
Application of Machine Learning to Determine 
Fish Freshness Based on Eye Images 

John P. Q. Tomas 1,*, Maria R. J. C. Caranay  1, Eonn G. M. G. Domingo 1, Mia B. Enciso 1, and 
Bonifacio T. Doma 2 

1 School of Information Technology, Mapua University, Makati City, Philippines 
2 School of Health Sciences, Mapúa University, Manila, Philippines 

Email: jptomas@mapua.edu.ph (J.P.Q.T.); mrjccaranay@mymail.mapua.edu.ph (M.R.J.C.C.); 
egmgdomingo@mymail.mapua.edu.ph (E.G.M.G.D.); mbenciso@mymail.mapua.edu.ph (M.B.E.); 

btdoma@mapua.edu.ph (B.T.D.) 
*Corresponding author

Abstract—The assessment of fish freshness is crucial for 
ensuring food safety and quality within the seafood industry. 
Traditional methods of freshness evaluation rely on sensory 
and instrumental assessments, which can be subjective and 
require expertise. This study explores the application of 
machine learning techniques to classify fish freshness based 
on eye images. A total of 880 images were collected from two 
fish species—milkfish (Chanos Chanos) and tilapia 
(Oreochromis Niloticus)—with distinct eye characteristics, 
spanning four freshness categories: excellent, good, average, 
and not fit for consumption. Features extracted from the eye 
regions, including RGB, CIE Lab*, and GLCM descriptors, 
were used to train three classification models: Naïve Bayes 
(NB), Support Vector Machine (SVM), and k-Nearest 
Neighbors (KNN). Among the models, KNN achieved the 
highest accuracy of 77%. The study demonstrates the 
potential of automated, non-destructive, and objective 
machine learning-based approaches for evaluating fish 
freshness, contributing to improved quality control in the 
seafood industry.  

Keywords—fish freshness, image processing, k-Nearest 
Neighbors, machine learning, Naïve Bayes (NB), seafood 
quality, Support Vector Machine (SVM) 


I. INTRODUCTION

The freshness of fish is an essential consideration for 
both customers and the seafood business. It is of the utmost 
importance to ensure that fish is safe for eating and of 
excellent quality, as damaged seafood poses health hazards 
and economic losses for fishermen, suppliers, and 
customers. Traditional methods of assessing fish freshness 
rely on sensory evaluation, such as evaluating the fish’s 
odor, texture, and color [1]. According to Nguyen et 
al. [2], applying machine learning to determine fish 
freshness based on eye images is an innovative and 
promising solution. Fisheyes can give vital information 
regarding their freshness since particular changes occur in 
the eyes as fish decay. Clouding of the cornea, color 
changes, and other apparent abnormalities are among these 
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changes. Medeiros et al. [3] mentioned that machine 
learning algorithms could be trained to recognize these 
subtle variations in fisheye images, allowing for quick and 
objective freshness assessment. 

Several things influenced the choice of this theme. The 
fish sector is an essential component of the global food 
supply chain, and guaranteeing the safety and quality of 
seafood products is critical for public health and economic 
sustainability. Second, traditional techniques for judging 
seafood freshness often require expertise, whether the 
evaluation is sensory or instrumental, which makes 
outsourcing the assessment to machine learning-based 
automation, especially for consumers who might not have 
the expertise to distinguish between different levels of fish 
freshness. Finally, advances in computer vision and 
machine learning have made it more possible to create 
accurate and trustworthy models for judging fish freshness 
based on eye images. This research on using machine 
learning to detect fish freshness can benefit consumers as 
it can provide foundations for the automation of image-
based fish freshness assessment with machine learning. By 
utilizing an automated assessment process, consumers 
may be better equipped to make informed decisions 
regarding their purchase of fish products. As a result, this 
issue has the potential to make a significant contribution to 
both the seafood sector and the larger field of machine 
learning applications in food quality evaluation. 

The Food and Agriculture Organization (FAO) of the 
United Nations equates fish freshness, or the degree of 
spoilage that the fish has undergone, with the quality of 
fish [4]. There are two main ways to determine fish 
freshness according to FAO, namely, sensory and 
instrumental, where the former entails using the five senses 
to measure and interpret the characteristics of food. Table I 
outlines a set of criteria utilized within the College of 
Fisheries in Central Luzon State University (CLSU) for the 
sensory evaluation of fish, which is based on the work of 
Larsen et al. [5]. 

The scoring in Table I is the basis of the definition of 
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freshness levels provided by the Department of Post-
Harvest in CLSU College of Fisheries [6]. Fish of 
excellent quality are those that have a score in the 0–5 
range. They are fish with very few or no noticeable defects 
in appearance, odor, texture, or taste. These fish are 
considered fresh and highly desirable for consumption or 
commercial purposes. Fish of good quality are those that 
have a score in the 6–10 range. Minor defects may be 
present, but overall, the fish is still of acceptable quality. 
These fish may have slight blemishes or a slightly less than 
ideal odor, texture, or taste, but they are still suitable for 
consumption. Fish of average quality have a score in the 
11–15 range. Fish in this stage may have noticeable defects 
in one or more aspects of appearance, odor, texture, or 
taste. They may not be as fresh or appealing as fish with 
lower scores, but they are still edible. Fish that are not fit 
for consumption have a score in the 16–20 range. These 
are fish with significant defects or signs of spoilage. These 
fish may have strong off odors, mushy texture, or 
unpleasant flavors, indicating advanced deterioration. 
They are generally not recommended for consumption and 
may need to be discarded. 

TABLE I. SENSORY EVALUATION TABLE FOR FISH FRESHNESS [4, 5] 

Quality 
Parameter Character Score 

General 
Appearance

Skin
0—Bright, shining 

1—Bright 
2—Dull

Bloodspot on 
gill cover

0—None 
1—Small, 10–30% 
2—Big, 30–50% 

3—Very big, 50–100%

Stiffness

0—Stiff, in rigor mortis 
1—Elastic 
2—Firm 
3—Soft

Belly
0—Firm 
1—Soft 

2—Belly burst

Smell

0—Fresh, seaweed/metallic 
1—Neutral 

2—Musty/sour 
3—Stale meat/rancid

Eyes

Clarity 
0—Clear 

1—Cloudy 

Shape 
0—Normal 

1—Plain 
2—Sunken 

Gills

Color 
0—Characteristics, red 
1—Faded, discolored 

Smell 

0—Fresh, seaweed/metallic 
1–Neutral 

2—Musty/sour 
3—Stale meat/rancid 

Sum of 
Scores

Min. 0, max. 20 

The identified gaps in fish freshness assessment 
research include the need for classifiers with multiple 
detailed levels of freshness, the development of classifiers 
that can assess the freshness of fish species with differing 
eye characteristics, and the creation of a dataset that 
comprehensively captures fish deterioration across 
different freshness levels. Addressing these gaps will 
contribute to advancing fish freshness assessment 

techniques and their practical applications in the food 
industry. 

II. LITERATURE REVIEW

In recent times, the utilization of advanced technologies 
such as Deep Learning (DL) and Machine Learning (ML) 
has exhibited great promise in improving the detection of 
fish freshness. DL and ML enable computers to efficiently 
process and analyze extensive data, enabling the creation 
of accurate and automated models that can interpret 
intricate patterns related to diverse fish quality attributes. 
These technologies represent a significant shift, offering 
efficient, cost-effective, and consistent methods for 
evaluating fish freshness. Contemporary machine learning 
algorithms like Artificial Neural Networks (ANN) and 
Support Vector Machines (SVM) have displayed 
encouraging outcomes in assessing fish freshness [7]. 
Furthermore, image-based segmentation approaches 
utilizing methods such as K-means clustering, and wavelet 
transformations have demonstrated effectiveness in 
identifying pertinent features for precise quality 
assessment [8]. It is important to note that these 
technologies have the potential to transform the seafood 
industry significantly, ensuring safer consumption and 
optimizing resource utilization. 

Different machine learning approaches have been 
developed and refined for fish classification and freshness 
assessment, drawing from various preprocessing 
techniques and model architecture. Delineated 
preprocessing steps encompass image segmentation 
through rotation, cropping, masking, K-means clustering, 
and morphology, particularly for gill segmentation [9]. 
These preprocessing steps were crucial for enhancing the 
input data quality and facilitating subsequent feature 
extraction. Feature extraction primarily leveraged Red, 
Green, and Blue (RGB) feature extraction and RGB 
values, Lab* values, and delta E, c* values [9–11] as the 
features provided a rich representation of the visual 
characteristics of the fish images, enabling effective 
discrimination between different fish species and assessing 
freshness levels.  

Various ML models were employed, including feed-
forward neural networks (ANNs), regression models, and 
classifiers such as SVM, random forest, and Naïve 
Bayes [11–16]. These models exhibited high accuracy 
rates, ranging from 84% to 100%, depending on the task, 
such as fish classification or freshness assessment.  

Model performance was augmented through resolution 
downscaling, median filtering, thresholding, and open-
close filtering [2, 15–17]. These preprocessing and 
enhancement techniques contributed to refining the input 
data and reducing noise, ultimately enhancing the 
robustness and accuracy of the ML models.  

Several image processing techniques, including 
histogram equalization, thresholding, and blob extraction, 
were integrated into the workflow [2, 12, 14]. These 
techniques played a vital role in enhancing image quality, 
isolating relevant features, and improving model 
interpretability. The machine learning framework 
exhibited impressive performance metrics across multiple 
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evaluation criteria, including accuracy, precision, 
sensitivity, specificity, and Area Under the Curve (AUC), 
as outlined in references [2, 13]. These metrics 
underscored the efficacy of the proposed approach in 
accurately classifying fish species and assessing their 
freshness levels.  

The machine learning presented a systematic and robust 
fish classification and freshness assessment methodology, 
integrating various preprocessing techniques, feature 
extraction methods, and model architectures. The 
comprehensive evaluation across various performance 
metrics demonstrated the effectiveness and reliability of 
the proposed approach in addressing the targeted 
objectives. 

A. Image Acquisition 

In training deep learning and machine learning models, 
a good quality dataset is necessary for accurate results. 
Two main options for building this dataset include (1) 
gathering fisheye images online and (2) building a dataset 
by taking images of fish at different time intervals to get 
different levels of freshness. In the context of fish 
freshness, however, it is important for objectivity in the 
labeling of freshness levels, and the researchers have no 
objective way to ensure the appropriate labelling of 
freshness. Therefore, building a dataset appears to be the 
best approach to acquire images of fisheyes. This is often 
done by either gathering fish samples from the market [18] 
or farms [13, 19], then taking their photos in a proper 
setting to ensure uniformity in lighting. Additionally, as 
deep convolutional networks normally use RGB images as 
their input [13, 18], the images taken must also be in RGB. 
Another viable option for image acquisition is to use 
available datasets like [20]. 

B. Preprocessing 

Regardless of the model that will take the image data as 
input, it is important to ensure the quality of the dataset by 
performing image preprocessing. This includes the basics, 
such as the removal of unusable images, cropping, 
rotation, resizing, and normalization. Some studies, like 
that of Taheri-Garavand et al. [13] and Lalabadi et al. [11] 
utilize other image preprocessing techniques like noise 
removal filtering and grayscale conversion. It is important 
to note that they were done in preparation for manual 
feature extraction, and thus, studies that will rely on 
manual feature extraction for feature engineering can 
greatly benefit from performing such preprocessing 
methods. 

C. Data Augmentation 

Volume is another factor in image preparation. Deep 
convolutional images consider many factors, so it is 
important to have a large number of images in order to 
avoid overfitting [13, 18, 21]. Overfitting is seen in a 
model performing perfectly with training data but poorly 
on testing data, and it can happen when the dataset is too 
small. Therefore, the dataset must be relatively large 
achieved through processes like photographing a lot of 
samples or augmenting the images. Augmentation is the 

process of making slight modifications on the dataset to 
artificially increase its size.  

D. Image Segmentation 

While the images in the dataset may already be cropped, 
it is possible that the background of the Region of Interest 
(ROI), which in this context is the fisheye, is inconsistent 
and potentially affecting the details of the ROI. Therefore, 
image segmentation, or the division of an image into 
segments for the purposes of only processing the ROI, is 
often performed during image processing. Some 
techniques include clustering, thresholding, and watershed 
transformations. 

E. Feature Extraction 

Feature extraction takes the characteristics of the images 
(such as color, texture, a shape), and turns them into 
features that will be the input of the models in the 
classification phase. In the context of fisheye images, color 
and texture are important as they both change as the eye of 
a fish changes in appearance as it reduces in freshness. 
Color values, such as RGB, HSI, and CIE Lab can be used 
as features or as ingredients of features [18]. The same 
treatment can be used on texture values like the Gray Level 
Co-occurrence Matrix (GLCM). Feature extraction can 
also be performed by deep learning models as it learns 
from the dataset. 

F. Classification 

Classifiers lead to the proper labeling of individual 
records from the dataset based on their respective features. 
To achieve this, classification has two major processes: 
modeling, which is the process of training a model to learn 
about a specific dataset whose labels are provided, and 
validation, which is the process of testing the model if it 
has correctly learned the data by giving it a subset of data 
that it has yet to see, and letting it label that data [18]. 
Classifiers can include machine learning and data learning 
models, which are both possible models for classifying fish 
freshness. 

Building on these observations, our study contributes in 
four key ways: (1) we construct a labeled dataset of fish 
eye images by capturing progressive stages of spoilage 
across two commonly consumed species; (2) we apply 
tailored preprocessing and segmentation to isolate the 
region of interest (fish eyes) for feature extraction; (3) we 
extract interpretable features—RGB, CIE Lab, and GLCM 
texture descriptors—chosen for their relevance to visual 
freshness indicators; and (4) we evaluate three machine 
learning classifiers (Naïve Bayes, KNN, and SVM), 
selected for their interpretability and efficiency with 
limited data. These decisions are guided by both empirical 
insights from prior studies and the practical constraints of 
low-cost, scalable freshness assessment systems. The 
methodological details are discussed in the following 
section. 

III. METHODOLOGY 

This study aims to evaluate the performances of Naïve 
Bayes, Support Vector Machine (SVM), and K-Nearest 
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Neighbors (KNN) classifiers in classifying two different 
species based on features from fisheye images. The 
structured and systematic framework for acquiring, 

categorizing, and analyzing fisheye images is shown in 
Fig. 1 and is expounded on in this section.

 

 
Fig. 1. Conceptual framework.

A. Sample Acquisition 

The species chosen comprises two of the most common 
fish seen in the Philippines’ crowded markets. These 
species, namely milkfish (Chanos chanos) and tilapia 
(Oreochromis niloticus), were chosen both because they 
have differing eye characteristics and because they are 
widely available in Philippine markets. The study 
employed a total of twenty fish samples, ten per species. 
These fishes were acquired at a local market near the 
image acquisition site and transported in Styrofoam boxes 
with ice. Each sample was laid out on their respective 
locations on trays, with labels to identify each fish and 
associate scores with each fish during all of the image 
acquisition times. Table II lists the labels that were 
assigned to the images based on the sensory evaluation 
score of the fish. The fish’s eyes discolored throughout this 
time, and other changes to their appearance also occurred 
due to natural decomposition processes that had transpired. 
These variations in eye condition are the basis of the 
predictor variables this study uses to determine fish 
freshness. 

TABLE II. SENSORY EVALUATION SCORES AND THEIR 

CORRESPONDING LABELS 

Sensory evaluation score range Label 
0–5 Excellent 
6–10 Good 
11–15 Average 
16–20 Not fit for consumption

 

B. Setup for Image Acquisition 

A controlled environment ensures the consistency and 
quality of acquired high-quality fisheye images. The 

choice of this controlled setting includes a custom-
designed box equipped with an internal light to maintain 
standardized and consistent illumination throughout the 
image acquisition process. The selected image capture tool 
is the smartphone camera of a Samsung Galaxy A54, 
enabling the capture of sharp and clear images of the 
fisheyes. To eliminate potential sources of distortion and 
enhance image clarity, the fish were carefully placed on a 
clean, plain, non-reflective background to minimize 
distractions and reflections that could compromise the 
image quality. To maintain stability and ensure consistent 
framing during image capture, the phone was secured onto 
the lid of the box, aligned with the hole created for the 
phone’s cameras. When not in the box, the samples were 
on their respective trays.  

C. Image Acquisition 

In image acquisition, we captured images from both 
sides of each fish. In the image acquisition phase, we 
captured photographs from both sides of each fish to train 
the machine learning model for accurate freshness 
assessment, enabling the tracking of changes in fisheye 
appearance over time. The primary objective was to 
document different stages of deterioration by capturing 
one photo of each sample’s side per hour, resulting in two 
images per sample per hour. This procedure was repeated 
hourly over a 21-hour period, yielding 44 photographs per 
sample starting from the 0th hour. While the dataset was 
limited to 10 samples per species due to logistical and 
resource constraints, this setup allowed for highly 
controlled image acquisition and consistent monitoring 
across time points. Therefore, 880 base images resulted 
from this meticulous image acquisition procedure. Fig. 2 
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shows the steps each sample underwent for every hour of 
the image acquisition. 

 

Fig. 2. A sample’s hourly journey during image acquisition. 

The dynamic changes in fisheye appearance throughout 
the 21-hour period were thoroughly documented in these 
photographs, which serve as essential visual records of 
spoilage progression. Such systematic documentation is 
vital for analyzing freshness fluctuations. In addition to 
image capture, it was crucial to maintain detailed records 

of relevant metadata. After imaging, each sample was 
transferred to the sensory evaluation station, where 
researchers assessed freshness. Individual scores were 
recorded, grouped by sample ID, and compiled into a 
spreadsheet to calculate the total score and assign a 
freshness label based on the scale in Table III: “excellent”, 
“good”, “fair to average”, and “not fit for consumption”. 
These labels, along with the images and raw scores, were 
reviewed and validated by experts from the Department of 
Aquatic Post-Harvest under the Central Luzon State 
University–College of Fisheries to establish ground truth. 
This integrated metadata collection process facilitates 
systematic categorization and robust analysis of the 
dataset.

TABLE III. DEFINITIONS OF DIFFERENT FRESHNESS LEVELS [6] 

Sensory evaluation 
score range Freshness level Description 

0–5 Excellent Fish with very few or no noticeable defects in appearance, odor, texture, or taste. These fish are 
considered fresh and highly desirable for consumption or commercial purposes. 

6–10 Good 
Minor defects may be present, but overall, the fish is still of acceptable quality. These fish may 

have slight blemishes or a slightly less-than-ideal odor, texture, or taste, but they are still 
suitable for consumption. 

11–15 Fair to average 
Fish in this stage may have noticeable defects in one or more aspects of appearance, odor, 

texture, or taste. They may not be as fresh or appealing as fish with lower scores, but they are 
still edible. 

16–20 Not fit for 
consumption 

Fish with significant defects or signs of spoilage. These fish may have strong off odors, mushy 
texture, or unpleasant flavors, indicating advanced deterioration. They are generally not 

recommended for consumption and may need to be discarded. 

TABLE IV. SAMPLE COMPUTATIONS FOR THE MINIMUM AND MAXIMUM SCORES PER LABEL FOR TILAPIA 

Freshness 
Total 
Score 

Image 
General 

Appearance 
—Skin 

General 
Appearance 
—Bloodspot 
on gill cover 

General 
Appearance 
—Stiffness 

General 
Appearance 

—Belly 

General 
Appearance 

—Smell 

Eyes—
Clarity 

Eyes—
Shape 

Gills—
Color 

Gills—
Smell 

Excellent 0 

 

0 0 0 0 0 0 0 0 0 

Excellent 5 

 

1 0 1 1 1 0 0 0 1 

Good 6 

 

2 0 1 1 1 0 0 0 1 

Good 10 

 

2 1 2 1 1 1 0 1 1 

Fair to 
average 

11 

 

2 1 2 1 1 1 1 1 1 

Fair to 
average 

15 

 

2 1 2 1 1 1 1 1 1 

Not fit for 
consumption 

16 

 

2 2 2 1 2 1 1 1 3 

Not fit for 
consumption 

19 

 

2 2 3 1 2 1 1 1 3 
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Table IV shows the computed freshness scores for 
Tilapia range from 0 to 19, with each category capturing a 
spectrum of quality degradation. A fish with a total score 
of 0 exhibits no signs of deterioration, characterized by 
bright, shining skin, absence of bloodspots, stiff flesh in 
rigor mortis, a firm belly, fresh seaweed-like smell, clear 
and normally shaped eyes, and red, odor-free gills. 
However, as the score reaches 5, subtle changes begin to 
appear—the skin may lose some brightness, stiffness may 
transition to slight elasticity, the belly may soften, and a 
faint neutral smell might develop. In the “good” category 
(6–10), the fish’s condition continues to decline, with 
duller skin, the emergence of small bloodspots (10–30% 
coverage), increasing elasticity, and occasional cloudiness 
in the eyes. By 10, the stiffness may become firm rather 

than elastic, and the gills may start to fade in color. Moving 
into the “fair to average” category (11–15), the degradation 
becomes more pronounced; fish at 11 may show larger 
bloodspots (30–50%), sunken eyes, and a musty or sour 
odor, while those closer to 15 may have widespread 
bloodspots, increased flesh softness, and a stronger stale 
smell. In the “not fit for consumption” category (16–19), 
fish at 16 exhibit very large bloodspots (50–100%), fully 
softened flesh, and discolored, foul-smelling gills, while a 
score of 19 represents near-complete spoilage, with 
heavily sunken eyes, a burst belly, rancid odor, and severe 
loss of characteristic red gill color. This detailed scoring 
system allows for a nuanced, objective assessment of fish 
freshness, ensuring that even small degradations are 
systematically captured.

TABLE V. SAMPLE COMPUTATIONS FOR THE MINIMUM AND MAXIMUM SCORES PER LABEL FOR MILKFISH 

Freshness 
Total 
Score 

Image 
General 

Appearance 
—Skin 

General 
Appearance 
—Bloodspot 
on gill cover 

General 
Appearance 
—Stiffness 

General 
Appearance 

—Belly 

General 
Appearance 

—Smell 

Eyes—
Clarity 

Eyes—
Shape 

Gills—
Color 

Gills—
Smell 

excellent 0 

 

0 0 0 0 0 0 0 0 0 

excellent 5 1 0 1 1 0 0 2 0 0 

good 6 1 0 2 1 0 0 2 0 0 

good 10 2 1 2 1 0 1 2 1 0 

fair to 
average 

11 2 1 3 1 0 1 2 1 0 

fair to 
average 

15 2 2 3 1 1 1 2 1 2 

not fit for 
consumption 

16 2 2 3 1 2 1 2 1 2 

not fit for 
consumption 

19 2 3 3 2 3 1 1 1 3 

Table V shows computations for the minimum and 
maximum scores that a selection of our milkfish samples 
received, starting from 0 to 19. For the lowest score for the 
“excellent” label, the sample was evaluated with all 0’s, 
meaning that there were no defects in the sample’s 
appearance, odor, texture, or taste. The maximum total 
score for excellent is 5, which showed slight degradations 
in the different parts of the fish—it skin looked dull, the 
flesh was firm, the belly felt stiff, and the eye shape was 
plain. The good category (6–10), the degradation furthers 
in more aspects. For the score of 6, the difference between 

5 was that its flesh felt soft in addition to the same 
degradations. For 10, the skin was dull, a small bloodspot 
(10–30%) appeared on the gill cover, its flesh firm and 
belly soft, its eyes were cloudy and sunken, and its gills 
faded and discolored. For “fair to average” (11–15), the 
starting score of 11’s difference from that of 10’s was 
attributed to the flesh being soft, represented by the worst 
score a sample could get for the fish’s stiffness. The max 
score of 15 had dull skin, big bloodspot on the gill cover 
(30–50%), soft flesh and belly, a neutral smell, cloudy and 
sunken eyes, faded and discolored gills, and a neutral 
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smell. The “not fit for consumption” category, represented 
here by scores 16–19, starts with the addition of a 

musty/sour smell and ends with a burst belly and a rancid 
smell in addition to previous degradations.

TABLE VI. SCORE BREAKDOWN OF MILKFISH 

Freshness Level Total Score Description 

excellent 

0 No degradation evaluated. 
1 Samples have elastic stiffness. 
2 Samples have either elastic stiffness or soft belly. 
3 Samples have elastic stiffness and either soft belly or faded/discolored gills. 
4 Samples have elastic stiffness, soft belly, and sunken eyes. 
5 Samples have bright but not shining skin, elastic stiffness, soft belly, and sunken eyes. 

good 

6 Samples have bright but not shining skin, firm stiffness, soft belly, and sunken eyes. 
7 Samples have dull skin, firm stiffness, soft belly, and sunken eyes. 

8 
Samples have dull skin, firm stiffness, soft belly, sunken eyes, and either small (10–30%) bloodspot on gill cover 

or faded/discolored gills. 

9 
Samples have dull skin, small (10–30%) bloodspot on gill cover, firm stiffness, sunken eyes, and either cloudy 

eyes or faded/discolored gills. 

10 
Samples have dull skin, small (10–30%) bloodspot on gill cover, firm stiffness, soft belly, cloudy and sunken 

eyes, and faded/discolored gills. 

fair to average 

11 
Samples have dull skin, small (10–30%) bloodspot on gill cover, firm or soft stiffness, soft belly, cloudy and 

sunken eyes, and either neutral smell overall and in gills or faded/discolored gills. 

12 
Samples have dull skin, small (10–30%) bloodspot on gill cover, firm stiffness, soft belly, cloudy and sunken 

eyes, neutral smell overall and in gills and faded/discolored gills. 

13 
Samples have dull skin, small (10–30%) bloodspot on gill cover, soft stiffness, soft belly, cloudy and sunken 

eyes, neutral smell overall and in gills and faded/discolored gills. 

14 
Samples have dull skin, small (10–30%) or big (30–50%) bloodspot on gill cover, soft stiffness, soft belly, cloudy 

and sunken eyes, neutral smell overall, either neutral or musty/sour smell in gills and faded/discolored gills. 

15 
Samples have dull skin, big (30–50%), or very big (50–100%) bloodspot on gill cover, soft stiffness, soft belly, 

cloudy and sunken eyes, either neutral or musty/sour smell overall, musty/sour smell in gills and faded/discolored 
gills. 

not fit for 
consumption 

16 
Samples have dull skin, very big (50–100%) bloodspot on gill cover, soft stiffness, soft belly, cloudy and sunken 
eyes, musty/sour smell overall and in gills, faded/discolored gills, and cloudy eyes that are either sunken or plain. 

17 
Samples have dull skin, very big (50–100%) bloodspot on gill cover, soft stiffness, either soft or burst belly, 

cloudy eyes that were either sunken or plain, musty/sour smell overall and in gills, and faded/discolored gills. 

18 
Samples have dull skin, very big (50–100%) bloodspot on gill cover, soft stiffness, soft or burst belly, cloudy and 

plain eyes, stale/rancid smell overall and in gills, faded/discolored gills. 

19 
Samples have dull skin, very big (50–100%) bloodspot on gill cover, soft stiffness, soft or burst belly, cloudy and 

either plain or sunken eyes, stale/rancid smell overall and in gills, faded/discolored gills. 

By the 21st hour of image acquisition, the largest score 
that the milkfish samples received was 19. For each score 
computed, Table VI outlines the most common attributes 
that the samples have. At the “excellent” level (scores 0–
5), samples showed minimal to no degradation, 
maintaining elastic stiffness, soft bellies, and clear eyes, 
with minor signs such as faded gills appearing at higher 
scores. The “good” level (scores 6–10) showed more 
deterioration, through the samples’ dull skin, sunken eyes, 
and small bloodspots on the gill cover, with some samples 
also having cloudy eyes or faded gills. In the “fair to 
average” category (scores 11–15), the milkfish samples 
displayed more greater degradation, such as larger 
bloodspots, cloudy and sunken eyes, and neutral to 
musty/sour odors overall and specifically in the gills. 
Finally, the milkfish samples classified as not fit for 
consumption (scores 16–19) exhibit severe degradation, 
including very large bloodspots, burst bellies, plain or 
sunken eyes, and strong stale or rancid odors overall and 
in the gills. 

Table VII shows the descriptions of the tilapia samples 
at the different scores they received based on the attributes 
that most of the samples exhibited at each hour. The 
maximum score they received by the 21st hour is 19. The 
“excellent” scores (0–5) were given to tilapia samples that 
showed minimal signs of degradation, with attributes such 
as elastic stiffness, soft belly, and neutral smell. Some 

samples may have slightly diminished freshness in one or 
more aspects, like no longer having shining skin or a firm 
belly. The “good” scores (6–10) were given to tilapia 
samples with dull skin, firm or elastic stiffness, soft bellies, 
and neutral smells, with increasing signs of deterioration 
like small bloodspots on the gill cover, faded gills, or 
cloudy eyes at higher scores. The “fair to average” scores 
(11–15) indicated more noticeable decline, with defects 
becoming widespread, including larger bloodspots, musty 
or sour odors overall and in the gills, and cloudy or plain 
eyes. Finally, tilapia samples scored with “not fit for 
consumption” scores (16–19) exhibit severe spoilage, such 
as very large bloodspots, soft or burst bellies, stale or 
rancid smells overall and in the gills, cloudy and sunken 
eyes, and heavily faded or discolored gills with strong 
odors. 

D. Preparation of Images 

To alleviate the additional computational burden 
associated with potentially processing images of differing 
dimensions, the images were programmatically 
standardized. The images were standardized to a size of 
224×224 pixels. This size was chosen as it strikes a balance 
between preserving essential features and reducing 
computational overhead. By cropping images to this 
uniform size, extraneous details were removed, focusing 
the analysis on the relevant fish features.

Journal of Image and Graphics, Vol. 14, No. 1, 2026

30



TABLE VII. SCORE BREAKDOWN OF TILAPIA 

Freshness Level Total Score Description 

Excellent 

0 No degradation evaluated. 

1 
These samples possess one attribute that has diminished freshness, usually one of the following: their general 
stiffness being described as elastic and no longer in rigor mortis, their belly being soft and not firm, or their 

skin being bright but no longer shining. 
2 Samples have mostly elastic stiffness and a soft belly. 

3 
Samples have a combination of three of the following: elastic stiffness, soft belly, bright but not shining skin, 

and plain eye shape. 
4 Samples have a combination of bright or dull skin, elastic or firm stiffness, soft belly, neutral overall smell. 
5 Samples have bright but not shining skin, soft belly, neutral overall and gill smell, and elastic stiffness. 

Good 

6 
Samples mostly have dull skin, either elastic or firm stiffness, soft belly, and neutral smell both overall and 

specifically in the gills. 
7 Samples have dull skin, firm stiffness, soft belly, and neutral smell both overall and specifically in the gills. 

8 
Samples have dull skin, firm stiffness, soft belly, neutral overall and gill smell, and either plain eyes or small 

(10–30%) bloodspot on gill cover. 

9 
Samples have dull skin, firm stiffness, soft belly, neutral overall and gills smell, faded/discolored gills, and 

small (10–30%) bloodspot on gill cover. 

10 
Samples have dull skin, firm stiffness, soft belly, cloudy eyes, faded/discolored gills, small (10–30%) 

bloodspot on gill cover, and neutral smell overall and specifically in the gills. 

Fair to average 

11 
Samples now have defects across the board. They have dull skin, small (10–30%) bloodspot on gill cover, 
firm stiffness, soft belly, neutral overall and gills smell, cloudy and plain eyes, and faded/discolored gills. 

12 
Samples have dull skin, small (10–30%) bloodspot on gill cover, firm stiffness, soft belly, neutral overall 

smell, cloudy and plain eyes, faded/discolored gills, and musty/sour gills smell. 

13 
Samples have dull skin, firm stiffness, soft belly, cloudy and plain eyes, faded/discolored gills, musty/sour 

smelling gills, and either musty/sour overall smell with small (10–30%) bloodspot on gill cover, or big (30–
50%) bloodspot on gill cover with neutral overall smell. 

14 
Samples have dull skin, big (30–50%) bloodspot on gill cover, firm stiffness, soft belly, musty/sour overall 

smell and gills smell, cloudy and plain eyes, and faded/discolored gills. 

15 
Samples have dull skin, big (30–50%) bloodspot on gill cover, firm stiffness, soft belly, musty/sour overall 

smell, cloudy and plain eyes, faded/discolored gills that smell stale/rancid. 

Not fit for 
consumption 

16 
Samples have dull skin, big (30–50%) bloodspot on gill cover, firm or soft stiffness, soft belly, musty/sour 

smell, cloudy and plain eyes, faded/discolored gills that smell stale/rancid. 

17 
Samples have dull skin, big (30–50%) bloodspot on gill cover, soft stiffness, soft belly, either musty/sour or 

stale/rancid overall smell, cloudy and plain eyes, and faded/discolored gills that smell stale/rancid. 

18 
Samples have dull skin, big (30–50%) or very big (50–100%) bloodspot on gill cover, soft stiffness and 

belly, stale/rancid smell overall and specifically in the gills, cloudy and sunken eyes, and stale/rancid 
smelling gills that are faded/discolored. 

19 
Samples have dull skin, very big (50–100%) bloodspot on gill cover, soft stiffness, burst belly, stale/rancid 

overall and gills smell, cloudy and sunken eyes, and faded/discolored gills. 

E. Segmentation 

Roboflow was utilized for the segmentation process. 
We manually annotated the fisheye images by segmenting 
the eye regions to create accurate training data for our 
model, which also resulted in bounding boxes being 
generated shown at the Fig. 3. These annotations generated 
detailed JSON data containing both bounding box 
coordinates and segmentation masks, which serve as 
essential inputs for training our machine learning models 
to assess fish freshness effectively. This careful 
segmentation ensures the model focuses on the most 
relevant eye features, enabling it to learn and distinguish 
between different freshness levels with precision. 

 

 
Fig. 3. Segmented images of Milfish and Tilapia. 

F. Feature Extraction 

The features employed in this study include color 
features, namely RGB and Lab* features, and texture 
features from the Gray Level Cooccurrence Matrix 
(GLCM). Prior research has shown that these features are 
useful to assess fish freshness and quality due to their 
specific advantages in capturing relevant visual and 
textural information. RGB is utilized by studies such as [r 
/ 20] because its computation and interpretation are simple. 
This color space directly represents raw color information 
captured by cameras, making it straightforward to analyze 
changes in the fish eyes that indicate freshness. The Lab* 
space separates luminance (L*) from chromaticity (a* and 
b*), which ensures that color descriptors are not 
confounded by illumination variations. Features such as a* 
and b* components proved useful for capturing color shifts 
associated with spoilage, such as increased redness, as 
shown in Taheri‐Garavand et al. [13] and Lalabadi et 
al. [11]. Taheri‐Garavand et al. [13] and Nguyen et al. [22] 
also emphasize that textural changes are induced by 
spoilage, which GLCM features can reliably interpret. 
These features are fast to compute and do not require 
complex processing or data processing pipelines. The 
combination of these three provides a holistic assessment 
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covering visual appearance and the structural integrity of 
tissue. The JSON data from segmentation included a part 
called “segmented pixels”, which are the pixels in the 
segment shown as RGB values. To prepare these values 
for the model, the average was taken and added to a 
different column. The raw RGB values were preserved to 
be converted to the Lab* and GLCM values.  

In our Lab conversion process, we transformed the 
segmented RGB pixels into the CIE Lab* color space 
using the rgb2lab function from the skimage color library. 
This conversion is crucial because the Lab* color space is 
designed to closely match human visual perception, 
making it particularly useful for detecting subtle color 
differences that are less discernible in the standard RGB 
space. After conversion, we computed the mean values for 
each channel—mean L*, mean a*, and mean b*—across 
the segmented pixels. These mean values serve as key 
features for our machine learning models, as they reflect 
the nuanced color changes in fisheyes that occur over time.  

Finally, we applied Gray Level Co-occurrence Matrix 
(GLCM) analysis to capture texture-based features from 
the segmented fisheye images. First, we converted the 
RGB eye images into grayscale using the rgb 2 gray 
function, as GLCM works on intensity values rather than 
color. The grayscale image was then transformed into an 
8-bit unsigned integer format, which is a common 
requirement for GLCM computation. GLCM was 
calculated with a distance of 1 pixel and across four 
standard angles (0°, 45°, 90°, and 135°), which allows the 
model to analyze texture patterns in multiple directions. 

G. Feature Selection 

The resulting number of features from the feature 
extraction processes was twenty-two in total. We tested 
different feature selection approaches and found the best 
results with ANOVA, which stands for Analysis of 
Variance, as it allowed us to check the variance within the 
features and between them and evaluate the importance of 
each feature.  To reduce the dimensionality of the dataset 
and improve model performance, we utilized ANOVA to 
identify the top ten features that had an impact on the target 
variable, freshness level, based on the feature’s F-statistic. 
As a result, the dataset retained the ‘mean_R’, ‘mean_b’, 
‘mean_L’, ‘mean_a*’, ‘mean_G’, ‘contrast_90’, 
‘contrast_45’, ‘contrast_135’, ‘correlation_90’, and 
‘homogeneity_90’** features, listed below in decreasing 
order of F-statistic, along with their respective purposes. 

H. Data Preparation for Modeling 

With the selected features, the next step was preparing 
the data for model training. To ensure a balanced 
representation of each class in the target variable, we first 
oversampled the dataset. The imbalance in class 
distribution was addressed by matching the number of 
samples in each class to the highest count, as indicated by 
the maximum value in the label column. The resulting 
balanced dataset was then scaled using Standard Scaler, 
which standardized the features to have a mean of 0 and a 
standard deviation of 1. This was essential, particularly for 
models like KNN and SVM, where distance metrics are 
sensitive to the scale of the input features. Finally, we split 

the dataset into training and test sets, with 80% used for 
training and 20% reserved for testing. 

I. Model Development and Evaluation 

1) Naïve Bayes  
Naive Bayes is a probabilistic classifier based on Bayes’ 

theorem, which assumes that the features are conditionally 
independent given the class label. This assumption allows 
the model to compute the posterior probabilities of each 
class and choose the class with the highest probability. For 
continuous features, Naive Bayes assumes that they follow 
a Gaussian distribution, and it estimates the mean and 
variance for each class.  

In order to improve the model’s accuracy, we used 
Optuna to optimize the hyperparameters. Optuna is an 
automatic hyperparameter optimization framework that 
uses an efficient sampling strategy to explore the 
hyperparameter search space and find the best parameters. 
For Naive Bayes, we focused on optimizing the 
var_smoothing parameter, which helps stabilize the 
variance estimation, especially in the case of small or zero 
variance values. The var_smoothing parameter was set to 
a range of values using np.logspace(0, −9, num = 100), 
which generates 100 logarithmically spaced values 
between 100 (1) and 10−9. Var smoothing adds a small 
value to the variance of each feature, which helps avoid 
numerical issues and also reduces the model’s tendency to 
overfit by not placing excessive reliance on small 
variances.  

We ran 500 trials in Optuna to identify the best value for 
this parameter. After optimizing the hyperparameter, we 
trained the model and then tested its performance on the 
test set, calculating its accuracy and generating a 
classification report to assess the precision, recall, F1-
Score, and other metrics.  

2) k-Nearest Neighbors (KNN)  
K-Nearest Neighbors is a non-parametric algorithm that 

classifies data based on the majority class among its k-
Nearest Neighbors. It computes the distance between the 
test point and training samples, then predicts the class of 
the test point by considering the k closest training samples. 
The performance of KNN heavily depends on the choice 
of hyperparameters. Therefore, Optuna was used to tune 
several important parameters.  

First, the n_neighbors parameter was varied between 1 
and 30 to determine the optimal number of neighbors. Too 
few neighbors might cause overfitting, while too many 
could smooth the decision boundary too much. 
Additionally, we tuned the weights parameter, with 
options for uniform (equal weight for all neighbors) and 
distance (closer neighbors have more weight). The 
algorithm parameter, which controls the method used to 
find the nearest neighbors, was tested with auto, ball_tree, 
kd_tree, and brute options. Each algorithm has different 
computational efficiencies, and the optimal choice 
depends on the data’s structure. Finally, we adjusted the 
leaf_size (between 1 and 100) to control the size of the leaf 
nodes in tree-based algorithms, and the p parameter (1 for 
Manhattan distance, 2 for Euclidean distance) was fine-
tuned to assess its effect on the model’s accuracy. 
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After running 500 trials in Optuna to find the best 
combination of these parameters, we trained the KNN 
model. We then tested the model by predicting the fish 
freshness, calculated its accuracy, and generated the 
classification report, which helped assess the model’s 
effectiveness.  

3) Support Vector Machine (SVM)  
Support Vector Machine is a powerful classification 

algorithm that works by finding the hyperplane that best 
separates the classes in the feature space. SVM can handle 
both linear and non-linear decision boundaries, depending 
on the choice of kernel. Similar to the previous models, 
Optuna was used to fine-tune several SVM 
hyperparameters, beginning with the C parameter, which 
controls the regularization of the model. The C parameter 
varied between 10−3 and 103 allowing us to balance the 
margin maximization and classification error 
minimization. A high C value places more emphasis on 
minimizing errors, while a smaller value allows for a larger 
margin and potentially better generalization. The kernel 
parameter, which determines the type of decision 
boundary, was tested with different values: linear, poly, 
rbf, and sigmoid. For non-linear data, the rbf kernel is 
particularly effective in mapping data to higher-
dimensional spaces where a linear boundary can separate 
the classes. Additionally, the gamma parameter, which 
influences the influence of individual data points on the 
decision boundary, varied between scale and auto. A 
higher gamma value allows the model to create more 
complex decision boundaries, while a lower value leads to 
a simpler, smoother boundary. Finally, we optimized the 
degree parameter, which controls the degree of the 
polynomial used in the poly kernel, adjusting it between 2 
and 5.  

After running 500 trials with Optuna to identify the 
optimal hyperparameters, we trained the SVM model. We 
then tested the model’s predictive performance by 
calculating its accuracy and generating a classification 
report. This helped us evaluate the SVM model’s overall 
performance in predicting fish freshness. 

The classifiers selected for this study, Naïve Bayes (NB), 
k-Nearest Neighbors (KNN), and Support Vector Machine 
(SVM), were chosen based on their suitability for small to 
moderately sized datasets, interpretability, and 
computational efficiency. These classical machine 
learning models are well-suited for scenarios where 
handcrafted features, such as color and texture descriptors, 
can be extracted from the data. 

In contrast, deep learning models, particularly 
Convolutional Neural Networks (CNNs), generally require 
large-scale datasets to perform effectively and avoid 
overfitting. Training such models is resource-intensive, 
demanding significant computational power, longer 
training times, and greater data volume to generalize well. 
Given the controlled but limited dataset used in this study 
(880 images), deep learning approaches were deemed 
impractical. 

Moreover, traditional machine learning models allow 
for feature engineering and targeted input selection, 
enabling the use of domain knowledge, such as the visual 

characteristics of fisheyes known to correlate with 
freshness. This controlled approach offers better model 
transparency and faster training, making NB, KNN, and 
SVM appropriate choices for evaluating the feasibility of 
automated fish freshness classification in resource-
constrained or small-sample settings. 

To address the risk of overfitting posed by the small 
dataset and the use of oversampling, several strategies 
were implemented, with a key emphasis on 
hyperparameter tuning using Optuna. By optimizing 
parameters such as ‘var_smoothing’ in Naive Bayes, 
‘n_neighbors’ in KNN, and ‘C’, ‘kernel’, and ‘gamma’ in 
SVM, the model search prioritized configurations that 
reduced complexity and improved generalization. For 
instance, tuning ‘var_smoothing’ helped regularize low-
variance features common in oversampled data, while 
adjusting ‘n_neighbors’ balanced KNN’s sensitivity to 
noise versus its ability to generalize.  

In SVM, controlling ‘C’ and ‘gamma’ allowed for a 
trade-off between margin width and decision boundary 
complexity. These hyperparameters directly influence 
model flexibility and were critical in preventing overfitting 
to synthetic or redundant patterns. Complementary to this, 
ANOVA-based feature selection removed irrelevant or 
noisy predictors, reducing the risk of the model fitting to 
spurious correlations. Oversampling was followed by 
scaling to prevent any one feature from dominating the 
learning process, and an 80/20 stratified split was used to 
maintain class distribution and enable a fair evaluation of 
model generalizability. Together, these steps formed a 
cohesive approach to mitigating overfitting despite the 
constraints of limited data. 

IV. RESULTS AND DISCUSSION 

The analysis of fish samples using a combination of 
RGB values (segmented pixels), Lab color values, and 
texture features from the Gray-Level Co-occurrence 
Matrix (GLCM) reveals critical insights into the 
relationship between visual characteristics and fish 
freshness. The dataset consists of various fish images, each 
represented by segmented pixel values in RGB format, 
capturing the raw color information of the fish. These RGB 
values were further converted into the Lab color space to 
capture more precise color variations and enhance the 
differentiation between fresh and aging fish. Texture 
features such as contrast, correlation, energy, and 
homogeneity were also extracted using GLCM to quantify 
surface properties. 

In terms of the hourly breakdown of the samples’ 
freshness, Fig. 4 gives us insight into the points in time at 
which the fish start changing from “excellent” to “good” 
to “fair to average” to “not fit for consumption”. For the 
0th to 2nd hour, all the milkfish samples are graded within 
the “excellent” range. By the 3rd hour, half of the samples 
moved into the “good” category, with two more changing 
by the 4th hour. By the 5th hour, there were no more 
excellent examples. One sample moved into “fresh to 
average” by the 10th hour, then another moved into “not 
fit for consumption” by the 13th hour. Starting at the 18th 
hour, all samples were unfit for consumption. 
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Fig. 4. Hourly freshness breakdown for milkfish. 

Unlike the hourly breakdown of the milkfish samples’ 
freshness, Fig. 5 shows that the tilapia samples only started 
moving into the “good” label at the 5th hour. The hour at 
which they moved into “fair to average” was the same as 
the milkfish samples’, which is at the 10th hour. The tilapia 
samples started moving into the “not fit for consumption” 
category at the 15th hour. The tilapia samples stayed 
fresher for longer overall, but both species’ samples were 
completely under the “not fit for consumption” category 
by the 18th hour. These differences between the times at 
which the milkfish samples started moving into less fresh 
categories vs the times at which the tilapia samples point 
to how there could be merit into looking into the inherent 
differences between the two species that could possibly 
affect when and how they deteriorate. 
 

 
Fig. 5. Hourly freshness breakdown for tilapia. 

A. Naive Bayes 

In this study, the performance of a Gaussian Naive 
Bayes model was optimized using Optuna to predict fish 
freshness based on features derived from RGB values, 
Lab* values, and GLCM texture properties. The key 
hyperparameter of the Naive Bayes model, 
var_smoothing, was fine-tuned by conducting 500 
optimization trials across a range of values. The optimal 
var_smoothing value suggested by Optuna was 0.0035, 
resulting in the best accuracy of 61.67% on the test dataset 
shown at Table VIII. 

Fig. 6 shows the breakdown of the Naive Bayes model’s 
performance on the dataset, with “excellent” and “good” 
getting the greatest number of accurate predictions. 
However, it seems like the model had some difficulty 

differentiating them from each other, with thirteen 
“excellent” records misclassified as “good”, and 6 “good” 
records misclassified as “excellent”. Five “good” records 
were also misclassified as “not fit for consumption”. The 
model had the most difficulty with the “fair to average” 
label, with only 17 accurate predictions. It also had 17 
misclassifications with “good” and 13 with “not fit for 
consumption”. With 29 accurate predictions, the model 
had average performance with the “not fit for 
consumption” label, which was only misclassified as “fair 
to average”. 

TABLE VIII. NAIVE BAYES CLASSIFICATION REPORT 

Class  Precision  Recall  F1-Score  
Excellent  0.82  0.7  0.75 

Fair to Average  0.57  0.35  0.44  
Good  0.52  0.72  0.61  

Not Fit for Consumption  0.6  0.72  0.66  
Accuracy      0.62  

 

 
Fig. 6. Naïve Bayes confusion matrix. 

B. k-Nearest Neighbors (KNN) 

In the KNN classifier, it was optimized using Optuna to 
improve its ability to classify fish freshness based on 
image features. The optimization process focused on 
tuning key hyperparameters, including the number of 
neighbors (n_neighbors), weight function (weights), 
algorithm (algorithm), leaf size (leaf_size), and power 
parameter (p) for the Minkowski distance. After 
conducting 500 trials, the best set of hyperparameters was 
identified as 4 neighbors, a ‘distance’ weight function, the 
‘kd_tree’ algorithm, a leaf size of 76, and a Minkowski 
distance parameter p = 3. Therefore, Table IX showed the 
accuracy of 0.89. 

TABLE IX. KNN CLASSIFICATION REPORT 

Class Precision Recall F1-Score 
Excellent 0.93 0.87 0.9 

Fair to Average 0.88 0.9 0.89 
Good 0.81 0.93 0.87 

Not Fit for Consumption 1 0.88 0.93 
Accuracy   0.89 

 

The breakdown of the KNN’s predictions can be seen in 
Fig. 7, which shows that the model had more accurate 
predictions with the “good” label, followed by “fair to 
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average”, which was misclassified with only “good”. The 
“excellent” label is next with 40 accurate predictions. 
These three labels had no misclassifications with “not fit 
for consumption”, which is the label with which the model 
had mediocre performance, with 35 accurate predictions 
and some misclassifications.  

 

 
Fig. 7. KNN confusion matrix. 

C. Support Vector Machine 

The Support Vector Machine (SVM) model was 
optimized using Optuna to enhance its classification 
performance for fish freshness labels. The optimization 
process focused on tuning key hyperparameters, including 
the regularization parameter (C), kernel type (kernel), 
kernel coefficient (gamma), and, where applicable, the 
degree of the polynomial kernel. A total of 500 trials were 
conducted to determine the optimal combination of 
hyperparameters for maximizing accuracy. The best 
configuration identified was an RBF kernel with a 
regularization parameter C of 131.80 and gamma set to 
‘scale’ shown in Table X. 

TABLE X. SVM CLASSIFICATION REPORT 

Class  Precision  Recall  F1-Score  
Excellent  0.92  0.96  0.94  

Fair to Average  0.85  0.83  0.84  
Good  0.86  0.93  0.9  

Not Fit for Consumption  0.91  0.8  0.85  
Accuracy      0.88  

 
In Fig. 8, the SVM model’s predictions across labels are 

shown with “excellent” having 44 accurate predictions and 
only 2 misclassifications with the “good” label. For the 
“good” label, it was only misclassified thrice as 
“excellent”, and the rest are accurate predictions. Here, we 
can see that the model is performing well in differentiating 
the differences between these two classes. The model also 
performed decently in the “fair to average” label, with 40 
accurate predictions and misclassifications with “good” 
and “not fit for consumption.” There were 32 accurate 
predictions for the “not fit for consumption” label, with 8 
misclassifications. Overall, the SVM model showed good 

performance in identifying “excellent”, “good”, and “fair 
to average” labels, while “not fit for consumption” 
identification was subpar. 

 

 
Fig. 8. SVM confusion matrix. 

Although the models demonstrated strong performance 
in classifying the “Excellent” and “Good” freshness levels, 
their predictive accuracy was notably lower for the “Fair 
to Average” and “Not Fit for Consumption” categories. 
This discrepancy may be attributed to two primary factors. 
First, the visual features of fisheyes within the “Fair to 
Average” category tend to overlap with those of adjacent 
freshness levels. The subtle variations in color and texture 
may not be sufficiently distinguishable using the current 
set of handcrafted features, thereby contributing to 
classification ambiguity. Similar challenges in classifying 
intermediate freshness stages have been noted in previous 
studies where overlapping color and textural patterns 
reduced classification accuracy in non-destructive 
freshness monitoring of fisheyes [16]. 

Second, the dataset exhibited class imbalance, with 
fewer samples assigned to the “Fair to Average” category. 
This imbalance likely introduced bias during the training 
phase, resulting in reduced model sensitivity to minority 
classes and a higher misclassification rate for intermediate 
freshness states. The impact of class imbalance on model 
accuracy has also been emphasized in food freshness 
prediction studies, where underrepresented classes tend to 
be misclassified without appropriate balancing 
strategies [11, 12, 22]. 

Interestingly, previous studies using similar machine 
learning approaches have reported higher classification 
accuracies. For instance, Tolentino et al. [23] employed 
Support Vector Machine (SVM) to classify the freshness 
of milkfish, round scad, and short mackerel scad based on 
eye and gill redness using RGB features, achieving a 98% 
accuracy rate aligned with manual sensory evaluations. 
Similarly, Yudhana et al. [24] compared k-Nearest 
Neighbors (KNN) and Naïve Bayes (NB) classifiers for 
fish freshness detection and reported high accuracies of 
97% and 94%, respectively. While our models achieved 
slightly lower accuracy, 89.44% for KNN, 88.33% for 
SVM, and 61.67% for NB, this can be attributed to 
differences in dataset size, species variability, image 
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preprocessing, and the complexity introduced by four 
freshness levels rather than binary classification. 

To address these limitations, several methodological 
improvements are proposed for future work. Data 
augmentation techniques, such as color jittering, contrast 
adjustment, or synthetic simulation, may be employed to 
enrich the diversity and representation of minority classes. 
Similar techniques have been successfully applied in prior 
image-based food quality studies to enhance model 
robustness and generalization [19]. Furthermore, the 
extraction of more granular texture and morphological 
features could improve the discriminative capacity of the 
models. The integration of ensemble methods or 
probabilistic classification approaches may also offer 
improved handling of ambiguous cases by enabling softer 
decision boundaries and reducing the risk of overfitting to 
dominant classes [16]. 

V. CONCLUSION 

This study investigated the efficacy of various machine 
learning algorithms—namely Gaussian Naïve Bayes (NB), 
k-Nearest Neighbors (KNN), and Support Vector Machine 
(SVM)—in classifying fish freshness based on features 
extracted from RGB, CIE Lab*, and Gray Level Co-
occurrence Matrix (GLCM) values. By applying ANOVA 
for feature selection and balancing the dataset through 
oversampling, we effectively reduced dimensionality and 
addressed class imbalance, resulting in improved model 
accuracy. Among the models tested, KNN achieved the 
highest performance with an accuracy of 89.44%, followed 
by SVM at 88.33%. NB, while computationally efficient, 
achieved a more modest accuracy of 61.67%. Notably, 
SVM and KNN excelled in predicting “excellent” and 
“good” classes but struggled with lower precision in the 
“fair to average” and “not fit for consumption” 
categories—likely due to subtle visual differences and 
fewer samples per class. 

To further enhance classification performance, several 
recommendations are proposed. First, class imbalance 
remains a key challenge. We suggest the use of targeted 
resampling strategies such as Synthetic Minority Over-
sampling Technique or Adaptive Synthetic Sampling for 
undersampling. These methods can help increase the 
representation of underrepresented classes without 
overfitting. Additionally, class-weighted loss functions 
could be explored, especially in SVM or ensemble 
classifiers, to improve sensitivity to minority classes. 
Second, future models may benefit from a hierarchical 
classification structure—first distinguishing the fish 
species and then assessing freshness within each species. 
This two-step approach could reduce inter-class variability 
caused by anatomical differences between species and 
improve overall classification accuracy. Future studies 
may consider incorporating k-fold cross-validation during 
hyperparameter tuning to improve the robustness and 
generalizability of model performance, particularly in 
cases of limited or imbalanced datasets. 

Moreover, the integration of external contextual 
features, such as ambient storage temperature, humidity, 
and time since harvest, could provide additional predictive 

power. These variables often correlate with freshness and 
may help resolve ambiguities in intermediate classes like 
“fair to average”. While deep learning methods were not 
explored in this study due to dataset constraints, future 
research with a larger and more diverse dataset could 
investigate Convolutional Neural Networks (CNNs) or 
hybrid deep learning pipelines. Transfer learning from pre-
trained models could also be considered to overcome 
limitations related to small sample sizes. 

Lastly, future research should explore the integration of 
external factors, such as environmental conditions and 
handling practices, which may influence fish freshness. By 
incorporating these elements into the classification 
framework, the models could provide more 
comprehensive insights into fish quality assessment. This 
research not only advances the understanding of machine 
learning applications in food safety but also lays the 
groundwork for future studies aimed at enhancing the 
accuracy and reliability of fish freshness classification 
systems. 
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