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Abstract—The assessment of fish freshness is crucial for
ensuring food safety and quality within the seafood industry.
Traditional methods of freshness evaluation rely on sensory
and instrumental assessments, which can be subjective and
require expertise. This study explores the application of
machine learning techniques to classify fish freshness based
on eye images. A total of 880 images were collected from two
fish species—milkfish (Chanos Chanos) and tilapia
(Oreochromis Niloticus)—with distinct eye characteristics,
spanning four freshness categories: excellent, good, average,
and not fit for consumption. Features extracted from the eye
regions, including RGB, CIE Lab*, and GLCM descriptors,
were used to train three classification models: Naive Bayes
(NB), Support Vector Machine (SVM), and k-Nearest
Neighbors (KNN). Among the models, KNN achieved the
highest accuracy of 77%. The study demonstrates the
potential of automated, non-destructive, and objective
machine learning-based approaches for evaluating fish
freshness, contributing to improved quality control in the
seafood industry.

Keywords—fish freshness, image processing, k-Nearest
Neighbors, machine learning, Naive Bayes (NB), seafood
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[. INTRODUCTION

The freshness of fish is an essential consideration for
both customers and the seafood business. It is of the utmost
importance to ensure that fish is safe for eating and of
excellent quality, as damaged seafood poses health hazards
and economic losses for fishermen, suppliers, and
customers. Traditional methods of assessing fish freshness
rely on sensory evaluation, such as evaluating the fish’s
odor, texture, and color [1]. According to Nguyen et
al.[2], applying machine learning to determine fish
freshness based on eye images is an innovative and
promising solution. Fisheyes can give vital information
regarding their freshness since particular changes occur in
the eyes as fish decay. Clouding of the cornea, color
changes, and other apparent abnormalities are among these
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changes. Medeiros et al. [3] mentioned that machine
learning algorithms could be trained to recognize these
subtle variations in fisheye images, allowing for quick and
objective freshness assessment.

Several things influenced the choice of this theme. The
fish sector is an essential component of the global food
supply chain, and guaranteeing the safety and quality of
seafood products is critical for public health and economic
sustainability. Second, traditional techniques for judging
seafood freshness often require expertise, whether the
evaluation is sensory or instrumental, which makes
outsourcing the assessment to machine learning-based
automation, especially for consumers who might not have
the expertise to distinguish between different levels of fish
freshness. Finally, advances in computer vision and
machine learning have made it more possible to create
accurate and trustworthy models for judging fish freshness
based on eye images. This research on using machine
learning to detect fish freshness can benefit consumers as
it can provide foundations for the automation of image-
based fish freshness assessment with machine learning. By
utilizing an automated assessment process, consumers
may be better equipped to make informed decisions
regarding their purchase of fish products. As a result, this
issue has the potential to make a significant contribution to
both the seafood sector and the larger field of machine
learning applications in food quality evaluation.

The Food and Agriculture Organization (FAO) of the
United Nations equates fish freshness, or the degree of
spoilage that the fish has undergone, with the quality of
fish [4]. There are two main ways to determine fish
freshness according to FAO, namely, sensory and
instrumental, where the former entails using the five senses
to measure and interpret the characteristics of food. Table I
outlines a set of criteria utilized within the College of
Fisheries in Central Luzon State University (CLSU) for the
sensory evaluation of fish, which is based on the work of
Larsen et al. [5].

The scoring in Table I is the basis of the definition of
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freshness levels provided by the Department of Post-
Harvest in CLSU College of Fisheries [6]. Fish of
excellent quality are those that have a score in the 0-5
range. They are fish with very few or no noticeable defects
in appearance, odor, texture, or taste. These fish are
considered fresh and highly desirable for consumption or
commercial purposes. Fish of good quality are those that
have a score in the 6—10 range. Minor defects may be
present, but overall, the fish is still of acceptable quality.
These fish may have slight blemishes or a slightly less than
ideal odor, texture, or taste, but they are still suitable for
consumption. Fish of average quality have a score in the
11-15 range. Fish in this stage may have noticeable defects
in one or more aspects of appearance, odor, texture, or
taste. They may not be as fresh or appealing as fish with
lower scores, but they are still edible. Fish that are not fit
for consumption have a score in the 16-20 range. These
are fish with significant defects or signs of spoilage. These
fish may have strong off odors, mushy texture, or
unpleasant flavors, indicating advanced deterioration.
They are generally not recommended for consumption and
may need to be discarded.

TABLE I. SENSORY EVALUATION TABLE FOR FISH FRESHNESS [4, 5]

Quality

Score
Parameter

Character

0—Bright, shining
1—Bright
2—Dull
0—None
1—Small, 10-30%
2—Big, 30-50%
3—Very big, 50-100%
0—Stiff, in rigor mortis
1—Elastic
2—Firm
3—Soft
0—Firm
1—Soft
2—Belly burst
0—Fresh, seaweed/metallic
1—Neutral
2—Musty/sour
3—Stale meat/rancid
0—Clear
1—Cloudy
0—Normal
1—Plain
2—Sunken
0—Characteristics, red
1—Faded, discolored
0—Fresh, seaweed/metallic
1-Neutral
2—Musty/sour
3—Stale meat/rancid

Min. 0, max. 20

Skin

Bloodspot on
gill cover

General

Stiffness
Appearance

Belly

Smell

Clarity

Eyes
Shape

Color

Gills
Smell

Sum of
Scores

The identified gaps in fish freshness assessment
research include the need for classifiers with multiple
detailed levels of freshness, the development of classifiers
that can assess the freshness of fish species with differing
eye characteristics, and the creation of a dataset that
comprehensively captures fish deterioration across
different freshness levels. Addressing these gaps will
contribute to advancing fish freshness assessment
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techniques and their practical applications in the food
industry.

II. LITERATURE REVIEW

In recent times, the utilization of advanced technologies
such as Deep Learning (DL) and Machine Learning (ML)
has exhibited great promise in improving the detection of
fish freshness. DL and ML enable computers to efficiently
process and analyze extensive data, enabling the creation
of accurate and automated models that can interpret
intricate patterns related to diverse fish quality attributes.
These technologies represent a significant shift, offering
efficient, cost-effective, and consistent methods for
evaluating fish freshness. Contemporary machine learning
algorithms like Artificial Neural Networks (ANN) and
Support Vector Machines (SVM) have displayed
encouraging outcomes in assessing fish freshness [7].
Furthermore, image-based segmentation approaches
utilizing methods such as K-means clustering, and wavelet
transformations have demonstrated effectiveness in
identifying pertinent features for precise quality
assessment [8]. It is important to note that these
technologies have the potential to transform the seafood
industry significantly, ensuring safer consumption and
optimizing resource utilization.

Different machine learning approaches have been
developed and refined for fish classification and freshness

assessment, drawing from various preprocessing
techniques and model architecture.  Delineated
preprocessing steps encompass image segmentation

through rotation, cropping, masking, K-means clustering,
and morphology, particularly for gill segmentation [9].
These preprocessing steps were crucial for enhancing the
input data quality and facilitating subsequent feature
extraction. Feature extraction primarily leveraged Red,
Green, and Blue (RGB) feature extraction and RGB
values, Lab* values, and delta E, c* values [9-11] as the
features provided a rich representation of the visual
characteristics of the fish images, enabling effective
discrimination between different fish species and assessing
freshness levels.

Various ML models were employed, including feed-
forward neural networks (ANNS), regression models, and
classifiers such as SVM, random forest, and Naive
Bayes [11-16]. These models exhibited high accuracy
rates, ranging from 84% to 100%, depending on the task,
such as fish classification or freshness assessment.

Model performance was augmented through resolution
downscaling, median filtering, thresholding, and open-
close filtering [2, 15-17]. These preprocessing and
enhancement techniques contributed to refining the input
data and reducing noise, ultimately enhancing the
robustness and accuracy of the ML models.

Several image processing techniques, including
histogram equalization, thresholding, and blob extraction,
were integrated into the workflow [2, 12, 14]. These
techniques played a vital role in enhancing image quality,
isolating relevant features, and improving model
interpretability. The machine learning framework
exhibited impressive performance metrics across multiple
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evaluation criteria, including accuracy, precision,
sensitivity, specificity, and Area Under the Curve (AUC),
as outlined in references [2, 13]. These metrics
underscored the efficacy of the proposed approach in
accurately classifying fish species and assessing their
freshness levels.

The machine learning presented a systematic and robust
fish classification and freshness assessment methodology,
integrating various preprocessing techniques, feature
extraction methods, and model architectures. The
comprehensive evaluation across various performance
metrics demonstrated the effectiveness and reliability of
the proposed approach in addressing the targeted
objectives.

A. Image Acquisition

In training deep learning and machine learning models,
a good quality dataset is necessary for accurate results.
Two main options for building this dataset include (1)
gathering fisheye images online and (2) building a dataset
by taking images of fish at different time intervals to get
different levels of freshness. In the context of fish
freshness, however, it is important for objectivity in the
labeling of freshness levels, and the researchers have no
objective way to ensure the appropriate labelling of
freshness. Therefore, building a dataset appears to be the
best approach to acquire images of fisheyes. This is often
done by either gathering fish samples from the market [18]
or farms [13, 19], then taking their photos in a proper
setting to ensure uniformity in lighting. Additionally, as
deep convolutional networks normally use RGB images as
their input [13, 18], the images taken must also be in RGB.
Another viable option for image acquisition is to use
available datasets like [20].

B.  Preprocessing

Regardless of the model that will take the image data as
input, it is important to ensure the quality of the dataset by
performing image preprocessing. This includes the basics,
such as the removal of unusable images, cropping,
rotation, resizing, and normalization. Some studies, like
that of Taheri-Garavand ef al. [13] and Lalabadi et al. [11]
utilize other image preprocessing techniques like noise
removal filtering and grayscale conversion. It is important
to note that they were done in preparation for manual
feature extraction, and thus, studies that will rely on
manual feature extraction for feature engineering can
greatly benefit from performing such preprocessing
methods.

C. Data Augmentation

Volume is another factor in image preparation. Deep
convolutional images consider many factors, so it is
important to have a large number of images in order to
avoid overfitting [13, 18, 21]. Overfitting is seen in a
model performing perfectly with training data but poorly
on testing data, and it can happen when the dataset is too
small. Therefore, the dataset must be relatively large
achieved through processes like photographing a lot of
samples or augmenting the images. Augmentation is the
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process of making slight modifications on the dataset to
artificially increase its size.

D. Image Segmentation

While the images in the dataset may already be cropped,
it is possible that the background of the Region of Interest
(ROI), which in this context is the fisheye, is inconsistent
and potentially affecting the details of the ROI. Therefore,
image segmentation, or the division of an image into
segments for the purposes of only processing the ROI, is
often performed during image processing. Some
techniques include clustering, thresholding, and watershed
transformations.

E. Feature Extraction

Feature extraction takes the characteristics of the images
(such as color, texture, a shape), and turns them into
features that will be the input of the models in the
classification phase. In the context of fisheye images, color
and texture are important as they both change as the eye of
a fish changes in appearance as it reduces in freshness.
Color values, such as RGB, HSI, and CIE Lab can be used
as features or as ingredients of features [18]. The same
treatment can be used on texture values like the Gray Level
Co-occurrence Matrix (GLCM). Feature extraction can
also be performed by deep learning models as it learns
from the dataset.

F. Classification

Classifiers lead to the proper labeling of individual
records from the dataset based on their respective features.
To achieve this, classification has two major processes:
modeling, which is the process of training a model to learn
about a specific dataset whose labels are provided, and
validation, which is the process of testing the model if it
has correctly learned the data by giving it a subset of data
that it has yet to see, and letting it label that data [18].
Classifiers can include machine learning and data learning
models, which are both possible models for classifying fish
freshness.

Building on these observations, our study contributes in
four key ways: (1) we construct a labeled dataset of fish
eye images by capturing progressive stages of spoilage
across two commonly consumed species; (2) we apply
tailored preprocessing and segmentation to isolate the
region of interest (fish eyes) for feature extraction; (3) we
extract interpretable features—RGB, CIE Lab, and GLCM
texture descriptors—chosen for their relevance to visual
freshness indicators; and (4) we evaluate three machine
learning classifiers (Naive Bayes, KNN, and SVM),
selected for their interpretability and efficiency with
limited data. These decisions are guided by both empirical
insights from prior studies and the practical constraints of
low-cost, scalable freshness assessment systems. The
methodological details are discussed in the following
section.

III. METHODOLOGY

This study aims to evaluate the performances of Naive
Bayes, Support Vector Machine (SVM), and K-Nearest
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Neighbors (KNN) classifiers in classifying two different
species based on features from fisheye images. The
structured and systematic framework for acquiring,

categorizing, and analyzing fisheye images is shown in
Fig. 1 and is expounded on in this section.

INPUT

Data Acquisition

l

Image Preprocessing
Cropping

Segmentation

PROCESS

Data Preprocessing
Balancing
Scaling

Modeling

Naive Bayes
Hyperparameter

Feature Extraction
RGB
Lab*
GLCM

|

Feature Selection
ANOVA

Tuning using Optuna
Training and Testing

SW
Hyperparameter
Tuning using Optuna
Training and Testing

KNN
Hyperparameter
Tuning using Optuna
Training and Testing

OUTPUT

| Accuracy

| Precision

| Recall

| F1-Score

Fig. 1. Conceptual framework.

A.  Sample Acquisition

The species chosen comprises two of the most common
fish seen in the Philippines’ crowded markets. These
species, namely milkfish (Chanos chanos) and tilapia
(Oreochromis niloticus), were chosen both because they
have differing eye characteristics and because they are
widely available in Philippine markets. The study
employed a total of twenty fish samples, ten per species.
These fishes were acquired at a local market near the
image acquisition site and transported in Styrofoam boxes
with ice. Each sample was laid out on their respective
locations on trays, with labels to identify each fish and
associate scores with each fish during all of the image
acquisition times. Table II lists the labels that were
assigned to the images based on the sensory evaluation
score of the fish. The fish’s eyes discolored throughout this
time, and other changes to their appearance also occurred
due to natural decomposition processes that had transpired.
These variations in eye condition are the basis of the
predictor variables this study uses to determine fish
freshness.

TABLE II. SENSORY EVALUATION SCORES AND THEIR
CORRESPONDING LABELS

Sensory evaluation score range Label
0-5 Excellent
6-10 Good
11-15 Average
16-20 Not fit for consumption

B.  Setup for Image Acquisition

A controlled environment ensures the consistency and
quality of acquired high-quality fisheye images. The
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choice of this controlled setting includes a custom-
designed box equipped with an internal light to maintain
standardized and consistent illumination throughout the
image acquisition process. The selected image capture tool
is the smartphone camera of a Samsung Galaxy A54,
enabling the capture of sharp and clear images of the
fisheyes. To eliminate potential sources of distortion and
enhance image clarity, the fish were carefully placed on a
clean, plain, non-reflective background to minimize
distractions and reflections that could compromise the
image quality. To maintain stability and ensure consistent
framing during image capture, the phone was secured onto
the lid of the box, aligned with the hole created for the
phone’s cameras. When not in the box, the samples were
on their respective trays.

C. Image Acquisition

In image acquisition, we captured images from both
sides of each fish. In the image acquisition phase, we
captured photographs from both sides of each fish to train
the machine learning model for accurate freshness
assessment, enabling the tracking of changes in fisheye
appearance over time. The primary objective was to
document different stages of deterioration by capturing
one photo of each sample’s side per hour, resulting in two
images per sample per hour. This procedure was repeated
hourly over a 21-hour period, yielding 44 photographs per
sample starting from the Oth hour. While the dataset was
limited to 10 samples per species due to logistical and
resource constraints, this setup allowed for highly
controlled image acquisition and consistent monitoring
across time points. Therefore, 880 base images resulted
from this meticulous image acquisition procedure. Fig. 2
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shows the steps each sample underwent for every hour of
the image acquisition.

Sample is moved
from the storage
tray to the image
acquisition box.

Sample undergoes
sensory evaluation
based on Table 1.

A photo of each
side of the
sample is taken.

Sample is returned
to its storage tray.

Fig. 2. A sample’s hourly journey during image acquisition.

The dynamic changes in fisheye appearance throughout
the 21-hour period were thoroughly documented in these
photographs, which serve as essential visual records of
spoilage progression. Such systematic documentation is
vital for analyzing freshness fluctuations. In addition to
image capture, it was crucial to maintain detailed records

of relevant metadata. After imaging, each sample was
transferred to the sensory evaluation station, where
researchers assessed freshness. Individual scores were
recorded, grouped by sample ID, and compiled into a
spreadsheet to calculate the total score and assign a
freshness label based on the scale in Table III: “excellent”,
“good”, “fair to average”, and “not fit for consumption”.
These labels, along with the images and raw scores, were
reviewed and validated by experts from the Department of
Aquatic Post-Harvest under the Central Luzon State
University—College of Fisheries to establish ground truth.
This integrated metadata collection process facilitates
systematic categorization and robust analysis of the
dataset.

TABLE III. DEFINITIONS OF DIFFERENT FRESHNESS LEVELS [6]

Sensory evaluation
score range

Freshness level

Description

Fish with very few or no noticeable defects in appearance, odor, texture, or taste. These fish are

0-3 Excellent considered fresh and highly desirable for consumption or commercial purposes.
Minor defects may be present, but overall, the fish is still of acceptable quality. These fish may
6-10 Good have slight blemishes or a slightly less-than-ideal odor, texture, or taste, but they are still
suitable for consumption.
Fish in this stage may have noticeable defects in one or more aspects of appearance, odor,
11-15 Fair to average texture, or taste. They may not be as fresh or appealing as fish with lower scores, but they are

still edible.
Fish with significant defects or signs of spoilage. These fish may have strong off odors, mushy
Not fit for AN L
16-20 . texture, or unpleasant flavors, indicating advanced deterioration. They are generally not
consumption . .
recommended for consumption and may need to be discarded.
TABLE IV. SAMPLE COMPUTATIONS FOR THE MINIMUM AND MAXIMUM SCORES PER LABEL FOR TILAPIA
General General General General General
Total enera Appearance ene Eyes— Eyes— Gills— Gills—
Freshness Image Appearance Appearance Appearance Appearance .
Score . —Bloodspot . Clarity Shape Color Smell
—Skin . —Stiffness —Belly —Smell
on gill cover
Excellent 0 0 0 0 0 0 0 0 0 0
Excellent 5 1 0 1 1 1 0 0 0 1
Good 6 2 0 1 1 1 0 0 0 1
Good 10 2 1 2 1 1 1 0 1 1
Fair to 1 2 1 2 1 1 1 1 1 1
average
Fair to 15 2 1 2 1 1 1 1 1 1
average
Notfitfor )¢ 2 2 2 1 2 1 1 1 3
consumption
Not fit for 2 2 3 1 2 1 1 1 3

consumption
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Table IV shows the computed freshness scores for
Tilapia range from 0 to 19, with each category capturing a
spectrum of quality degradation. A fish with a total score
of 0 exhibits no signs of deterioration, characterized by
bright, shining skin, absence of bloodspots, stiff flesh in
rigor mortis, a firm belly, fresh seaweed-like smell, clear
and normally shaped eyes, and red, odor-free gills.
However, as the score reaches 5, subtle changes begin to
appear—the skin may lose some brightness, stiffness may
transition to slight elasticity, the belly may soften, and a
faint neutral smell might develop. In the “good” category
(6-10), the fish’s condition continues to decline, with
duller skin, the emergence of small bloodspots (10-30%
coverage), increasing elasticity, and occasional cloudiness
in the eyes. By 10, the stiffness may become firm rather

than elastic, and the gills may start to fade in color. Moving
into the “fair to average” category (11-15), the degradation
becomes more pronounced; fish at 11 may show larger
bloodspots (30—50%), sunken eyes, and a musty or sour
odor, while those closer to 15 may have widespread
bloodspots, increased flesh softness, and a stronger stale
smell. In the “not fit for consumption” category (16—19),
fish at 16 exhibit very large bloodspots (50-100%), fully
softened flesh, and discolored, foul-smelling gills, while a
score of 19 represents near-complete spoilage, with
heavily sunken eyes, a burst belly, rancid odor, and severe
loss of characteristic red gill color. This detailed scoring
system allows for a nuanced, objective assessment of fish
freshness, ensuring that even small degradations are
systematically captured.

TABLE V. SAMPLE COMPUTATIONS FOR THE MINIMUM AND MAXIMUM SCORES PER LABEL FOR MILKFISH

General General General General General
Total Appearance Eyes— Eyes— Gills— Gills—
Freshness Image Appearance Appearance Appearance Appearance .
Score . —Bloodspot . Clarity Shape Color Smell
—SKkin . —Stiffness  —Belly —Smell
on gill cover
excellent 0 0 0 0 0 0 0 0 0 0
excellent 5 1 0 1 1 0 0 2 0 0
good 6 1 0 2 1 0 0 2 0 0
good 10 2 1 2 1 0 1 2 1 0
fair to 1 2 1 3 1 0 1 2 1 0
average
fair to 15 2 2 3 1 1 1 2 1 2
average
notfitfor 0 2 2 3 1 2 1 2 1 2
consumption
not fit for 2 3 3 2 3 1 1 1 3
consumption

Table V shows computations for the minimum and
maximum scores that a selection of our milkfish samples
received, starting from 0 to 19. For the lowest score for the
“excellent” label, the sample was evaluated with all 0’s,
meaning that there were no defects in the sample’s
appearance, odor, texture, or taste. The maximum total
score for excellent is 5, which showed slight degradations
in the different parts of the fish—it skin looked dull, the
flesh was firm, the belly felt stiff, and the eye shape was
plain. The good category (6—10), the degradation furthers
in more aspects. For the score of 6, the difference between
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5 was that its flesh felt soft in addition to the same
degradations. For 10, the skin was dull, a small bloodspot
(10-30%) appeared on the gill cover, its flesh firm and
belly soft, its eyes were cloudy and sunken, and its gills
faded and discolored. For “fair to average” (11-15), the
starting score of 11°s difference from that of 10’s was
attributed to the flesh being soft, represented by the worst
score a sample could get for the fish’s stiffness. The max
score of 15 had dull skin, big bloodspot on the gill cover
(30-50%), soft flesh and belly, a neutral smell, cloudy and
sunken eyes, faded and discolored gills, and a neutral
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smell. The “not fit for consumption” category, represented
here by scores 1619, starts with the addition of a

musty/sour smell and ends with a burst belly and a rancid
smell in addition to previous degradations.

TABLE VI. SCORE BREAKDOWN OF MILKFISH

Freshness Level Total Score

Description

0 No degradation evaluated.
1 Samples have elastic stiffness.
excellent 2 Samples have either elastic stiffness or soft belly.
3 Samples have elastic stiffness and either soft belly or faded/discolored gills.
4 Samples have elastic stiffness, soft belly, and sunken eyes.
5 Samples have bright but not shining skin, elastic stiffness, soft belly, and sunken eyes.
6 Samples have bright but not shining skin, firm stiffness, soft belly, and sunken eyes.
7 Samples have dull skin, firm stiffness, soft belly, and sunken eyes.
8 Samples have dull skin, firm stiffness, soft belly, sunken eyes, and either small (10-30%) bloodspot on gill cover
go0d or faded/discolored gills.
Samples have dull skin, small (10-30%) bloodspot on gill cover, firm stiffness, sunken eyes, and either cloudy
eyes or faded/discolored gills.
10 Samples have dull skin, small (10-30%) bloodspot on gill cover, firm stiffness, soft belly, cloudy and sunken
eyes, and faded/discolored gills.
1 Samples have dull skin, small (10-30%) bloodspot on gill cover, firm or soft stiffness, soft belly, cloudy and
sunken eyes, and either neutral smell overall and in gills or faded/discolored gills.
12 Samples have dull skin, small (10-30%) bloodspot on gill cover, firm stiffness, soft belly, cloudy and sunken
eyes, neutral smell overall and in gills and faded/discolored gills.
13 Samples have dull skin, small (10-30%) bloodspot on gill cover, soft stiffness, soft belly, cloudy and sunken
fair to average eyes, neutral smell overall and in gills and faded/discolored gills.
14 Samples have dull skin, small (10-30%) or big (30-50%) bloodspot on gill cover, soft stiffness, soft belly, cloudy
and sunken eyes, neutral smell overall, either neutral or musty/sour smell in gills and faded/discolored gills.
Samples have dull skin, big (30-50%), or very big (50—100%) bloodspot on gill cover, soft stiffness, soft belly,
15 cloudy and sunken eyes, either neutral or musty/sour smell overall, musty/sour smell in gills and faded/discolored
gills.
16 Samples have dull skin, very big (50—100%) bloodspot on gill cover, soft stiffness, soft belly, cloudy and sunken
eyes, musty/sour smell overall and in gills, faded/discolored gills, and cloudy eyes that are either sunken or plain.
17 Samples have dull skin, very big (50-100%) bloodspot on gill cover, soft stiffness, either soft or burst belly,
not fit for cloudy eyes that were either sunken or plain, musty/sour smell overall and in gills, and faded/discolored gills.
consumption 18 Samples have dull skin, very big (50-100%) bloodspot on gill cover, soft stiffness, soft or burst belly, cloudy and
plain eyes, stale/rancid smell overall and in gills, faded/discolored gills.
19 Samples have dull skin, very big (50-100%) bloodspot on gill cover, soft stiffness, soft or burst belly, cloudy and

either plain or sunken eyes, stale/rancid smell overall and in gills, faded/discolored gills.

By the 21st hour of image acquisition, the largest score
that the milkfish samples received was 19. For each score
computed, Table VI outlines the most common attributes
that the samples have. At the “excellent” level (scores 0—
5), samples showed minimal to no degradation,
maintaining elastic stiffness, soft bellies, and clear eyes,
with minor signs such as faded gills appearing at higher
scores. The “good” level (scores 6-10) showed more
deterioration, through the samples’ dull skin, sunken eyes,
and small bloodspots on the gill cover, with some samples
also having cloudy eyes or faded gills. In the “fair to
average” category (scores 11-15), the milkfish samples
displayed more greater degradation, such as larger
bloodspots, cloudy and sunken eyes, and neutral to
musty/sour odors overall and specifically in the gills.
Finally, the milkfish samples classified as not fit for
consumption (scores 16-19) exhibit severe degradation,
including very large bloodspots, burst bellies, plain or
sunken eyes, and strong stale or rancid odors overall and
in the gills.

Table VII shows the descriptions of the tilapia samples
at the different scores they received based on the attributes
that most of the samples exhibited at each hour. The
maximum score they received by the 21st hour is 19. The
“excellent” scores (0—5) were given to tilapia samples that
showed minimal signs of degradation, with attributes such
as elastic stiffness, soft belly, and neutral smell. Some
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samples may have slightly diminished freshness in one or
more aspects, like no longer having shining skin or a firm
belly. The “good” scores (6—10) were given to tilapia
samples with dull skin, firm or elastic stiffness, soft bellies,
and neutral smells, with increasing signs of deterioration
like small bloodspots on the gill cover, faded gills, or
cloudy eyes at higher scores. The “fair to average” scores
(11-15) indicated more noticeable decline, with defects
becoming widespread, including larger bloodspots, musty
or sour odors overall and in the gills, and cloudy or plain
eyes. Finally, tilapia samples scored with “not fit for
consumption” scores (16—19) exhibit severe spoilage, such
as very large bloodspots, soft or burst bellies, stale or
rancid smells overall and in the gills, cloudy and sunken
eyes, and heavily faded or discolored gills with strong
odors.

D. Preparation of Images

To alleviate the additional computational burden
associated with potentially processing images of differing
dimensions, the images were programmatically
standardized. The images were standardized to a size of
224x224 pixels. This size was chosen as it strikes a balance
between preserving essential features and reducing
computational overhead. By cropping images to this
uniform size, extraneous details were removed, focusing
the analysis on the relevant fish features.
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TABLE VII. SCORE BREAKDOWN OF TILAPIA

Freshness Level

Total Score

Description

0

No degradation evaluated.

1

These samples possess one attribute that has diminished freshness, usually one of the following: their general
stiffness being described as elastic and no longer in rigor mortis, their belly being soft and not firm, or their
skin being bright but no longer shining.

Excellent

Samples have mostly elastic stiffness and a soft belly.

Samples have a combination of three of the following: elastic stiffness, soft belly, bright but not shining skin,
and plain eye shape.

Samples have a combination of bright or dull skin, elastic or firm stiffness, soft belly, neutral overall smell.

Samples have bright but not shining skin, soft belly, neutral overall and gill smell, and elastic stiffness.

Samples mostly have dull skin, either elastic or firm stiffness, soft belly, and neutral smell both overall and
specifically in the gills.

Samples have dull skin, firm stiffness, soft belly, and neutral smell both overall and specifically in the gills.

Good

0 (] & (LK WL N

Samples have dull skin, firm stiffness, soft belly, neutral overall and gill smell, and either plain eyes or small
(10-30%) bloodspot on gill cover.

Samples have dull skin, firm stiffness, soft belly, neutral overall and gills smell, faded/discolored gills, and
small (10-30%) bloodspot on gill cover.

10

Samples have dull skin, firm stiffness, soft belly, cloudy eyes, faded/discolored gills, small (10-30%)
bloodspot on gill cover, and neutral smell overall and specifically in the gills.

11

Samples now have defects across the board. They have dull skin, small (10-30%) bloodspot on gill cover,
firm stiffness, soft belly, neutral overall and gills smell, cloudy and plain eyes, and faded/discolored gills.

12

Samples have dull skin, small (10-30%) bloodspot on gill cover, firm stiffness, soft belly, neutral overall
smell, cloudy and plain eyes, faded/discolored gills, and musty/sour gills smell.

Fair to average

13

Samples have dull skin, firm stiffness, soft belly, cloudy and plain eyes, faded/discolored gills, musty/sour
smelling gills, and either musty/sour overall smell with small (10-30%) bloodspot on gill cover, or big (30—
50%) bloodspot on gill cover with neutral overall smell.

14

Samples have dull skin, big (30-50%) bloodspot on gill cover, firm stiffness, soft belly, musty/sour overall
smell and gills smell, cloudy and plain eyes, and faded/discolored gills.

15

Samples have dull skin, big (30-50%) bloodspot on gill cover, firm stiffness, soft belly, musty/sour overall
smell, cloudy and plain eyes, faded/discolored gills that smell stale/rancid.

16

Samples have dull skin, big (30-50%) bloodspot on gill cover, firm or soft stiffness, soft belly, musty/sour
smell, cloudy and plain eyes, faded/discolored gills that smell stale/rancid.

Not fit for

17

Samples have dull skin, big (30-50%) bloodspot on gill cover, soft stiffness, soft belly, either musty/sour or
stale/rancid overall smell, cloudy and plain eyes, and faded/discolored gills that smell stale/rancid.

consumption

18

Samples have dull skin, big (30-50%) or very big (50-100%) bloodspot on gill cover, soft stiffness and
belly, stale/rancid smell overall and specifically in the gills, cloudy and sunken eyes, and stale/rancid
smelling gills that are faded/discolored.

19

Samples have dull skin, very big (50-100%) bloodspot on gill cover, soft stiffness, burst belly, stale/rancid
overall and gills smell, cloudy and sunken eyes, and faded/discolored gills.

E.  Segmentation

F. Feature Extraction

The features employed in this study include color

Roboflow was utilized for the segmentation process.
We manually annotated the fisheye images by segmenting
the eye regions to create accurate training data for our
model, which also resulted in bounding boxes being
generated shown at the Fig. 3. These annotations generated
detailed JSON data containing both bounding box
coordinates and segmentation masks, which serve as
essential inputs for training our machine learning models
to assess fish freshness effectively. This careful
segmentation ensures the model focuses on the most
relevant eye features, enabling it to learn and distinguish
between different freshness levels with precision.

Fig. 3. Segmented images of Milfish and Tilapia.
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features, namely RGB and Lab* features, and texture
features from the Gray Level Cooccurrence Matrix
(GLCM). Prior research has shown that these features are
useful to assess fish freshness and quality due to their
specific advantages in capturing relevant visual and
textural information. RGB is utilized by studies such as [r
/20] because its computation and interpretation are simple.
This color space directly represents raw color information
captured by cameras, making it straightforward to analyze
changes in the fish eyes that indicate freshness. The Lab*
space separates luminance (L*) from chromaticity (a* and
b*), which ensures that color descriptors are not
confounded by illumination variations. Features such as a*
and b* components proved useful for capturing color shifts
associated with spoilage, such as increased redness, as
shown in Taheri-Garavand et al. [13] and Lalabadi et
al. [11]. Taheri-Garavand et al. [13] and Nguyen et al. [22]
also emphasize that textural changes are induced by
spoilage, which GLCM features can reliably interpret.
These features are fast to compute and do not require
complex processing or data processing pipelines. The
combination of these three provides a holistic assessment



Journal of Image and Graphics, Vol. 14, No. 1, 2026

covering visual appearance and the structural integrity of
tissue. The JSON data from segmentation included a part
called “segmented pixels”, which are the pixels in the
segment shown as RGB values. To prepare these values
for the model, the average was taken and added to a
different column. The raw RGB values were preserved to
be converted to the Lab* and GLCM values.

In our Lab conversion process, we transformed the
segmented RGB pixels into the CIE Lab* color space
using the rgb2lab function from the skimage color library.
This conversion is crucial because the Lab* color space is
designed to closely match human visual perception,
making it particularly useful for detecting subtle color
differences that are less discernible in the standard RGB
space. After conversion, we computed the mean values for
each channel—mean L*, mean a*, and mean b*—across
the segmented pixels. These mean values serve as key
features for our machine learning models, as they reflect
the nuanced color changes in fisheyes that occur over time.

Finally, we applied Gray Level Co-occurrence Matrix
(GLCM) analysis to capture texture-based features from
the segmented fisheye images. First, we converted the
RGB eye images into grayscale using the rgb 2 gray
function, as GLCM works on intensity values rather than
color. The grayscale image was then transformed into an
8-bit unsigned integer format, which is a common
requirement for GLCM computation. GLCM was
calculated with a distance of 1 pixel and across four
standard angles (0°, 45°, 90°, and 135°), which allows the
model to analyze texture patterns in multiple directions.

G. Feature Selection

The resulting number of features from the feature
extraction processes was twenty-two in total. We tested
different feature selection approaches and found the best
results with ANOVA, which stands for Analysis of
Variance, as it allowed us to check the variance within the
features and between them and evaluate the importance of
each feature. To reduce the dimensionality of the dataset
and improve model performance, we utilized ANOVA to
identify the top ten features that had an impact on the target
variable, freshness level, based on the feature’s F-statistic.
As a result, the dataset retained the ‘mean R’, ‘mean_b’,
‘mean_L’, ‘mean a*’, ‘mean G’, ‘contrast 90’,
‘contrast 45°, ‘contrast 135°, ‘correlation_90°, and
‘homogeneity 90’** features, listed below in decreasing
order of F-statistic, along with their respective purposes.

H. Data Preparation for Modeling

With the selected features, the next step was preparing
the data for model training. To ensure a balanced
representation of each class in the target variable, we first
oversampled the dataset. The imbalance in class
distribution was addressed by matching the number of
samples in each class to the highest count, as indicated by
the maximum value in the label column. The resulting
balanced dataset was then scaled using Standard Scaler,
which standardized the features to have a mean of 0 and a
standard deviation of 1. This was essential, particularly for
models like KNN and SVM, where distance metrics are
sensitive to the scale of the input features. Finally, we split
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the dataset into training and test sets, with 80% used for
training and 20% reserved for testing.

1. Model Development and Evaluation

1)  Naive Bayes

Naive Bayes is a probabilistic classifier based on Bayes’
theorem, which assumes that the features are conditionally
independent given the class label. This assumption allows
the model to compute the posterior probabilities of each
class and choose the class with the highest probability. For
continuous features, Naive Bayes assumes that they follow
a Gaussian distribution, and it estimates the mean and
variance for each class.

In order to improve the model’s accuracy, we used
Optuna to optimize the hyperparameters. Optuna is an
automatic hyperparameter optimization framework that
uses an efficient sampling strategy to explore the
hyperparameter search space and find the best parameters.
For Naive Bayes, we focused on optimizing the
var_smoothing parameter, which helps stabilize the
variance estimation, especially in the case of small or zero
variance values. The var_smoothing parameter was set to
a range of values using np.logspace(0, =9, num = 100),
which generates 100 logarithmically spaced values
between 10° (1) and 10°°. Var smoothing adds a small
value to the variance of each feature, which helps avoid
numerical issues and also reduces the model’s tendency to
overfit by not placing excessive reliance on small
variances.

We ran 500 trials in Optuna to identify the best value for
this parameter. After optimizing the hyperparameter, we
trained the model and then tested its performance on the
test set, calculating its accuracy and generating a
classification report to assess the precision, recall, F1-
Score, and other metrics.

2)  k-Nearest Neighbors (KNN)

K-Nearest Neighbors is a non-parametric algorithm that
classifies data based on the majority class among its k-
Nearest Neighbors. It computes the distance between the
test point and training samples, then predicts the class of
the test point by considering the k closest training samples.
The performance of KNN heavily depends on the choice
of hyperparameters. Therefore, Optuna was used to tune
several important parameters.

First, the n_neighbors parameter was varied between 1
and 30 to determine the optimal number of neighbors. Too
few neighbors might cause overfitting, while too many
could smooth the decision boundary too much.
Additionally, we tuned the weights parameter, with
options for uniform (equal weight for all neighbors) and
distance (closer neighbors have more weight). The
algorithm parameter, which controls the method used to
find the nearest neighbors, was tested with auto, ball tree,
kd tree, and brute options. Each algorithm has different
computational efficiencies, and the optimal choice
depends on the data’s structure. Finally, we adjusted the
leaf size (between 1 and 100) to control the size of the leaf
nodes in tree-based algorithms, and the p parameter (1 for
Manhattan distance, 2 for Euclidean distance) was fine-
tuned to assess its effect on the model’s accuracy.
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After running 500 trials in Optuna to find the best
combination of these parameters, we trained the KNN
model. We then tested the model by predicting the fish
freshness, calculated its accuracy, and generated the
classification report, which helped assess the model’s
effectiveness.

3)  Support Vector Machine (SVM)

Support Vector Machine is a powerful classification
algorithm that works by finding the hyperplane that best
separates the classes in the feature space. SVM can handle
both linear and non-linear decision boundaries, depending
on the choice of kernel. Similar to the previous models,
Optuna was used to fine-tune several SVM
hyperparameters, beginning with the C parameter, which
controls the regularization of the model. The C parameter
varied between 107 and 10° allowing us to balance the
margin  maximization and classification  error
minimization. A high C value places more emphasis on
minimizing errors, while a smaller value allows for a larger
margin and potentially better generalization. The kernel
parameter, which determines the type of decision
boundary, was tested with different values: linear, poly,
rbf, and sigmoid. For non-linear data, the rbf kernel is
particularly effective in mapping data to higher-
dimensional spaces where a linear boundary can separate
the classes. Additionally, the gamma parameter, which
influences the influence of individual data points on the
decision boundary, varied between scale and auto. A
higher gamma value allows the model to create more
complex decision boundaries, while a lower value leads to
a simpler, smoother boundary. Finally, we optimized the
degree parameter, which controls the degree of the
polynomial used in the poly kernel, adjusting it between 2
and 5.

After running 500 trials with Optuna to identify the
optimal hyperparameters, we trained the SVM model. We
then tested the model’s predictive performance by
calculating its accuracy and generating a classification
report. This helped us evaluate the SVM model’s overall
performance in predicting fish freshness.

The classifiers selected for this study, Naive Bayes (NB),
k-Nearest Neighbors (KNN), and Support Vector Machine
(SVM), were chosen based on their suitability for small to
moderately sized datasets, interpretability, and
computational efficiency. These classical machine
learning models are well-suited for scenarios where
handcrafted features, such as color and texture descriptors,
can be extracted from the data.

In contrast, deep learning models, particularly
Convolutional Neural Networks (CNNs), generally require
large-scale datasets to perform effectively and avoid
overfitting. Training such models is resource-intensive,
demanding significant computational power, longer
training times, and greater data volume to generalize well.
Given the controlled but limited dataset used in this study
(880 images), deep learning approaches were deemed
impractical.

Moreover, traditional machine learning models allow
for feature engineering and targeted input selection,
enabling the use of domain knowledge, such as the visual
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characteristics of fisheyes known to correlate with
freshness. This controlled approach offers better model
transparency and faster training, making NB, KNN, and
SVM appropriate choices for evaluating the feasibility of
automated fish freshness classification in resource-
constrained or small-sample settings.

To address the risk of overfitting posed by the small
dataset and the use of oversampling, several strategies
were implemented, with a key emphasis on
hyperparameter tuning using Optuna. By optimizing
parameters such as ‘var_smoothing’ in Naive Bayes,
‘n_neighbors’ in KNN, and ‘C’, ‘kernel’, and ‘gamma’ in
SVM, the model search prioritized configurations that
reduced complexity and improved generalization. For
instance, tuning ‘var_smoothing’ helped regularize low-
variance features common in oversampled data, while
adjusting ‘n_neighbors’ balanced KNN’s sensitivity to
noise versus its ability to generalize.

In SVM, controlling ‘C’ and ‘gamma’ allowed for a
trade-off between margin width and decision boundary
complexity. These hyperparameters directly influence
model flexibility and were critical in preventing overfitting
to synthetic or redundant patterns. Complementary to this,
ANOVA-based feature selection removed irrelevant or
noisy predictors, reducing the risk of the model fitting to
spurious correlations. Oversampling was followed by
scaling to prevent any one feature from dominating the
learning process, and an 80/20 stratified split was used to
maintain class distribution and enable a fair evaluation of
model generalizability. Together, these steps formed a
cohesive approach to mitigating overfitting despite the
constraints of limited data.

IV. RESULTS AND DISCUSSION

The analysis of fish samples using a combination of
RGB values (segmented pixels), Lab color values, and
texture features from the Gray-Level Co-occurrence
Matrix (GLCM) reveals critical insights into the
relationship between visual characteristics and fish
freshness. The dataset consists of various fish images, each
represented by segmented pixel values in RGB format,
capturing the raw color information of the fish. These RGB
values were further converted into the Lab color space to
capture more precise color variations and enhance the
differentiation between fresh and aging fish. Texture
features such as contrast, correlation, energy, and
homogeneity were also extracted using GLCM to quantify
surface properties.

In terms of the hourly breakdown of the samples’
freshness, Fig. 4 gives us insight into the points in time at
which the fish start changing from “excellent” to “good”
to “fair to average” to “not fit for consumption”. For the
0Oth to 2nd hour, all the milkfish samples are graded within
the “excellent” range. By the 3rd hour, half of the samples
moved into the “good” category, with two more changing
by the 4th hour. By the 5th hour, there were no more
excellent examples. One sample moved into “fresh to
average” by the 10th hour, then another moved into “not
fit for consumption” by the 13th hour. Starting at the 18th
hour, all samples were unfit for consumption.
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Fig. 4. Hourly freshness breakdown for milkfish.

Unlike the hourly breakdown of the milkfish samples’
freshness, Fig. 5 shows that the tilapia samples only started
moving into the “good” label at the Sth hour. The hour at
which they moved into “fair to average” was the same as
the milkfish samples’, which is at the 10th hour. The tilapia
samples started moving into the “not fit for consumption”
category at the 15th hour. The tilapia samples stayed
fresher for longer overall, but both species’ samples were
completely under the “not fit for consumption” category
by the 18th hour. These differences between the times at
which the milkfish samples started moving into less fresh
categories vs the times at which the tilapia samples point
to how there could be merit into looking into the inherent
differences between the two species that could possibly
affect when and how they deteriorate.

B excellent good [ fairtoaverage [l not fit for consumption

10
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HOUR

Fig. 5. Hourly freshness breakdown for tilapia.

A. Naive Bayes

In this study, the performance of a Gaussian Naive
Bayes model was optimized using Optuna to predict fish
freshness based on features derived from RGB values,
Lab* wvalues, and GLCM texture properties. The key
hyperparameter of the Naive Bayes model,
var_smoothing, was fine-tuned by conducting 500
optimization trials across a range of values. The optimal
var_smoothing value suggested by Optuna was 0.0035,
resulting in the best accuracy of 61.67% on the test dataset
shown at Table VIII.

Fig. 6 shows the breakdown of the Naive Bayes model’s
performance on the dataset, with “excellent” and “good”
getting the greatest number of accurate predictions.
However, it seems like the model had some difficulty
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differentiating them from each other, with thirteen
“excellent” records misclassified as “good”, and 6 “good”
records misclassified as “excellent”. Five “good” records
were also misclassified as “not fit for consumption”. The
model had the most difficulty with the “fair to average”
label, with only 17 accurate predictions. It also had 17
misclassifications with “good” and 13 with “not fit for
consumption”. With 29 accurate predictions, the model
had average performance with the ‘“not fit for
consumption” label, which was only misclassified as “fair
to average”.

TABLE VIII. NAIVE BAYES CLASSIFICATION REPORT

Class Precision  Recall F1-Score
Excellent 0.82 0.7 0.75
Fair to Average 0.57 0.35 0.44
Good 0.52 0.72 0.61
Not Fit for Consumption 0.6 0.72 0.66
Accuracy 0.62
Naive Bayes Confusion Matrix
excellent

fair to average

True label

good

not fit for consumption

Predicted label

Fig. 6. Naive Bayes confusion matrix.

B.  k-Nearest Neighbors (KNN)

In the KNN classifier, it was optimized using Optuna to
improve its ability to classify fish freshness based on
image features. The optimization process focused on
tuning key hyperparameters, including the number of
neighbors (n_neighbors), weight function (weights),
algorithm (algorithm), leaf size (leaf size), and power
parameter (p) for the Minkowski distance. After
conducting 500 trials, the best set of hyperparameters was
identified as 4 neighbors, a ‘distance’ weight function, the
‘kd _tree’ algorithm, a leaf size of 76, and a Minkowski
distance parameter p = 3. Therefore, Table IX showed the
accuracy of 0.89.

TABLE IX. KNN CLASSIFICATION REPORT

Class Precision  Recall F1-Score
Excellent 0.93 0.87 0.9
Fair to Average 0.88 0.9 0.89
Good 0.81 0.93 0.87
Not Fit for Consumption 1 0.88 0.93
Accuracy 0.89

The breakdown of the KNN’s predictions can be seen in
Fig. 7, which shows that the model had more accurate
predictions with the “good” label, followed by “fair to
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average”, which was misclassified with only “good”. The
“excellent” label is next with 40 accurate predictions.
These three labels had no misclassifications with “not fit
for consumption”, which is the label with which the model
had mediocre performance, with 35 accurate predictions
and some misclassifications.

KNN Confusion Matrix
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Fig. 7. KNN confusion matrix.

C. Support Vector Machine

The Support Vector Machine (SVM) model was
optimized using Optuna to enhance its classification
performance for fish freshness labels. The optimization
process focused on tuning key hyperparameters, including
the regularization parameter (C), kernel type (kernel),
kernel coefficient (gamma), and, where applicable, the
degree of the polynomial kernel. A total of 500 trials were
conducted to determine the optimal combination of
hyperparameters for maximizing accuracy. The best
configuration identified was an RBF kernel with a
regularization parameter C of 131.80 and gamma set to
‘scale’ shown in Table X.

TABLE X. SVM CLASSIFICATION REPORT

Class Precision  Recall F1-Score
Excellent 0.92 0.96 0.94
Fair to Average 0.85 0.83 0.84
Good 0.86 0.93 0.9
Not Fit for Consumption 091 0.8 0.85
Accuracy 0.88

In Fig. 8, the SVM model’s predictions across labels are
shown with “excellent” having 44 accurate predictions and
only 2 misclassifications with the “good” label. For the
“good” label, it was only misclassified thrice as
“excellent”, and the rest are accurate predictions. Here, we
can see that the model is performing well in differentiating
the differences between these two classes. The model also
performed decently in the “fair to average” label, with 40
accurate predictions and misclassifications with “good”
and “not fit for consumption.” There were 32 accurate
predictions for the “not fit for consumption” label, with 8
misclassifications. Overall, the SVM model showed good
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performance in identifying “excellent”, “good”, and “fair
to average” labels, while “not fit for consumption”
identification was subpar.
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Fig. 8. SVM confusion matrix.

Although the models demonstrated strong performance
in classifying the “Excellent” and “Good” freshness levels,
their predictive accuracy was notably lower for the “Fair
to Average” and “Not Fit for Consumption” categories.
This discrepancy may be attributed to two primary factors.
First, the visual features of fisheyes within the “Fair to
Average” category tend to overlap with those of adjacent
freshness levels. The subtle variations in color and texture
may not be sufficiently distinguishable using the current
set of handcrafted features, thereby contributing to
classification ambiguity. Similar challenges in classifying
intermediate freshness stages have been noted in previous
studies where overlapping color and textural patterns
reduced classification accuracy in non-destructive
freshness monitoring of fisheyes [16].

Second, the dataset exhibited class imbalance, with
fewer samples assigned to the “Fair to Average” category.
This imbalance likely introduced bias during the training
phase, resulting in reduced model sensitivity to minority
classes and a higher misclassification rate for intermediate
freshness states. The impact of class imbalance on model
accuracy has also been emphasized in food freshness
prediction studies, where underrepresented classes tend to
be misclassified without appropriate balancing
strategies [11, 12, 22].

Interestingly, previous studies using similar machine
learning approaches have reported higher classification
accuracies. For instance, Tolentino et al. [23] employed
Support Vector Machine (SVM) to classify the freshness
of milkfish, round scad, and short mackerel scad based on
eye and gill redness using RGB features, achieving a 98%
accuracy rate aligned with manual sensory evaluations.
Similarly, Yudhana et al. [24] compared k-Nearest
Neighbors (KNN) and Naive Bayes (NB) classifiers for
fish freshness detection and reported high accuracies of
97% and 94%, respectively. While our models achieved
slightly lower accuracy, 89.44% for KNN, 88.33% for
SVM, and 61.67% for NB, this can be attributed to
differences in dataset size, species variability, image
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preprocessing, and the complexity introduced by four
freshness levels rather than binary classification.

To address these limitations, several methodological
improvements are proposed for future work. Data
augmentation techniques, such as color jittering, contrast
adjustment, or synthetic simulation, may be employed to
enrich the diversity and representation of minority classes.
Similar techniques have been successfully applied in prior
image-based food quality studies to enhance model
robustness and generalization [19]. Furthermore, the
extraction of more granular texture and morphological
features could improve the discriminative capacity of the
models. The integration of ensemble methods or
probabilistic classification approaches may also offer
improved handling of ambiguous cases by enabling softer
decision boundaries and reducing the risk of overfitting to
dominant classes [16].

V. CONCLUSION

This study investigated the efficacy of various machine
learning algorithms—namely Gaussian Naive Bayes (NB),
k-Nearest Neighbors (KNN), and Support Vector Machine
(SVM)—in classifying fish freshness based on features
extracted from RGB, CIE Lab*, and Gray Level Co-
occurrence Matrix (GLCM) values. By applying ANOVA
for feature selection and balancing the dataset through
oversampling, we effectively reduced dimensionality and
addressed class imbalance, resulting in improved model
accuracy. Among the models tested, KNN achieved the
highest performance with an accuracy of 89.44%, followed
by SVM at 88.33%. NB, while computationally efficient,
achieved a more modest accuracy of 61.67%. Notably,
SVM and KNN excelled in predicting “excellent” and
“good” classes but struggled with lower precision in the
“fair to average” and ‘“not fit for consumption”
categories—likely due to subtle visual differences and
fewer samples per class.

To further enhance classification performance, several
recommendations are proposed. First, class imbalance
remains a key challenge. We suggest the use of targeted
resampling strategies such as Synthetic Minority Over-
sampling Technique or Adaptive Synthetic Sampling for
undersampling. These methods can help increase the
representation of underrepresented classes without
overfitting. Additionally, class-weighted loss functions
could be explored, especially in SVM or ensemble
classifiers, to improve sensitivity to minority classes.
Second, future models may benefit from a hierarchical
classification structure—first distinguishing the fish
species and then assessing freshness within each species.
This two-step approach could reduce inter-class variability
caused by anatomical differences between species and
improve overall classification accuracy. Future studies
may consider incorporating k-fold cross-validation during
hyperparameter tuning to improve the robustness and
generalizability of model performance, particularly in
cases of limited or imbalanced datasets.

Moreover, the integration of external contextual
features, such as ambient storage temperature, humidity,
and time since harvest, could provide additional predictive
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power. These variables often correlate with freshness and
may help resolve ambiguities in intermediate classes like
“fair to average”. While deep learning methods were not
explored in this study due to dataset constraints, future
research with a larger and more diverse dataset could
investigate Convolutional Neural Networks (CNNs) or
hybrid deep learning pipelines. Transfer learning from pre-
trained models could also be considered to overcome
limitations related to small sample sizes.

Lastly, future research should explore the integration of
external factors, such as environmental conditions and
handling practices, which may influence fish freshness. By
incorporating these elements into the -classification
framework, the models could provide more
comprehensive insights into fish quality assessment. This
research not only advances the understanding of machine
learning applications in food safety but also lays the
groundwork for future studies aimed at enhancing the
accuracy and reliability of fish freshness classification
systems.
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