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Abstract—A key tool for organizing and extracting visual
information from large picture databases is Content-Based
Image Retrieval (CBIR). To make CBIR systems much more
accurate and efficient, this research proposes a new
combined approach that uses deep feature extraction along
with Quantum Grey Wolf Optimization (QGWO). The
suggested system captures complex visual patterns across a
variety of images categories by utilizing pre-trained
Convolutional Neural Networks (CNNs) for reliable and
advanced feature extraction. This paper presents the
retrieval of single objects and multi-objects. The deep
learning techniques utilized in this work are Inception V1,
Inception V2, and ResNet50, chosen as they represent
progressively advanced CNN architectures with increasing
depth and feature extraction capability. To make the process
faster and more effective, these features are improved using
QGWO, a method that combines ideas from quantum
computing with the social behaviour and hunting strategies
of grey wolves. Our combined method performs better than
existing CBIR algorithms in precision, recall, accuracy, and
F1-Scores, based on thorough testing with the Corel-1K,
Corel-5K, Corel-10K image datasets. The fusion of deep
learning with a quantum-inspired optimization approach
resulted in a retrieval accuracy of 99.20%, and percentage of
wrongly retrieved images obtained is 1.08% using Corel-1k.
The accuracy achieved using Corel-5k is 99.12% and Corel-
10K is 99.04%. The results prove the computational
efficiency of contemporary CBIR system.

Keywords—Content-Based Image Retrieval (CBIR),
Convolutional Neural Networks (CNNs), Inception V1,
Inception V2, ResNet50, Quantum Grey Wolf Optimization
(QGWO)

I. INTRODUCTION

The explosive proliferation of digital visual content
across various domains—ranging from social media and
surveillance to medical imaging and satellite data has
necessitated the development of intelligent systems for
fast and accurate image retrieval. Content-Based Image
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Retrieval (CBIR), which focuses on retrieving images
based on their visual content rather than textual metadata,
plays a central role in this context. Despite significant
advancements, existing CBIR systems still face challenges
related to high-dimensional feature spaces, semantic gaps
between low-level features and high-level concepts, and
scalability when applied to large-scale datasets.

Digital image search and retrieval have been
revolutionised in several fields by Content-Based Image
Retrieval (CBIR) [1]. These categories include medical
imaging, satellite images, and multimedia applications,
among others. Medical diagnostics, surveillance systems,
and social media platforms are just a few examples of the
niche industries where digital picture collections are
expanding at an exponential rate, making effective
retrieval methods for direct visual content analysis
imperative [2]. For large-scale applications, traditional
text-based picture retrieval systems are impracticable due
to their heavy reliance on user annotations. To overcome
this shortcoming, CBIR systems automate retrieval based
on picture content instead of metadata by extracting
relevant  information  using enhanced  feature
descriptors [3].

Earlier iterations of CBIR methods relied on more
simplistic visual characteristics [4]. Shukran et al. [5] laid
out a thorough framework, which examined form, texture,
and colour aspects in picture retrieval. By systematically
evaluating recall, response time, and accuracy measures
across various feature combinations, this study established
important standards. Although individual features might
capture picture attributes, this ground-breaking study
showed that they frequently failed to depict complicated
semantic connections [6]. Combining several types of
features might greatly enhance retrieval accuracy,
according to an examination of feature extraction
methods; nevertheless, computing economy was still an
issue. Due to the shortcomings of more conventional
methods, researchers began looking into deep learning
solutions. However, the use of raw deep features often
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leads to high-dimensional vectors, many of which are
redundant or non-informative for the retrieval task. This
results in unnecessary computational overhead and
reduced retrieval precision.

To overcome this, feature selection and dimensionality
reduction techniques are employed to refine the feature
vectors. Among various optimization methods,
metaheuristic algorithms have shown promise due to their
flexibility and effectiveness in exploring high-dimensional
search spaces. The Grey Wolf Optimizer (GWO), inspired
by the leadership hierarchy and hunting strategy of grey
wolves, has gained popularity for its simplicity and
performance. However, like many conventional
metaheuristics, GWO is susceptible to premature
convergence and local optima, especially in complex and
high-dimensional feature spaces.

In this paper, we propose a novel hybrid framework that
combines deep feature extraction with a Quantum Grey
Wolf Optimization (QGWO) algorithm to address these
issues. The QGWO enhances the exploration and
exploitation balance of the original GWO by incorporating
principles from quantum mechanics, such as wave
function-based probabilistic representation and position
updates informed by quantum tunnelling behaviour. This
integration enables more robust and diversified search
dynamics, leading to better feature subset selection.

Our contributions can be summarized as follows:

1) Hybrid deep feature architecture: We utilize pre-
trained Convolutional Neural Networks (CNNs)
(Inception V1, Inception V2 and ResNet) for
extracting deep semantic features, capturing
complex spatial hierarchies from images.
Quantum-inspired optimization: We propose a
quantum-enhanced GWO for selecting optimal
feature subsets, reducing redundancy, and
improving the retrieval relevance.

Comprehensive evaluation: We conduct extensive
experiments on benchmark CBIR dataset Corel-
1K, Corel-5K and Corel-10K using standard
evaluation metrics to validate the performance
gains achieved by our method and evaluated the
computational efficiency.

Comparative analysis: The proposed method is
benchmarked against conventional QCSA-
AlexNet, QGWO-ResNet 101, QGWO-IRV2.

The remainder of this paper is structured as follows:
Section II reviews related work in deep learning-based
CBIR and metaheuristic optimization. Section III details
the proposed hybrid framework, including the feature
extraction and QGWO algorithm. Section IV describes the
experimental setup, datasets, and evaluation metrics.
Section V presents and discusses the results. Finally,
Section VI concludes the paper with potential directions
for future research.

2)

3)

4)

II.  RELATED WORK

The development of effective Content-Based Image
Retrieval (CBIR) systems has evolved significantly over
the past two decades. The key areas in CBIR are feature
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extraction, feature selection and optimization models for
feature optimization.

An analysis of various feature extraction techniques
demonstrated that the combination of multiple feature
types could significantly improve retrieval accuracy,
although computational efficiency remained a challenge.
The limitations of traditional approaches led to the
exploration of deep learning solutions. Significant
progress was made by implementing pre-trained CNN
models, specifically VGG16 and ResNet-50, through
transfer learning [7]. A comparative analysis on the
ImageNet dataset demonstrated how deep learning
architectures could effectively capture hierarchical feature
representations,  substantially  improving retrieval
accuracy [8]. This work particularly highlighted the
advantages of transfer learning in reducing training
requirements while maintaining high performance across
diverse image categories.

Hu and Bors [9] introduced an innovative co-attention
mechanism to address the challenge of complex image
scenarios by dynamically adapting to query content. This
approach showed remarkable improvements in handling
non-salient objects and complex backgrounds, particularly
in scenarios where traditional methods failed.

Taheri et al. [10] developed a sophisticated semantic
pyramid approach for handcraft feature fusion. This work
introduced novel evaluation metrics through t-Distributed
Stochastic Neighbor Embedding (t-SNE) visualization and
silhouette criterion analysis, providing deeper insight into
feature behaviour and interpretability. The field further
evolved with advanced feature representation techniques.
Badiger et al. [11] proposed a comprehensive fuzzy graph
model, incorporating deep representations and introducing
adaptive learning mechanisms that improved retrieval
accuracy., the persistent challenge of data imbalance was
addressed through innovative fuzzy -clustering-based
feature normalization [12].

Deep learning, particularly CNNs, has revolutionized
visual feature extraction by providing hierarchical,
semantically rich representations that significantly
outperform handcrafted features. Architectures such as
have been widely used as feature extractors in CBIR
systems, yielding promising results. With the advent of
deep learning, particularly Convolutional Neural
Networks (CNNs), CBIR has seen a paradigm shift.

Rani et al. [13] proposed CBIR using separable CNN.
Further deep learning models are CNNs like VGG [14],
GoogLeNet [15], ResNet [16], and EfficientNet [17],
ESA-ResNet34 [18], have demonstrated superior
performance by automatically learning hierarchical
features from raw image data. These models, typically pre-
trained on large-scale datasets like ImageNet, are widely
used as feature extractors by removing their classification
heads and using the intermediate feature maps.

Zhu [19] proposed massive-scale image retrieval based
on deep visual feature representation. The deep neural
network played an important role in feature extraction
process [20] when compared to exiting traditional model
like proposed by Vu [21]. Nevertheless, one major
drawback of deep features is their high dimensionality,
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which can cause storage overhead, slower similarity
computation, and feature redundancy. This has led
researchers to explore various strategies for feature
selection and dimensionality reduction. The optimization
of extracted features helps to improve the accuracy in
process of retrieving the images. As an alternative, feature
selection methods aim to identify and retain the most
informative features directly from the original high-
dimensional  space. Metaheuristic ~ optimization
algorithms, such as Genetic Algorithms (GA) [22],
Particle Swarm Optimization (PSO) [23], and Ant Colony
Optimization (ACO) [24], have been extensively used for
this purpose. These techniques enable adaptive and task-
aware selection of features that contribute most
significantly to  retrieval performance. = Among
metaheuristic approaches, the Grey Wolf Optimizer
(GWO) has gained attention due to its ability to balance
exploration and exploitation based on the leadership
hierarchy and hunting mechanism of grey wolves [25].
GWO has been applied in various domains including
feature selection, scheduling, and medical image analysis.
However, standard GWO may suffer from premature
convergence and a limited ability to escape local optima in
complex search spaces.

To address these limitations, quantum-inspired
algorithms have emerged as promising alternatives.
Quantum computing principles such as superposition,
entanglement, and quantum tunnelling are leveraged to
enhance diversity and search capabilities. The Quantum
Grey Wolf Optimizer (QGWO) introduces quantum
behaviour into the traditional GWO, where agents’
positions are updated based on probabilistic wave

functions rather than deterministic rules. This results in a
more robust global search and better feature subset
selection [26].

The motivation and novelty of proposed work despite
the effectiveness of CNNs and metaheuristics
individually, their integration—especially with quantum-
inspired  optimization—for =~ CBIR-specific  feature
selection has not been sufficiently investigated. This paper
fills that gap by introducing a hybrid deep feature-QGWO
framework, leveraging the discriminative power of deep
networks and the search efficiency of quantum-enhanced
GWO. The proposed approach not only improves retrieval
accuracy but also ensures computational tractability,
making it suitable for large-scale image retrieval systems.

III. METHODOLOGY

CBIR is a technique that utilizes visual content or image
features to search and retrieve relevant images from a
database. CBIR operates by extracting low-level or high-
level features (such as color, texture, or shape) from the
images stored in the database. When a query image is
provided, its features are extracted and compared against
those in the database to identify the most similar images
based on a defined distance metric, typically using the
shortest feature distance.

The proposed framework consists of two main
components: (1) deep feature extraction using pre-trained
CNNs, and (2) feature selection using the proposed
QGWO algorithm. Fig. 1 presents an overview of the
entire architecture.

Input
Dataset
Preprocessing of Deep Learning for Optimization of
data feature extraction features (QGWO)
Query A
Image ‘
Features of Features of
input data Query Image

T

Similarity Measure

|

Retrieved Images (output)

Fig. 1. Framework of model.

A. Preprocessing

The preprocessing stage is a critical initial step in any
CBIR system, as it prepares the input images for effective
feature extraction and retrieval. This stage ensures
consistency, enhances image quality, and reduces
variability caused by external factors. In this work,
initially the images in the dataset are resized to a fixed
resolution (e.g., 224%224) to ensure uniform input size for
feature extraction or deep learning models. Secondly,
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noise in the image is filtered using median filter. This filter
is applied to suppress unwanted noise and artifacts, which
may otherwise degrade feature quality. Finally, images are
normalised. The pixel intensity values are scaled to a
common range (e.g., [0, 1] or [—1, 1]) to improve training
stability and model generalization.

B.  Deep Feature Extraction

In the first phase, input images are processed through
pre-trained deep CNN models to extract high-level feature
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representations. Three well-established architectures,
Inception V1, Inception V2 and ResNet-50 are employed
due to their proven capability to encode rich semantic
content across various domains. The approach of feature
extraction is shown in Fig. 2.

Extract Deep
Feature Vector

|

Indexing in Feature

Input pre-processed
image

Deep Models (IV1, IV2
and ResNet 50)

—_—

Database

|

Query Matching (Extract
query image features)

Fig. 2. Process of feature extraction.

1) Inception V1 (IV1)

InceptionV1 is a model which provides a powerful and
efficient mechanism for extracting robust features. This
method is suitable for CBIR due to its ability in extracting
multiscale features in the inception module. The deeper
network allows to extract high number of features. The
process of proposed feature extraction using Inception V1
(IV1) is shown in Fig. 3.

The image is passed through convolutional and
inception modules of the pre-trained network.
Intermediate features capture spatial hierarchies, object
textures, and contextual information. In this process the
features are extracted from a fully connected layer. This
layer provides a compact and discriminative feature
vectors. All the extracted feature vectors for all database
images are stored in a feature vector database. When a new
image is provided as a query, it undergoes the same
Inception V1-based feature extraction process. Each
Inception module performs parallel convolutions with
different filter sizes: 1x1 conv helps in reducing the
dimensions. The 3%3 conv and 5x5 conv block capture
medium and large spatial features. The 3x3 max pooling
+ 1x1 conv block preserves spatial info.

Conv (7x7)

concatenation of output

i
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! 1
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! 1

i !
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! 1

Global Average Pooling

’ Feature Vector output J
——

Fig. 3. Process of Inception V1.
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2) Inception V2 (IV2)

It is an improved version of Inception V1 by performing
factorization of convolution, batch normalization after
every convolutional layer. The process of Inception V2
(IV2) is shown in Fig. 4.

Batch
Normalization

™ Inception Module

l

Factorized Conv

|

Global Avg Pooling

|

Feature Vector Output

Conv

Fig. 4. Process of Inception V2.

In this process every convolution layer is followed by
batch normalization by which the data training will be fast
and provide better generalization. The inception module
captures features at multiple scales simultaneously. The
factorization layer involved in IV2 process helps to reduce
the level of computation and maintain receptive field.
Finally, the global average pooling produces compact
feature vectors by averaging each feature map and obtain
the feature vector output.

3) ResNet-50

A 50-layer residual network with identity shortcut
connections that allow better gradient flow and deeper
learning. Features are extracted from the penultimate
average pooling layer. All input images are resized to a
fixed resolution, normalized, and batch-processed to
extract features. The resulting feature vectors are stored
for subsequent optimization. The process of ResNet 50 in
CBIR is shown in Fig. 5.

Batch
Normalization

—

Residual Block

|

Global Average
Pooling

|

Feature Vector

Conv (7x7) ReLU

Extraction

Fig. 5. Process of feature extraction using ResNet 50.

The output obtained after deep processing via global
average pooling is used as a feature descriptor and is save
in the databased. This vector which is stored is compared
during retrieval using distance metrics. All the features
achieved using the three deep learning models i.e., Multi
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scale features using IV1, optimized and normalized multi
scale features using IV2 and deep residual feature with
strong abstraction using ResNet-50 are combined and
fetched to optimization model. The combination of all
features improves the feature diversity and provide better
semantic coverage which leads to improve the retrieval
accuracy. The direct concatenation of features is given in

Eq. (1).

combined F}Vl + F}VZ + FR(’.&'Nvt50 (1)

The features combined are fetched to optimization
model for selection of best features. The best optimized
features selection improves the accuracy of retrieving the

images.
C. Problem Formulation for Feature Selection
Let F =[f, f,,...., f;] be the full deep feature vector of

dimension d. The goal of feature selection is to find a

subset F' — F, such that the selected features maximize
the retrieval relevance while minimizing redundancy. This
is framed as an optimization problem where each feature
is either selected (1) or not selected (0). The objective
function J is designed to:

(- Il
@)= (1=mAR,, (2)+ 4 )

where mAP, (z) is

computed using the selected subset z,

the mean Average Precision

|z|| , counts the

number of selected features, d is the total dimensionality.
The weights are set such that 4, > 4, . We minimize J.

D. Quantum Grey Wolf Optimization (QGWO)

The core of our approach lies in the novel QGWO
algorithm, which enhances the original GWO by
introducing quantum principles to diversify the search
space and improve convergence. The behaviour of grey
wolf needs to be addressed in which we considered
candidate solutions (wolves) and update their positions
based on the positions of three leading wolves alpha (a)
beta () and delta (6). The update rule is given in Eq. (3).

|

X(z+1)=%(}‘(a+ ,,+)?5) 3)

Xa:a_AIGDa 4 Xﬁ:ﬂ_A]ODﬁ ’
X, =6-40D; The term D, =|C,0a-x| ,
D, =|C, 0 f-x|, Dy =|C; ®5-x|. The term 4 and Cis

given as, 4=2arn —a; C=2r,.r, r;are random vectors.

where,

In quantum enhancement the positions are encoded as
probabilistic wave functions.

()

“)
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where, y; is the current position of the i wolf, o; controls
the spread (exploration), the new position is sampled from
v, using quantum tunnelling concepts. In additional the

quantum mutation is applied to escape the local minima.

new

X' =x, +n-randn()-e”"

6]
where the term 7 is the mutation scale and y is the decay
rate over iterations.

Using QGWO, the Quantum behavior enables global
search and avoids local minima. Removes uninformative
dimensions from deep features, and reduce vector size
which helps in speed up similarity computations.

Since deep feature vectors are continuous, we encode
feature selection using a binary representation: each bit of
z corresponds to a feature dimension, where 1 = selected
and 0 = not selected. The continuous wolf positions in
QGWO are mapped to binary using a sigmoid transfer
function followed by thresholding (> 0.5 — 1,<0.5 — 0).
This ensures that QGWO optimizes over binary subsets

while exploring the continuous search space.
QGWO Pseudo code:

Algorithm: QGWO Pseudo code

Input: d = feature dimension; N = number of wolves (population

size); 7= maximum iterations

Output: z_star = best feature subset (binary vector)

Step 1: Initialize population

Initialize population X(N, d) with random values in [0,1]

for i=1: N

Step 2: Binary conversion using sigmoid transfer function
Z(@,)=(1./(1+exp(-X (i,:))) >=0.5) ;

Step 3: Compute fitness using objective function J (Eq. 2)
Fitness(i)=J(Z(i,))) 5

end

Step 4: Identify alpha, beta, delta wolves (best 3 solutions)
[alpha,beta,delta) = select _top(Fitness,Z)

Step 5: Main loop

fort=1:T
fori=1: N
Position update based on alpha, beta, delta wolves
X(i,:) =update _ position(X (i,:),alpha,beta,delta,t,T) ;
Apply quantum mutation for diversification
X(i,:) = quantum _mutation(X (i,:),t,T)
Binary conversion
Z({,:)=(./(1+exp(-X(i,:))>0.5);

Evaluate fitness

Fitness(i) = J (Z(i,))
end
Update alpha, beta, delta wolves
[alpha, beta, delta] = select_top3(Fitness, Z);
End
Step 6: Return best feature subset
z _star = alpha ;

E.  Similarity Computation

Once the optimal feature subset F’ is selected using
QGWO, image similarity is computed using distance
metrics. In this work a Euclidean Distance (ED) metric is
utilized to calculate the distance measure. For each query
image, the similarity scores are computed between its
selected features and all database images, then ranked to
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produce retrieval results. The feature vectors represent the
content of the image. Euclidean distance computes how far
apart two feature vectors are in a multi-dimensional space.
A shorter distance implies that both vectors (images) are
very close in this feature space meaning the images are
visually or semantically similar. The ED is evaluated using

Eq. (6).

ED=|F -F, ©)

where F; and F, e R" are feature vectors of length .

Depending upon the measure the images are retrieved.
The experimental results obtained using the proposed
methodology is discussed in Section I'V.

IV. EXPERIMENTAL SETUP AND EVALUATION

This section outlines the experimental settings used to
validate the proposed framework, including dataset
descriptions, evaluation metrics, and implementation
details.

A. Datasets

We evaluate our framework on three widely-used
benchmark datasets for CBIR: Corel-1K: Consists of
1,000 images equally divided into 10 categories (e.g., dogs,
persons, buses). Corel-5k consists of 5000 images from 50
categories and Corel-10K consists of 10,000 images form
50 categories. Each category contains images of 256x256
resolution. For the dataset, a subset of images is used as
queries, while the remaining serve as the retrieval database.

B. Evaluation Metrics

To quantify the effectiveness of the retrieval process,
standard evaluation metrics such as precision, recall, and
F1-Score are used to evaluate the performance of the
proposed model.

Precision measures the proportion of correctly retrieved
relevant images among all images retrieved. The precision
is evaluated using Eq. (7).

True positives

Precision = @)

True positives + False positives

Recall measures the proportion of correctly retrieved
relevant images out of all relevant images in the dataset.

T .,
Recall = rue positives

®)

True positives + False positives

Specificity indicates the model’s ability to correctly
identify non-relevant images.

True negatives

Specificity = 9)

True negatives + False positives

Accuracy represents the overall correctness of the
retrieval model by measuring the ratio of correctly
retrieved images (both relevant and non-relevant).

True positives + True negatives

(10)

Accuracy =
Total number of cases

Error percentage reflects the proportion of incorrect
retrievals made by the model.

Error % — (False positives + False negativesj (11

Total number of cases

Total processing time: The processing time of proposed
model is evaluated using Eq. (12).

T

total

T,

extract

+T

retrival

+ 150 +1T,

similarity

(12)

C. Implementation Details

The proposed model is implemented in MATLAB using
MATLAB toolbox for feature extraction and for vector
operations. Optimization modules are custom-coded for
both GWO and QGWO. The hardware parameters utilized
for conducting our experiments are run on a workstation
with Intel Core 19 CPU, 64GB RAM, and NVIDIA RTX
3080 GPU. The optimization parameters involved are
shown in Table 1.

TABLE I. OPTIMIZATION PARAMETERS

Number of wolves 30
Max iterations 50
Quantum mutation rate (77) 0.05
Exploration decay (y) 0.01

All parameters are fine-tuned via grid search for each
dataset. This section presents the empirical results of the
proposed hybrid framework, comparing its retrieval
performance with baseline methods. We also analyze the
impact of Quantum Grey Wolf Optimization (QGWO) on
feature selection, retrieval efficiency, and scalability. The
evaluated results for the given input query are shown in
Fig. 6.
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(b)
Fig. 6. Input query image. (a) Sunrise, (b) Jet.

Table II presents the evaluation metrics obtained using superior performance in terms of accuracy, precision,
the proposed model. The dataset encompasses multiple recall, and other evaluated metrics for CBIR. The
image categories, and the retrieval accuracy has been Parameter Counts (PC) and Floating-point Operations Per
analyzed on a per-class basis. Second (FLOPS) are shown in Table III.

The results in the Table III demonstrate that the
proposed QGWO-IV1IV2-ResNet method achieves

TABLE II. OPTIMIZED QWO- IV1IV2RESNET

Class Name Se/Recall (%)  Precision (%)  Specificity (%)  Error Percent (%) Accuracy (%)

Africa 99.56 88.8 99.50 0.87 99.13
Beach 98.35 90.8 98.30 0.75 99.24
Buildings 99.35 93.85 99.30 0.70 99.29
Buses 99.58 86.4 99.50 0.81 99.18
Bear 99.84 90.74 98.80 0.89 99.11
Dinosaurs 99.49 86.4 99.40 0.97 99.03
Elephant 99.45 96.6 99.40 0.75 99.25
Flower 99.61 92.8 99.60 0.73 99.27
Horses 99.14 94.37 99.10 0.82 99.18
Mountain 98.91 86.15 98.90 0.74 99.26
Food 99.52 86.74 99.50 0.94 99.06
Tiger 99.36 94.09 99.30 0.76 99.24
Lion 99.17 90.33 90.10 0.93 99.07
Sports 99.62 90.81 99.60 0.74 99.26
Sunset 98.89 98.7 98.8 0.82 99.18
Snow 99.25 90.97 99.20 0.81 99.19
River 98.58 81.74 98.50 0.75 99.25
Planes 90.9 99.60 90.9 0.76 99.24
Bikes 98.15 92.40 98.10 0.70 99.30
Fruits 99.56 90.25 99.50 0.73 99.27
Overall Percentage 98.81 91.13 98.27 0.798 99.20
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TABLE III. COMPARISON OF PROPOSED METHOD WITH EXISTING METHODS

Index IféZil:iTo " CNN-ED  QCSA-Alexa  QWO-ResNet  QWO-IRVZ  ViT-GA Proposed QGWO-
Tree (27 28] net [29] 101 [30] 30] 31] IVIIV2ResNet
Recall (%) 913 94.99 97.13 97.10 98.47 ; 98.81
Precision (%) 75.0 7146 7737 77.60 88.48 ; 91.13
Specificity (%) 95.6 94.85 97.13 97.28 98.17 ; 9827
Accuracy (%) 823 94.98 96.91 96.98 98.33 993 99.20
PC and ) ) ) ) ) ) 25.6M Params and
FLOPS 4.1GFLOPs

(a) QGrO-INCEPTION-ResNet V1V2 Accuracy: Beach 99.24% (b) QGrO-INCEPTION-ResNet V1V2 Accuracy: Buildings 99.30%

100.0%
3483

18.1%
25

Output Class
Output Class

Target Class Target Class

(C) QGrO-INCEPTION-ResNet V1V2 Accuracy: Horses 99.27% (d) QGrO-INCEPTION-ResNet V1V2 Accuracy: Food 99.27%

100.0%
3498
123 1]
%] [%]
iy ]
O O
E E
o Q
3 3
o O
Target Class Target Class
(e) QGrO-INCEPTION-ResNet V1V2 Accuracy: Cars 99.05% (f)  QGrO-INCEPTION-ResNet V1V2 Accuracy: Bears 99.19%

Output Class
Output Class

Target Class Target Class
Fig. 7. Confusion matrices for different image classes. (a) Beach, (b) Buildings, (c) Horses, (d) Food, (e) cars, (f) Bear.
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TABLE IV. COMPARISON OF PROPOSED METHOD WITH DIFFERENT DATASETS

Metrics COREL-1K COREL-5K COREL-10K
Recall (%) 98.81 99.1 99.02
Precision (%) 91.13 90.21 90.18
Specificity (%) 98.27 99.10 99.02
Accuracy (%) 99.20 99.12 99.04
Error Percentage 1.08% 1.1% 1.16%
Retrieval Time 0.8s 1.02's 1.06 s
mAP 0.98 0.93 0.90
App Precison@K (K =1) 0.99 0.99 0.99
App Recall@K (K= 1) 1.0 0.99 0.99
(a) 4 Precision-Recall Curve: Buildings (b) ’ Precision-Recall Curve: Food
0.98 -
0.95
0.96
09r
0.94 -
= [ =4
Q Q
2092t 3085+
[ [
a o
09r
08 r
0.88 -
0.75
0.86
0.84 . . . . 0.7 \ . . .
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
Recall Recall
(c) P Precision-Recall Curve: Dogs (d) 3 Precision-Recall Curve: Dinosaurs
09r
0.95 |
08 r
09r 0.7 1
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Fig. 8. PR curves. (a) Buildings, (b) Food, (c¢) Dogs, (d) Dinosaurs.

Individual confusion matrices are shown in Fig. 7 for
the image classes: Bea'ch, Buildings, Horses, Food, cars,
bear. Overall, the proposed model demonstrates high
accuracy across most categories, with strong diagonal
dominance indicating correct predictions. However, minor
misclassifications are observed in visually similar classes
for instance, some cars are occasionally misclassified as
buses due to structural similarities. Similarly, a few cow
images are confused with dogs, likely due to overlapping
textures or backgrounds. Despite these cases, the model
maintains consistent class-wise accuracy, confirming its
robustness in handling diverse image categories.

The metrics evaluated for another dataset utilized are
compared and shown in Table IV.

The precision recall curves are been evaluated and are
shown in Fig. 8.
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The retrieval time of image is evaluated. A typical
CBIR system using deep CNN + Grey Wolf Optimization
has a query processing time which is very less for all the
three datasets utilized and is shown in Table V. The
processing time will depend on system complexity,
number of features, and optimization iterations. The
comparison is of time is shown using optimization
(QGWO selected subset) and without optimization (uses
fully concatenated vectors).

TABLE V. PROCESSING TIME FOR RETRIEVAL OF IMAGE

Time without Time with
Dataset Name R s .
optimization optimization
Corel 1K 3.22s 0.8s
Corel 5K 4.01s 1.02s
Corel 10K 5.04 s 1.06 s
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D. Limitation of Work

While the proposed QGWO framework excels in
feature optimization, its performance is still bounded by:

e The representational power of the base CNN
(suggesting future use of Vision Transformers or
CLIP).

e Manual parameter tuning in QGWO, which could
be automated using reinforcement learning or
meta-optimization

V. ABLATION STUDY

We isolate the contribution of each design choice in our
CBIR pipeline CNN backbone, feature post-processing,
optimizer (QGWO vs. baselines), similarity metric, and
handling on retrieval quality and efficiency. The ablation
study conducted on Corel 1k dataset. The results achieved
shown in Table VI.

TABLE VI. RESULTS OF ABLATION STUDY

Re Pr Sp Acc Error

MM %) (%) (%) (%) (%)

ResNet 88.4 79.8 87.6 88.8 8.02

V1 90.8 80.4 90.2 90.6 6.2

1v2 92.2 81.5 91.8 92.4 4.45

IV1+IV2+ResNet 94.5 84.6 93.8 94.2 2.96
IVI+IV2+ResNet+

QGWO 99.15 90.37 99.2 99.25 1.08

Inception V2 produces stronger deep features than
Inception V1 and ResNet. Incorporating optimization
significantly improves retrieval performance. Proposed
Quantum Grey Wolf Optimization (QGWO) provides the
best results, achieving the highest accuracy of 99.25% and
lowest error rate of 1.08%.

As the optimization technique is important factor, the
ablation study conducted by modifying search agents and
iterations. The accuracy achieved using 10 search agents
is 98.6% and 20 search agents is 99% and achieved
99.25% accuracy with 30 search agents. Increasing the
number of agents improves performance up to a point
(optimal at 30 agents), after which gains plateau.
Increasing number of iterations to 100 and the accuracy
achieved is 99.3% but the processing time increased to
1.4 s. Higher iteration counts slightly improve retrieval
accuracy but at the cost of increased runtime.

VI.  CONCLUSION

In this paper, we proposed a novel hybrid deep feature
extraction framework integrated with QGWO for
enhanced CBIR. By leveraging the powerful
representational capacity of deep CNNs Inception V1,
Inception V2, ResNet-50 and combining it with an
advanced quantum-inspired optimization algorithm, our
approach effectively addressed two critical challenges in
CBIR: high-dimensional feature redundancy and
suboptimal retrieval relevance. Extensive experiments
across the benchmark dataset—Corel-1K, Corel-5K and
Corel-10K demonstrated that the proposed method
significantly outperforms baseline models in terms of
retrieval precision, recall and retrieval accuracy, all while
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reducing the feature dimensionality. Comparative studies
further showed that QGWO surpasses existing models in
terms of accuracy, recall and precision. The percent of
wrongly retrieved images obtained using the proposed
model is 1.08%. The integration of quantum behaviour—
through probabilistic sampling and tunnelling-inspired
mutation—into the optimization process proved highly
effective for deep feature selection, offering both robust
convergence and adaptive search dynamics.

Despite its strong performance, the current framework
opens several directions for further scope of work.
Incorporating textual and audio cues using multimodal
embeddings (e.g., CLIP or BLIP) could enhance semantic
retrieval across domains. Leveraging Neural Architecture
Search (NAS) or reinforcement learning could automate
the tuning of QGWO parameters and improve
generalizability across datasets. Ultimately, the proposed
QGWO-based framework provides a scalable, accurate,
and adaptive solution for modern CBIR systems, with
strong potential for real-world deployment in fields such
as digital asset management, medical imaging, and
surveillance.
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