geometric 
information of machined parts, the relationship between the 
image coordinate system and the world coordinate system 
was established through a coordinate calibration process. In 
this study, a camera was mounted above the working 
platform to capture images of the machining area. Noise 
introduced by image subtraction was removed using 
thresholding operations, followed by edge detection methods 
to determine the contours of the machined parts. Wind 
deflectors were used as a case study. A quadratic 
transformation method was investigated and applied for 
coordinate calibration. In this process, when the camera 
resolutions in the OX and OY axes were 0.632 mm/pixel and 
0.761 mm/pixel, respectively, the total positioning errors in 
the OX and OY axes were 1.108 mm and 1.271 mm, 
respectively. Experimental results demonstrate that the 
proposed system provides a robust and effective solution for 
positioning during the machining process. 
 
Keywords—image processing, machine vision, positioning 
system, edge milling 

I. INTRODUCTION

In traditional industries, machines are usually operated 
and controlled directly by workers. However, with 
technological advancements, many automation tasks have 
replaced human operators. In machining processes, 
different workpieces are typically fixed using jigs and 
fixtures, which can lead to position deviations. Therefore, a 
reliable positioning system is essential to address this issue 
and machine vision-based automatic positioning systems 
are applied to improve the chamfering process, enhance 
product quality, and optimize production costs. 

In recent years, machine vision systems have been 
widely applied in manufacturing to enhance both quality 
and productivity [1–3]. Machine vision integrates 
illumination, image processing, and analysis to enable non-
contact localization, characterization, and manipulation of 
stationary or moving objects. Features such as size, shape, 
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and color are used to differentiate between acceptable and 
defective objects [4]. This method is inspired by the human 
vision system, which detects various types of objects. The 
acquired information is transmitted to a personal computer 
via the mainframe computer’s signal line, where the spatial 
positioning of the measured object is calculated within the 
world coordinate system [5]. 

Nowadays, machine vision is widely used in quality 
inspection, non-contact measurement systems, industrial 
automation, electronic semiconductors, medical applications, 
defect detection, and more. For instance, Dworkin and 
Nye [6] developed a machine vision algorithm for measuring 
hot-formed parts. In their study, CCD cameras were used to 
capture monochrome and color images under visible light. 
The images were then acquired, processed through threshold 
operations, and analyzed. Derganc et al. [7] proposed a 
machine vision system for the automatic measurement of 
bearing eccentricity. Similarly, Shuxia et al. [8] introduced a 
machine vision-based method to measure the cutting device’s 
diameter and the maximum rotating diameter of a mini-
milling machine. Additionally, Hsu et al. [9] developed an 
automatic optical inspection system for detecting and 
classifying defects in dental floss picks. 

Among machine vision applications, the study of Ali et 
al. [10] is very useful for improving precision measurement. 
The proposed system is to measure gear profile to replace 
traditional methods which may face danger in measurement 
process. Besides, the existing methods are either time 
consuming or expensive. Experimental results of the 
proposed system were compared with the existing systems. 
These results showed that their method has great 
advantages over existing methods in practical application. 
Rejc et al. [11] proposed an automated visual inspection 
system for dimensional measurements of a protector. A 
linear and a polynomial approximation were used for 
defining edges of selected protector structures. Pixel to 
metric unit transformation was performed by using a higher 
order polynomial approximation. The measurement 
accuracy of the proposed system is in the range of ±0.02 
mm. The measurement time is less than a second. However, 
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it cannot replace the current measurement system. It can be 
only used in the company testing laboratory. Martínez et 
al. [12] presented a quality inspection system for machined 
metal parts using an image fusion technique. The machine 
vision system, including one of its main devices, the 
lighting system performs the detection of flaws on textured 
surfaces. The proposed system works effectively with a low 
value of false rejections. An algorithm for automatic 
inspection of leadframes to detect stamping defects was 
presented using machine vision [13]. The algorithm used 
blobs analysis, morphological closing and image 
subtraction for detecting stamping defects. The proposed 
system in this study includes a CCD camera, back-lighting 
source, a computer integrated frame grabber and a 
conveyor system. The research showed that the system can 
detect stamping defects on the leadframes a success rate of 
98.7%. Machine vision camera systems are typically used 
for automated inspection of Pressure-Sensitive Paint 
(PSP) [14]. This research showed relevant imaging 
characteristics and also showed the applicability of such 
imaging technology for PSP. The results show that the 
proposed machine vision system has advanced to such a 
state that it can now be used for quantitative measurements 
of a PSP system which can be implemented for under 
£1000. Zhang et al. [15] presented a high precision quality 
inspection system for steel bars using machine vision. In 
this study, the Sub-Pixel Boundary Location Method 
(SPBLM) and Fast Stitch Method (FSM) were proposed. 
Steel bar diameter, spacing, and quantity were detected. 
The results show that the proposed system has a high 
accuracy for calculating diameter and spacing. Lee et 
al. [16] propose an intelligent vision-based Automated 
Guided Vehicle (AGV) system utilizing fiducial markers. 
They explore a low-cost and efficient vehicle guidance 
method using a consumer-grade webcam and fiducial 
markers. The system employs markers that include a capital 
letter or a triangle to indicate direction. These markers are 
easy to produce, manipulate, and maintain. The information 
encoded in the markers is used to guide the vehicle. 
Experimental results show that the system achieved a 
recognition rate of 98.87%. 

Vision-based measurement is a promising solution for 
real-time, non-contact measurement, and numerous studies 
have focused on this approach for both measurement and 
object detection. For example, Qia et al. [17] proposed an 
intelligent length measurement method for hot forgings. 
This work combined sub-pixel edge detection with green 
laser scanning. First, green laser depth information was 
used to establish a measurement model. Then, a sub-pixel 
edge detection algorithm was developed to accurately 
extract the light bar edge information, enabling the 
calculation of the forging’s length. Finally, the relative 
positional relationship between the forging and the light bar 
was analyzed, and an advanced measurement algorithm 
was presented. In a study by Xiong et al. [18], a Canny edge 
detection algorithm was proposed to address challenges 
such as image edge noise, poor contrast, and weak edges 
caused by the complex production environment during the 
Z-block visual imaging process. This method employed
Blob analysis for denoising and Region of Interest (ROI)

positioning, and optimized the gradient strength and 
direction calculations as well as the local dynamic 
threshold selection. As a result, high-accuracy edge 
detection was achieved. In addition, a contour fitting 
method with sub-pixel accuracy was applied to perform 
high-precision dimensional measurements. Experimental 
results showed that the proposed method achieved an 
average center point positioning error of (5, 5) pixels and 
an average dimensional measurement error of (0.03, 0.03) 
mm. An advanced post-processing algorithm was proposed
that dynamically modulates detection thresholds based on
the distance from the ego object [19]. Their method
employed a neural network with self-adaptive thresholding, 
which significantly reduced false negatives while also
decreasing false positives. Experimental results
demonstrated that this approach is effective for 3-D object
detection and holds promise for applications in field
robotics.

Besides, recently advancements in Artificial Intelligence 
(AI)-based or Machine Learning (ML)-enhanced vision 
systems have also significantly improved non-contact 
measurement systems in terms of accuracy, flexibility, and 
robustness. AI models now could perform precise two-
Dimensional (2-D) and three-Dimensional (3-D) 
measurements from image data, replacing or enhancing 
traditional rule-based machine vision [20] or deep learning 
could improve depth and distance estimation from single or 
stereo images [21]. 

With the growing demand for industrial automation in 
the manufacturing sector, machine vision has become 
increasingly important. In this study, a machine vision 
system was applied to an automated positioning system 
during the machining process of wind deflectors. 
Automation enhances the system’s flexibility by adjusting 
the boundaries of the wind deflectors based on the offset 
and angular deflection of the machining parts. A camera 
was used to capture images of three different types of wind 
deflectors. Prior to image capture, the camera was 
calibrated to improve accuracy. The captured images were 
then processed using filtering, thresholding, and other 
techniques. After obtaining the desired images, the 
coordinate relationship between the image coordinate 
system and the world coordinate system was established 
using the quadratic transformation method. Camera 
calibration work was also investigated to enhance the 
accuracy of the calibration process and minimize image 
distortion, as these factors directly impact the precision of 
the system. 

II. RESEARCH METHODOLOGY

A. Image Processing

In image processing technology for vision-based
inspection systems, accurately extracting objects from the 
initial image is both essential and critical. To effectively 
isolate the object of interest, it must be separated from the 
background. In this study, images were captured and then 
processed using a thresholding operation. The success of 
thresholding depends on selecting an appropriate threshold 
value. If the value is set too high, important object details 

Journal of Image and Graphics, Vol. 14, No. 1, 2026

16



may be lost and if it is too low, unwanted background 
elements may remain. Therefore, a suitable threshold value 
must be determined to eliminate most of the noise while 
preserving the object of interest. In this work, the threshold 
value is predefined by the user through a menu in a custom-
developed program. This method enables the extraction of 
relevant image data for subsequent processing. 

This study used a Logitech C525 CMOS camera to get 
image data. The camera was connected to a computer via 
USB. The camera specifications are shown in Table I. 

TABLE I. SPECIFICATIONS OF C525 CMOS CAMERA

No. Specifications

1 
HD video calling (1280×720 pixels) with recommended 

system 
2 HD video capture: Up to 1280×720 pixels 
3 Logitech Fluid Crystal™ Technology 
4 Autofocus
5 Photos: Up to 8 megapixels 
6 Hi-Speed USB 2.0 certified 

B. Background Image and Edge Detection

In this work, background subtraction techniques are
employed as an effective method for distinguishing 
foreground objects from the background [22]. This 
approach is widely used for detecting moving objects. First, 
a background model is established. Then, the foreground is 
extracted to identify the target object. Finally, the desired 
image is generated, as shown in Fig. 1. 

Fig. 1 illustrates the presence of noise that must be 
removed. To address this issue, a thresholding operation was 
applied to eliminate most of the noise. The threshold value 
was determined through image subtraction. In this study, to 
define an appropriate threshold range for extracting the 
foreground object, only threshold values with more than 20 
occurrences were considered, and reference points 
appearing more than 100 times were used. Based on this 
analysis, a minimum threshold value of 106 and a maximum 
of 129 were selected. This process preserves the shape of the 
wind deflectors while removing extraneous information 
from the image, as shown in Fig. 2. 

Fig. 1. Image subtraction. 

Fig. 2. Binarized image. 

If the threshold value is set too high, parts of the 
workpiece image may be lost; conversely, if it is set too 
low, irrelevant scene details may not be adequately filtered 
out. To further enhance boundary detection, the Canny 
algorithm was applied. This algorithm is widely used for 
edge detection due to its simplicity and robustness. It is 
based on three key criteria: a low error rate, good 
localization, and a single response per edge [23]. Using this 
method, the detected edges closely align with the actual 
object boundaries, as shown in Fig. 3. 

Fig. 3. Canny edge detection. 

C. Determining Types of Wind Deflectors

Three types of wind deflectors were used in this study.
To classify each type, key geometric properties perimeter, 
area, and compactness were calculated based on the 
object’s boundary. Compactness is an intrinsic property of 
an object and is invariant to geometric transformations such 
as translation, rotation, and scaling. Bribiesca [24] 
introduced a method for calculating the shape ratio of an 
object using its perimeter and area to characterize the 
geometry of machined parts. Following this approach, the 
compactness of each 2-D object in this study was measured 
using the following ratio:  

2

4

P
C

A
       (1) 

where C denotes compactness, P is the perimeter, and A is 
the area of the object. 

This approach ensures accurate classification of wind 
deflectors, which is essential for automation in machining 
processes. Based on the boundary of each wind deflectors, 
the perimeter, area, and compactness were calculated. The 
experimental results are presented in Tables II–IV, and the 
error distributions are illustrated in the histograms shown 
in Figs. 4–6. 

Figs. 4–6 show that the total error in the average 
compactness was highest for type C at 5.92 mm. The total 
error for type A was 5.8 mm, while type B exhibited the 
lowest total error at 2.62 mm. By calculating and 
comparing the compactness values of the three wind 
deflectors types, they were successfully classified and 
recognized within the automated positioning system. 

TABLE II. PERIMETER (PIXEL) OF TYPES OF WIND DEFLECTORS

Types Average Maximum Minimum Positive error Negative error 
A 983.69 997.25 979.94 13.56 3.75 
B 1094.17 1098.48 1090.82 4.31 3.35 
C 1274.76 1276.15 1273.23 1.39 1.53 
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TABLE III. AREA (PIXEL2) OF TYPES OF WIND DEFLECTORS 

Types Average Maximum Minimum Positive error Negative error 
A 8462 8588 8414 126 48 
B 9821.7 9992 9706 170.3 115.7 
C 12,003.3 12,328 11,788 324.67 215.33 

TABLE IV. COMPACTNESS OF TYPES OF WIND DEFLECTORS 

Types Average Maximum Minimum Positive error Negative error 
A 114.36 117.99 112.19 3.63 2.17 
B 121.9 123.08 120.46 1.18 1.44 
C 135.4 137.94 132.02 2.54 3.38 

Fig. 4. Average perimeter error. 

Fig. 5. Average area error. 

Fig. 6. Average compactness error. 

D. Determining Position of Work-Piece

In Computer Numerical Control (CNC) machining, the
boundary limits of the wind deflectors are defined by the 
positions of its start and end points. Accurate determination 
of these points is crucial, as they directly influence the 
precision of the positioning process. These points are 
identified based on the displacement and angular deflection 
of the wind deflectors, which are mounted on the same 
fixture, as illustrated in Figs. 7 and 8. 

Fig. 7. Schematic of start point and end point. 

Fig 8. Diagram for calculating the displacement and deflection angle of 
the wind deflectors. 

To calculate the displacement and angle deflection of the 
wind deflectors, a schematic diagram was established, as 
shown in Fig. 8. Here, O represents the origin of the image 
coordinate system. Ps(xs, ys) and Pe(xe, ye) are the initial 
reference points where displacement and deflection angle 
are set to zero. P0(x0, y0), P1(x1, y1) represent the start and 
end points, where displacement and deflection angle are not 
zero. α denotes the initial angle of the wind deflectors 
relative to the coordinate system when displacement and 
deflection angle are zero. S represents the offset, and θ is 
the angle deflection of the wind deflectors, calculated using 
Eqs. (2) and (3). 

 2 2
0 0( ) ( )s sS x x y y         (2) 

1 1 0 1 0
2 2

( )( ) ( )( )

( ) ( )
e s e s

e s e s

x x y y y x x x
sin

x x y y
       
     

   (3) 

E. Coordinate Calibration Method

1) Calibration pattern
In this method, a calibration pattern is used to determine

the relationship between the image coordinate system and 
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the world coordinate system. The calibration pattern 
contains 910 points, each with a diameter of 10.5 mm. All 
points are sequentially numbered, and the distance between 
adjacent points is 19 mm along both the OX and OY axes, 
as shown in Fig. 9. 

 

 

Fig. 9. Size information of the calibration pattern (mm). 

2) Quadratic transformation 

There are several methods related to coordinate 
calibration for vision-based inspection systems, such as 
camera calibration and perspective transformation. 
However, these methods require the determination of many 
parameters and are affected by lens distortions, including 
radial and tangential distortions [25, 26]. Therefore, in this 
study, quadratic transformation and regression analysis 
were investigated and applied. This approach establishes 
the relationship between the image coordinates of point 

( , )I x y  and the world coordinates of point W(X, Y), as 

described by Eq. (4), and provides sufficient accuracy for 
the calibration process [27]. 

             
2 2

1 1 1 1 1 1
2 2

2 2 2 2 2 2

X a x b xy c y e x f y g

Y a x b xy c y e x f y g

      


     
            (4) 

where a1, b1, c1, e1, f1, g1 and a2, b2, c2, e2, f2, g2 are 
transformation factors.  

To complete the coordinate transformation between the 
world coordinate system and the image coordinate system, 
the least squares method is applied, as shown in Eq. (5). 

  
 
 

2
2 2

1 1 1 1 1 11

2
2 2

2 2 2 2 2 21

n

X i i i i i ii

n

Y i i i i i ii

S X a x b x y c y e x f y g

S Y a x b x y c y e x f y g





          

         




  (5) 

where SX and SY are summation of the error square with 
respect to the X and Y coordinate. 

With this method, the error analysis results are shown in 
Figs. 10 and 11. These results indicate that the error in the 
OX axis ranged from −0.934 mm to 0.590 mm, with a total 
error of 1.524 mm. In the OY axis, the error ranged from 
0.578 mm to 0.797 mm, with a total error of 1.375 mm. The 
camera resolution was 0.731 mm/pixel and 0.905 mm/pixel 
in the OX and OY axes, respectively. 

 

 
Fig. 10. Error in OX axis using regression analysis. 

 
Fig. 11. Error in OY axis using regression analysis. 

3) Camera calibration 

Calibration accuracy is critical in machine vision 
because it directly impacts coordinate precision. After 
completing camera calibration, image coordinates can be 
accurately transformed into world coordinates. In this work, 
to test the angle between the camera lens and the work 
plane, the camera position was fixed in the world 
coordinate system and rotated to appropriate angles around 
the OX and OY axes. Subsequently, a binary image was 
generated, and center points were determined, as shown in 
Figs. 12 and 13. 
 

 
Fig. 12. Rotate the camera around OY axis. 
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Fig. 13. Rotate the camera around OX axis. 

Fig. 14 shows that the margin of error was small and 
stability was maintained before the 600th point; however, 
after that, the error curve fluctuated irregularly. Fig. 15 
illustrates that before the 600th point, the error converged to 
zero. The error curve changes after rotating the camera 
around the OY axis of the world coordinate system by a 
certain angle, as shown in Fig. 12. Subsequently, the 
coordinates of the center points were determined using a 
binary image. 

Figs. 14–17 show that when the camera was rotated 
around the OY axis, the error along the OY axis initially 
decreased to zero but then gradually increased. In contrast, 
when the camera was rotated around the OX axis, the error 
curve rose slowly. Different camera angles resulted in 
varying error levels. The smallest error was observed when 
the camera was positioned perpendicular to the working 
platform.  

 

 
Fig. 14. Error in OX axis after rotating camera around OY axis. 

 
Fig. 15. Error in OY axis after rotating camera around OY axis. 

 
Fig. 16. Error in OX axis after rotating camera around OX axis. 

 
Fig. 17. Error in OY axis after rotating camera around OX axis. 

The wind deflectors were set up as shown in Fig. 18, 
where they are located nearly at the center of the image. 
The error analysis focused on the central area of interest, 
while other regions indicated in the image were 
disregarded. 

 

 
Fig. 18. Image of the wind deflectors. 

Figs. 19 and 20 show that, from 315th point to 515th point, 
the error range in the OX axis was from −0.909 mm to 
1.322 mm and the total error was 2.231 mm. In the OY axis, 
the error ranges from −1.407 mm to 1.408 mm and the total 
error was 2.815 mm. When compared to the total error over 
the previous 910 points, these values are significantly 
smaller. The total error primarily arises from image 
distortion caused by the camera. Greater deviations 
correspond to increased distortion. Points near the optical 
center of the camera exhibit negligible or no distortion; 
therefore, the workpiece should be positioned at the center 
of the image to minimize errors.  
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Fig. 19. Error in OX axis. 

 

Fig. 20. Error in OY axis. 

III. RESULTS AND DISCUSSION 

A. Deflection Angle of the Wind Deflectors 

Because the wind deflectors were fixed during the 
machining process, deflection of the angle was not 
considered as too large. It was about 2o, 0°, and −2°. So, to 
check the angle (2°, 0°, −2°), the measurement process was 
repeated 30 times. Tables V–VII show that when the angle 
was determined to be 0°, the error value was from 0.574° 
to −0.572°. The total error was 1.146°. When the angle was 
2°, the error value was from 2.572° to −1.281°. The total 
error was 1.246°. When the angle was −2°, the error value 
of wind deflector was from −1.573° to −2.738°. The total 

error was 1.201°. Experimental results show that when 
errors were small, they did not significantly affect the 
accuracy of the positioning system, therefore these errors 
were within an accepted range. 

TABLE V. REPETITION OF 30 TIMES FOR THE DEFLECTION MEASURED 

VALUE OF ANGLE 0° 

Deflection Angle Values 

0o (Unit o) 

0.096, 0.574, 0.569, 0.287, −0.093, 0.368, 
0.286, 0.570, 0.064, 0.096, 0.177, 0.173, 

0.096, −0.082, 0.546, 0.001, −0.370, 0.326, 
0.097, −0.176 −0.572, 0.287, −0.569, 0.538, 

0.286, 0.569, 0.546, 0.483, −0.013, 0.091 

TABLE VI. REPETITION OF 30 TIMES FOR THE DEFLECTION MEASURED 
VALUE OF ANGLE 2° 

Deflection Angle Values 

2o (Unit o) 

1.437, 2.013, 2.005, 2.481, 2.188, 2.005, 
1.746, 1.381, 1.696, 2.398, 2.387, 1.281, 
2.372, 1.329, 1.439, 1.940, 1.955, 1.381, 
1.381, 2.527, 2.247, 1.872, 2.501, 1.987, 
2.112, 1.478, 2.105, 1.911, 1.842, 1.909 

TABLE VII. REPETITION 30 TIMES FOR THE DEFLECTION MEASURED 

VALUE OF ANGLE −2° 

Deflection angle Values 

−2o (Unit o) 

−2.015, −2.539, −1.568, −2.704, −2.694, 
−1.848, −1.937, −2.129, −2.738, −1.688, 
−1.586, −1.691, −1.673, −2.372, −2.087, 
−1.562, −1.977, −2.343, −1.682, −1.653, 
−2.139, −1.537, −2.589, −2.310, −1.832, 
−1.839, −1.542, −2.178, −2.433, −1.801 

 

B. Improvement of the Image Resolution and 
Calibration Error 

To improve image resolution, the height of the camera 
was lowered, and the area enclosed by the boundary 
perimeter was re-measured. Subsequently, the compactness 
was calculated. The camera resolution was adjusted to 
0.632 mm/pixel and 0.761 mm/pixel along the OX and OY 
axes, respectively. These results are shown in 
Tables VIII– X.  

TABLE VIII. PERIMETER (PIXEL) OF TYPES OF WIND DEFLECTORS 

Type Average Maximum Minimum Positive error Negative error 
A 1063.3 1211 928 147.7 135.3 
B 1349.23 1359 1339 9.77 10.23 
C 1527.8 1569 1490 41.2 37.8 

TABLE IX. AREA (PIXEL2) OF TYPES OF WIND DEFLECTORS 

Type Average Maximum Minimum Positive error Negative error 
A 10,078.1 13,009 7553 2930.9 2525.1 
B 14,864.77 15,157 14,585 292.23 279.77 
C 17,495.03 18,521 16,345 1025.97 1150.03 

TABLE X. COMPACTNESS OF TYPES OF WIND DEFLECTORS 

Type Average Maximum Minimum Positive error Negative error 
A 113.05 116.42 110.3 3.37 2.75 
B 122.47 123.58 121.49 1.11 0.98 
C 133.47 136 130.82 2.53 2.56 

Tables VIII–X show that Type A, which has the smallest 
perimeter and area, exhibited the highest total error in 

average compactness, with a value of 6.12. Type B had the 
lowest total error in average compactness, at 2.09, while 
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Type C’s total error was 5.09. The error distributions are 
illustrated in the histograms shown in Figs. 21–23. 
 

 
Fig. 21. Average perimeter error after raising the resolution. 

 
Fig. 22. Average area error after raising the resolution. 

 
Fig. 23. Average compactness error after raising the resolution. 

Moreover, to reduce coordinate transformation error, 43 
calibration points and regression analysis were used to 
replace the previously determined 910 points. After 
changing the camera resolution, the error in the OX axis 
ranged from 0.606 mm to −0.502 mm, resulting in a total 
error of 1.108 mm, as shown on Fig. 24. Similarly, the error 
in the OY axis ranged from 0.684 mm to −0.587 mm, with 
a total error of 1.271 mm, as shown in Fig. 25. The results 
obtained from the regression analysis showed a significant 
improvement compared to the previous results, with the 
total error reduced to 0.416 mm and 0.104 mm in the OX 
and OY axes, respectively. Therefore, a higher camera 
resolution led to lower errors. 

 

Fig. 24. Error in OX axis after improving the resolution of the 
regression analysis. 

 

Fig. 25. Error in OY axis after improving the resolution of the 
regression analysis. 

IV. CONCLUSION 

In this study, a machine vision-based positioning system 
for wind deflectors was successfully developed. The key 
conclusions are as follows: 

The background subtraction method proved effective for 
isolating the wind deflectors from the working platform 
during image processing. 

In calibration work, experimental results showed that the 
coordinate transformation error increases as the angle 
between the camera mirror axis and the working platform 
grows. The error and image distortion are minimized when 
the camera is located perpendicular to the working platform. 

Camera resolution significantly impacts coordinate 
calibration accuracy. With resolutions of 0.632 mm/pixel 
and 0.761 mm/pixel in the OX and OY axes, total errors of 
1.108 mm and 1.271 mm were observed, respectively. 

To further reduce calibration errors, future work will 
focus on using higher resolution cameras and implementing 
controlled lighting conditions in the machine vision system 
to improve image resolution and increase measurement 
accuracy. 
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