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Abstract—A key tool for organizing and extracting visual 
information from large picture databases is Content-Based 
Image Retrieval (CBIR). To make CBIR systems much more 
accurate and efficient, this research proposes a new 
combined approach that uses deep feature extraction along 
with Quantum Grey Wolf Optimization (QGWO). The 
suggested system captures complex visual patterns across a 
variety of images categories by utilizing pre-trained 
Convolutional Neural Networks (CNNs) for reliable and 
advanced feature extraction. This paper presents the 
retrieval of single objects and multi-objects. The deep 
learning techniques utilized in this work are Inception V1, 
Inception V2, and ResNet50, chosen as they represent 
progressively advanced CNN architectures with increasing 
depth and feature extraction capability. To make the process 
faster and more effective, these features are improved using 
QGWO, a method that combines ideas from quantum 
computing with the social behaviour and hunting strategies 
of grey wolves. Our combined method performs better than 
existing CBIR algorithms in precision, recall, accuracy, and 
F1-Scores, based on thorough testing with the Corel-1K, 
Corel-5K, Corel-10K image datasets. The fusion of deep 
learning with a quantum-inspired optimization approach 
resulted in a retrieval accuracy of 99.20%, and percentage of 
wrongly retrieved images obtained is 1.08% using Corel-1k. 
The accuracy achieved using Corel-5k is 99.12% and Corel-
10K is 99.04%. The results prove the computational 
efficiency of contemporary CBIR system. 

Keywords—Content-Based Image Retrieval (CBIR), 
Convolutional Neural Networks (CNNs), Inception V1, 
Inception V2, ResNet50, Quantum Grey Wolf Optimization 
(QGWO) 


I. INTRODUCTION

The explosive proliferation of digital visual content 
across various domains—ranging from social media and 
surveillance to medical imaging and satellite data has 
necessitated the development of intelligent systems for 
fast and accurate image retrieval. Content-Based Image 
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Retrieval (CBIR), which focuses on retrieving images 
based on their visual content rather than textual metadata, 
plays a central role in this context. Despite significant 
advancements, existing CBIR systems still face challenges 
related to high-dimensional feature spaces, semantic gaps 
between low-level features and high-level concepts, and 
scalability when applied to large-scale datasets. 

Digital image search and retrieval have been 
revolutionised in several fields by Content-Based Image 
Retrieval (CBIR) [1]. These categories include medical 
imaging, satellite images, and multimedia applications, 
among others. Medical diagnostics, surveillance systems, 
and social media platforms are just a few examples of the 
niche industries where digital picture collections are 
expanding at an exponential rate, making effective 
retrieval methods for direct visual content analysis 
imperative [2]. For large-scale applications, traditional 
text-based picture retrieval systems are impracticable due 
to their heavy reliance on user annotations. To overcome 
this shortcoming, CBIR systems automate retrieval based 
on picture content instead of metadata by extracting 
relevant information using enhanced feature 
descriptors [3].  

Earlier iterations of CBIR methods relied on more 
simplistic visual characteristics [4]. Shukran et al. [5] laid 
out a thorough framework, which examined form, texture, 
and colour aspects in picture retrieval. By systematically 
evaluating recall, response time, and accuracy measures 
across various feature combinations, this study established 
important standards. Although individual features might 
capture picture attributes, this ground-breaking study 
showed that they frequently failed to depict complicated 
semantic connections [6]. Combining several types of 
features might greatly enhance retrieval accuracy, 
according to an examination of feature extraction 
methods; nevertheless, computing economy was still an 
issue. Due to the shortcomings of more conventional 
methods, researchers began looking into deep learning 
solutions. However, the use of raw deep features often 
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leads to high-dimensional vectors, many of which are 
redundant or non-informative for the retrieval task. This 
results in unnecessary computational overhead and 
reduced retrieval precision. 

To overcome this, feature selection and dimensionality 
reduction techniques are employed to refine the feature 
vectors. Among various optimization methods, 
metaheuristic algorithms have shown promise due to their 
flexibility and effectiveness in exploring high-dimensional 
search spaces. The Grey Wolf Optimizer (GWO), inspired 
by the leadership hierarchy and hunting strategy of grey 
wolves, has gained popularity for its simplicity and 
performance. However, like many conventional 
metaheuristics, GWO is susceptible to premature 
convergence and local optima, especially in complex and 
high-dimensional feature spaces. 

In this paper, we propose a novel hybrid framework that 
combines deep feature extraction with a Quantum Grey 
Wolf Optimization (QGWO) algorithm to address these 
issues. The QGWO enhances the exploration and 
exploitation balance of the original GWO by incorporating 
principles from quantum mechanics, such as wave 
function-based probabilistic representation and position 
updates informed by quantum tunnelling behaviour. This 
integration enables more robust and diversified search 
dynamics, leading to better feature subset selection. 

Our contributions can be summarized as follows: 
1) Hybrid deep feature architecture: We utilize pre-

trained Convolutional Neural Networks (CNNs)
(Inception V1, Inception V2 and ResNet) for
extracting deep semantic features, capturing
complex spatial hierarchies from images.

2) Quantum-inspired optimization: We propose a
quantum-enhanced GWO for selecting optimal
feature subsets, reducing redundancy, and
improving the retrieval relevance.

3) Comprehensive evaluation: We conduct extensive
experiments on benchmark CBIR dataset Corel-
1K, Corel-5K and Corel-10K using standard
evaluation metrics to validate the performance
gains achieved by our method and evaluated the
computational efficiency.

4) Comparative analysis: The proposed method is
benchmarked against conventional QCSA-
AlexNet, QGWO-ResNet 101, QGWO-IRV2.

The remainder of this paper is structured as follows: 
Section II reviews related work in deep learning-based 
CBIR and metaheuristic optimization. Section III details 
the proposed hybrid framework, including the feature 
extraction and QGWO algorithm. Section IV describes the 
experimental setup, datasets, and evaluation metrics. 
Section V presents and discusses the results. Finally, 
Section VI concludes the paper with potential directions 
for future research. 

II. RELATED WORK

The development of effective Content-Based Image 
Retrieval (CBIR) systems has evolved significantly over 
the past two decades. The key areas in CBIR are feature 

extraction, feature selection and optimization models for 
feature optimization. 

An analysis of various feature extraction techniques 
demonstrated that the combination of multiple feature 
types could significantly improve retrieval accuracy, 
although computational efficiency remained a challenge. 
The limitations of traditional approaches led to the 
exploration of deep learning solutions. Significant 
progress was made by implementing pre-trained CNN 
models, specifically VGG16 and ResNet-50, through 
transfer learning [7]. A comparative analysis on the 
ImageNet dataset demonstrated how deep learning 
architectures could effectively capture hierarchical feature 
representations, substantially improving retrieval 
accuracy [8]. This work particularly highlighted the 
advantages of transfer learning in reducing training 
requirements while maintaining high performance across 
diverse image categories. 

Hu and Bors [9] introduced an innovative co-attention 
mechanism to address the challenge of complex image 
scenarios by dynamically adapting to query content. This 
approach showed remarkable improvements in handling 
non-salient objects and complex backgrounds, particularly 
in scenarios where traditional methods failed.  

Taheri et al. [10] developed a sophisticated semantic 
pyramid approach for handcraft feature fusion. This work 
introduced novel evaluation metrics through t-Distributed 
Stochastic Neighbor Embedding (t-SNE) visualization and 
silhouette criterion analysis, providing deeper insight into 
feature behaviour and interpretability. The field further 
evolved with advanced feature representation techniques. 
Badiger et al. [11] proposed a comprehensive fuzzy graph 
model, incorporating deep representations and introducing 
adaptive learning mechanisms that improved retrieval 
accuracy., the persistent challenge of data imbalance was 
addressed through innovative fuzzy clustering-based 
feature normalization [12]. 

Deep learning, particularly CNNs, has revolutionized 
visual feature extraction by providing hierarchical, 
semantically rich representations that significantly 
outperform handcrafted features. Architectures such as 
have been widely used as feature extractors in CBIR 
systems, yielding promising results. With the advent of 
deep learning, particularly Convolutional Neural 
Networks (CNNs), CBIR has seen a paradigm shift.  

Rani et al. [13] proposed CBIR using separable CNN. 
Further deep learning models are CNNs like VGG [14], 
GoogLeNet [15], ResNet [16], and EfficientNet [17], 
ESA-ResNet34 [18], have demonstrated superior 
performance by automatically learning hierarchical 
features from raw image data. These models, typically pre-
trained on large-scale datasets like ImageNet, are widely 
used as feature extractors by removing their classification 
heads and using the intermediate feature maps.  

Zhu [19] proposed massive-scale image retrieval based 
on deep visual feature representation. The deep neural 
network played an important role in feature extraction 
process [20] when compared to exiting traditional model 
like proposed by Vu [21]. Nevertheless, one major 
drawback of deep features is their high dimensionality, 
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which can cause storage overhead, slower similarity 
computation, and feature redundancy. This has led 
researchers to explore various strategies for feature 
selection and dimensionality reduction. The optimization 
of extracted features helps to improve the accuracy in 
process of retrieving the images. As an alternative, feature 
selection methods aim to identify and retain the most 
informative features directly from the original high-
dimensional space. Metaheuristic optimization 
algorithms, such as Genetic Algorithms (GA) [22], 
Particle Swarm Optimization (PSO) [23], and Ant Colony 
Optimization (ACO) [24], have been extensively used for 
this purpose. These techniques enable adaptive and task-
aware selection of features that contribute most 
significantly to retrieval performance. Among 
metaheuristic approaches, the Grey Wolf Optimizer 
(GWO) has gained attention due to its ability to balance 
exploration and exploitation based on the leadership 
hierarchy and hunting mechanism of grey wolves [25]. 
GWO has been applied in various domains including 
feature selection, scheduling, and medical image analysis. 
However, standard GWO may suffer from premature 
convergence and a limited ability to escape local optima in 
complex search spaces. 

To address these limitations, quantum-inspired 
algorithms have emerged as promising alternatives. 
Quantum computing principles such as superposition, 
entanglement, and quantum tunnelling are leveraged to 
enhance diversity and search capabilities. The Quantum 
Grey Wolf Optimizer (QGWO) introduces quantum 
behaviour into the traditional GWO, where agents’ 
positions are updated based on probabilistic wave 

functions rather than deterministic rules. This results in a 
more robust global search and better feature subset 
selection [26]. 

The motivation and novelty of proposed work despite 
the effectiveness of CNNs and metaheuristics 
individually, their integration—especially with quantum-
inspired optimization—for CBIR-specific feature 
selection has not been sufficiently investigated. This paper 
fills that gap by introducing a hybrid deep feature-QGWO 
framework, leveraging the discriminative power of deep 
networks and the search efficiency of quantum-enhanced 
GWO. The proposed approach not only improves retrieval 
accuracy but also ensures computational tractability, 
making it suitable for large-scale image retrieval systems. 

III. METHODOLOGY

CBIR is a technique that utilizes visual content or image 
features to search and retrieve relevant images from a 
database. CBIR operates by extracting low-level or high-
level features (such as color, texture, or shape) from the 
images stored in the database. When a query image is 
provided, its features are extracted and compared against 
those in the database to identify the most similar images 
based on a defined distance metric, typically using the 
shortest feature distance.  

The proposed framework consists of two main 
components: (1) deep feature extraction using pre-trained 
CNNs, and (2) feature selection using the proposed 
QGWO algorithm. Fig. 1 presents an overview of the 
entire architecture. 

Fig. 1. Framework of model. 

A. Preprocessing

The preprocessing stage is a critical initial step in any
CBIR system, as it prepares the input images for effective 
feature extraction and retrieval. This stage ensures 
consistency, enhances image quality, and reduces 
variability caused by external factors. In this work, 
initially the images in the dataset are resized to a fixed 
resolution (e.g., 224×224) to ensure uniform input size for 
feature extraction or deep learning models. Secondly, 

noise in the image is filtered using median filter. This filter 
is applied to suppress unwanted noise and artifacts, which 
may otherwise degrade feature quality. Finally, images are 
normalised. The pixel intensity values are scaled to a 
common range (e.g., [0, 1] or [−1, 1]) to improve training 
stability and model generalization. 

B. Deep Feature Extraction

In the first phase, input images are processed through
pre-trained deep CNN models to extract high-level feature 
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representations. Three well-established architectures, 
Inception V1, Inception V2 and ResNet-50 are employed 
due to their proven capability to encode rich semantic 
content across various domains. The approach of feature 
extraction is shown in Fig. 2. 

Fig. 2. Process of feature extraction. 

1) Inception V1 (IV1)

InceptionV1 is a model which provides a powerful and
efficient mechanism for extracting robust features. This 
method is suitable for CBIR due to its ability in extracting 
multiscale features in the inception module. The deeper 
network allows to extract high number of features. The 
process of proposed feature extraction using Inception V1 
(IV1) is shown in Fig. 3. 

The image is passed through convolutional and 
inception modules of the pre-trained network. 
Intermediate features capture spatial hierarchies, object 
textures, and contextual information. In this process the 
features are extracted from a fully connected layer. This 
layer provides a compact and discriminative feature 
vectors. All the extracted feature vectors for all database 
images are stored in a feature vector database. When a new 
image is provided as a query, it undergoes the same 
Inception V1-based feature extraction process. Each 
Inception module performs parallel convolutions with 
different filter sizes: 1×1 conv helps in reducing the 
dimensions. The 3×3 conv and 5×5 conv block capture 
medium and large spatial features. The 3×3 max pooling 
+ 1×1 conv block preserves spatial info.

Fig. 3. Process of Inception V1. 

2) Inception V2 (IV2)

It is an improved version of Inception V1 by performing 
factorization of convolution, batch normalization after 
every convolutional layer. The process of Inception V2 
(IV2) is shown in Fig. 4. 

Fig. 4. Process of Inception V2. 

In this process every convolution layer is followed by 
batch normalization by which the data training will be fast 
and provide better generalization. The inception module 
captures features at multiple scales simultaneously. The 
factorization layer involved in IV2 process helps to reduce 
the level of computation and maintain receptive field. 
Finally, the global average pooling produces compact 
feature vectors by averaging each feature map and obtain 
the feature vector output. 

3) ResNet-50

A 50-layer residual network with identity shortcut
connections that allow better gradient flow and deeper 
learning. Features are extracted from the penultimate 
average pooling layer. All input images are resized to a 
fixed resolution, normalized, and batch-processed to 
extract features. The resulting feature vectors are stored 
for subsequent optimization. The process of ResNet 50 in 
CBIR is shown in Fig. 5. 

Fig. 5. Process of feature extraction using ResNet 50. 

The output obtained after deep processing via global 
average pooling is used as a feature descriptor and is save 
in the databased. This vector which is stored is compared 
during retrieval using distance metrics. All the features 
achieved using the three deep learning models i.e., Multi 
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scale features using IV1, optimized and normalized multi 
scale features using IV2 and deep residual feature with 
strong abstraction using ResNet-50 are combined and 
fetched to optimization model. The combination of all 
features improves the feature diversity and provide better 
semantic coverage which leads to improve the retrieval 
accuracy. The direct concatenation of features is given in 
Eq. (1). 

1 2combined IV IV ResNet50F F F F        (1) 

The features combined are fetched to optimization 
model for selection of best features. The best optimized 
features selection improves the accuracy of retrieving the 
images. 

C. Problem Formulation for Feature Selection

Let 1 2[ , ,..., ]dF f f f  be the full deep feature vector of 

dimension d. The goal of feature selection is to find a 
subset 1F F , such that the selected features maximize 
the retrieval relevance while minimizing redundancy. This 
is framed as an optimization problem where each feature 
is either selected (1) or not selected (0). The objective 
function J is designed to: 

  0
1 2( ) 1 ( )var

z
J z mAP z

d
                  (2) 

where ( )varmAP z  is the mean Average Precision 

computed using the selected subset z, 
0

z  counts the 

number of selected features, d is the total dimensionality. 
The weights are set such that 1 2  . We minimize J. 

D. Quantum Grey Wolf Optimization (QGWO)

The core of our approach lies in the novel QGWO
algorithm, which enhances the original GWO by 
introducing quantum principles to diversify the search 
space and improve convergence. The behaviour of grey 
wolf needs to be addressed in which we considered 
candidate solutions (wolves) and update their positions 
based on the positions of three leading wolves alpha (α) 
beta (β) and delta (δ). The update rule is given in Eq. (3). 

 1
( 1)

3
X t X X X     
   

 (3) 

where, 1X A D  


 , 1X A D  


 , 

1X A D  


 . The term 1D C x   , 

2D C x   , 3D C x   . The term A and C is 

given as, 12A ar a  ; 22C r . r1, r2 are random vectors. 

In quantum enhancement the positions are encoded as 
probabilistic wave functions.  

    

2

2

( )

2
i

i

z

i e







  (4) 

where, μi is the current position of the ith wolf, i controls 
the spread (exploration), the new position is sampled from 

i  using quantum tunnelling concepts. In additional the 

quantum mutation is applied to escape the local minima. 

()new t
i ix x randn e        (5) 

where the term ߟ is the mutation scale and ߛ is the decay 
rate over iterations. 

Using QGWO, the Quantum behavior enables global 
search and avoids local minima. Removes uninformative 
dimensions from deep features, and reduce vector size 
which helps in speed up similarity computations. 

Since deep feature vectors are continuous, we encode 
feature selection using a binary representation: each bit of 
z corresponds to a feature dimension, where 1 = selected 
and 0 = not selected. The continuous wolf positions in 
QGWO are mapped to binary using a sigmoid transfer 
function followed by thresholding (≥ 0.5 → 1, < 0.5 → 0). 
This ensures that QGWO optimizes over binary subsets 
while exploring the continuous search space. 

QGWO Pseudo code: 

Algorithm: QGWO Pseudo code 
Input: d = feature dimension; N = number of wolves (population 
size); T = maximum iterations 
Output: z_star = best feature subset (binary vector) 
Step 1: Initialize population 
Initialize population X(N, d) with random values in [0,1] 

for 1:i N  
Step 2: Binary conversion using sigmoid transfer function  

 ( ,:) 1. / (1 exp( ( ,:))) 0.5Z i X i    ; 

Step 3: Compute fitness using objective function J (Eq. 2) 
 ( ) ( ,:)Fitness i J Z i ; 

end 
Step 4: Identify alpha, beta, delta wolves (best 3 solutions) 

[ , , ] _ ( , )alpha beta delta select top Fitness Z  

Step 5: Main loop 
for t = 1: T 

for i =1: N 
Position update based on alpha, beta, delta wolves 

( ,:) _ ( ( ,:), , , , , )X i update position X i alpha beta delta t T ; 

Apply quantum mutation for diversification 
( ,:) _ ( ( ,:), , )X i quantum mutation X i t T

Binary conversion 
( ,:) (1. / (1 exp( ( ,:))) 0.5)Z i X i    ; 

Evaluate fitness 
 ( ) ( ,:)Fitness i J Z i  

end 
Update alpha, beta, delta wolves 
[alpha, beta, delta] = select_top3(Fitness, Z); 
End 
Step 6: Return best feature subset 

_z star alpha ; 

E. Similarity Computation

Once the optimal feature subset F′ is selected using
QGWO, image similarity is computed using distance 
metrics. In this work a Euclidean Distance (ED) metric is 
utilized to calculate the distance measure. For each query 
image, the similarity scores are computed between its 
selected features and all database images, then ranked to 

Journal of Image and Graphics, Vol. 14, No. 1, 2026

42



produce retrieval results. The feature vectors represent the 
content of the image. Euclidean distance computes how far 
apart two feature vectors are in a multi-dimensional space. 
A shorter distance implies that both vectors (images) are 
very close in this feature space meaning the images are 
visually or semantically similar. The ED is evaluated using 
Eq. (6). 

1 2 2
ED F F     (6) 

where F1 and 2
nF   are feature vectors of length n. 

Depending upon the measure the images are retrieved. 
The experimental results obtained using the proposed 
methodology is discussed in Section IV. 

IV. EXPERIMENTAL SETUP AND EVALUATION

This section outlines the experimental settings used to 
validate the proposed framework, including dataset 
descriptions, evaluation metrics, and implementation 
details. 

A. Datasets

We evaluate our framework on three widely-used
benchmark datasets for CBIR: Corel-1K: Consists of 
1,000 images equally divided into 10 categories (e.g., dogs, 
persons, buses). Corel-5k consists of 5000 images from 50 
categories and Corel-10K consists of 10,000 images form 
50 categories. Each category contains images of 256×256 
resolution. For the dataset, a subset of images is used as 
queries, while the remaining serve as the retrieval database. 

B. Evaluation Metrics

To quantify the effectiveness of the retrieval process,
standard evaluation metrics such as precision, recall, and 
F1-Score are used to evaluate the performance of the 
proposed model.  

Precision measures the proportion of correctly retrieved 
relevant images among all images retrieved. The precision 
is evaluated using Eq. (7). 

True positives
Precision

True positives False positives



 (7) 

Recall measures the proportion of correctly retrieved 
relevant images out of all relevant images in the dataset. 

True positives
Recall

True positives False positives



 (8) 

Specificity indicates the model’s ability to correctly 
identify non-relevant images. 

   
True negatives

Specificity
True negatives False positives




  (9) 

Accuracy represents the overall correctness of the 
retrieval model by measuring the ratio of correctly 
retrieved images (both relevant and non-relevant). 

True positives True negatives
Accuracy

Total number of  cases


   (10) 

Error percentage reflects the proportion of incorrect 
retrievals made by the model. 

False positives False negatives
Error %

Total number of  cases

 
  
 

    (11) 

Total processing time: The processing time of proposed 
model is evaluated using Eq. (12). 

 total extract GWO similarity retrivalT T T T T      (12) 

C. Implementation Details

The proposed model is implemented in MATLAB using 
MATLAB toolbox for feature extraction and for vector 
operations. Optimization modules are custom-coded for 
both GWO and QGWO. The hardware parameters utilized 
for conducting our experiments are run on a workstation 
with Intel Core i9 CPU, 64GB RAM, and NVIDIA RTX 
3080 GPU. The optimization parameters involved are 
shown in Table I. 

TABLE I. OPTIMIZATION PARAMETERS 

Number of wolves 30 
Max iterations 50 

Quantum mutation rate (η) 0.05 
Exploration decay (γ) 0.01 

All parameters are fine-tuned via grid search for each 
dataset. This section presents the empirical results of the 
proposed hybrid framework, comparing its retrieval 
performance with baseline methods. We also analyze the 
impact of Quantum Grey Wolf Optimization (QGWO) on 
feature selection, retrieval efficiency, and scalability. The 
evaluated results for the given input query are shown in 
Fig. 6. 

(a)
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(b) 

Fig. 6. Input query image. (a) Sunrise, (b) Jet. 

Table II presents the evaluation metrics obtained using 
the proposed model. The dataset encompasses multiple 
image categories, and the retrieval accuracy has been 
analyzed on a per-class basis. 

The results in the Table III demonstrate that the 
proposed QGWO-IV1IV2-ResNet method achieves 

superior performance in terms of accuracy, precision, 
recall, and other evaluated metrics for CBIR. The 
Parameter Counts (PC) and Floating-point Operations Per 
Second (FLOPS) are shown in Table III. 

TABLE II. OPTIMIZED QWO- IV1IV2RESNET 

Class Name Se/Recall (%) Precision (%) Specificity (%) Error Percent (%) Accuracy (%) 
Africa 99.56 88.8 99.50 0.87 99.13
Beach 98.35 90.8 98.30 0.75 99.24

Buildings 99.35 93.85 99.30 0.70 99.29
Buses 99.58 86.4 99.50 0.81 99.18
Bear 99.84 90.74 98.80 0.89 99.11

Dinosaurs 99.49 86.4 99.40 0.97 99.03
Elephant 99.45 96.6 99.40 0.75 99.25
Flower 99.61 92.8 99.60 0.73 99.27
Horses 99.14 94.37 99.10 0.82 99.18

Mountain 98.91 86.15 98.90 0.74 99.26
Food 99.52 86.74 99.50 0.94 99.06
Tiger 99.36 94.09 99.30 0.76 99.24
Lion 99.17 90.33 90.10 0.93 99.07

Sports 99.62 90.81 99.60 0.74 99.26
Sunset 98.89 98.7 98.8 0.82 99.18
Snow 99.25 90.97 99.20 0.81 99.19
River 98.58 81.74 98.50 0.75 99.25
Planes 90.9 99.60 90.9 0.76 99.24
Bikes 98.15 92.40 98.10 0.70 99.30
Fruits 99.56 90.25 99.50 0.73 99.27

Overall Percentage 98.81 91.13 98.27 0.798 99.20 
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TABLE III. COMPARISON OF PROPOSED METHOD WITH EXISTING METHODS 

Index 
CART- 
Decision 
Tree [27] 

CNN-ED 
[28] 

QCSA-Alexa 
net [29] 

QWO-ResNet 
101 [30] 

QWO-IRV2 
[30] 

ViT-GA 
[31] 

Proposed QGWO-
IV1IV2ResNet 

Recall (%) 91.3 94.99 97.13 97.10 98.47 - 98.81 

Precision (%) 75.0 71.46 77.37 77.60 88.48 - 91.13 
Specificity (%) 95.6 94.85 97.13 97.28 98.17 - 98.27 
Accuracy (%) 82.3 94.98 96.91 96.98 98.33 99.3 99.20

PC and 
FLOPS 

- - - - - - 
25.6M Params and 

4.1GFLOPs 

Fig. 7. Confusion matrices for different image classes. (a) Beach, (b) Buildings, (c) Horses, (d) Food, (e) cars, (f) Bear. 
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TABLE IV. COMPARISON OF PROPOSED METHOD WITH DIFFERENT DATASETS 

Metrics COREL-1K COREL-5K COREL-10K

Recall (%) 98.81 99.1 99.02 
Precision (%) 91.13 90.21 90.18 

Specificity (%) 98.27 99.10 99.02 
Accuracy (%) 99.20 99.12 99.04

Error Percentage 1.08% 1.1% 1.16% 
Retrieval Time 0.8 s 1.02 s 1.06 s 

mAP 0.98 0.93 0.90
App Precison@K (K = 1) 0.99 0.99 0.99 
App Recall@K (K = 1) 1.0 0.99 0.99 

Fig. 8. PR curves. (a) Buildings, (b) Food, (c) Dogs, (d) Dinosaurs. 

Individual confusion matrices are shown in Fig. 7 for 
the image classes: Bea`ch, Buildings, Horses, Food, cars, 
bear. Overall, the proposed model demonstrates high 
accuracy across most categories, with strong diagonal 
dominance indicating correct predictions. However, minor 
misclassifications are observed in visually similar classes 
for instance, some cars are occasionally misclassified as 
buses due to structural similarities. Similarly, a few cow 
images are confused with dogs, likely due to overlapping 
textures or backgrounds. Despite these cases, the model 
maintains consistent class-wise accuracy, confirming its 
robustness in handling diverse image categories. 

The metrics evaluated for another dataset utilized are 
compared and shown in Table IV. 

The precision recall curves are been evaluated and are 
shown in Fig. 8. 

The retrieval time of image is evaluated. A typical 
CBIR system using deep CNN + Grey Wolf Optimization 
has a query processing time which is very less for all the 
three datasets utilized and is shown in Table V. The 
processing time will depend on system complexity, 
number of features, and optimization iterations. The 
comparison is of time is shown using optimization 
(QGWO selected subset) and without optimization (uses 
fully concatenated vectors). 

TABLE V. PROCESSING TIME FOR RETRIEVAL OF IMAGE 

Dataset Name 
Time without 
optimization 

Time with 
optimization 

Corel 1K 3.22 s 0.8 s 
Corel 5K 4.01 s 1.02 s 

Corel 10K 5.04 s 1.06 s 
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D. Limitation of Work

While the proposed QGWO framework excels in
feature optimization, its performance is still bounded by: 

 The representational power of the base CNN
(suggesting future use of Vision Transformers or
CLIP).

 Manual parameter tuning in QGWO, which could
be automated using reinforcement learning or
meta-optimization

V. ABLATION STUDY

We isolate the contribution of each design choice in our 
CBIR pipeline CNN backbone, feature post-processing, 
optimizer (QGWO vs. baselines), similarity metric, and 
handling on retrieval quality and efficiency. The ablation 
study conducted on Corel 1k dataset. The results achieved 
shown in Table VI. 

TABLE VI. RESULTS OF ABLATION STUDY 

M/M 
Re 

(%) 
Pr 

(%) 
Sp 

(%) 
Acc 
(%) 

Error 
(%) 

ResNet 88.4 79.8 87.6 88.8 8.02
IV1 90.8 80.4 90.2 90.6 6.2
IV2 92.2 81.5 91.8 92.4 4.45

IV1+IV2+ResNet 94.5 84.6 93.8 94.2 2.96 
IV1+IV2+ResNet+ 

QGWO 
99.15 90.37 99.2 99.25 1.08 

Inception V2 produces stronger deep features than 
Inception V1 and ResNet. Incorporating optimization 
significantly improves retrieval performance. Proposed 
Quantum Grey Wolf Optimization (QGWO) provides the 
best results, achieving the highest accuracy of 99.25% and 
lowest error rate of 1.08%. 

As the optimization technique is important factor, the 
ablation study conducted by modifying search agents and 
iterations. The accuracy achieved using 10 search agents 
is 98.6% and 20 search agents is 99% and achieved 
99.25% accuracy with 30 search agents. Increasing the 
number of agents improves performance up to a point 
(optimal at 30 agents), after which gains plateau. 
Increasing number of iterations to 100 and the accuracy 
achieved is 99.3% but the processing time increased to 
1.4 s. Higher iteration counts slightly improve retrieval 
accuracy but at the cost of increased runtime. 

VI. CONCLUSION

In this paper, we proposed a novel hybrid deep feature 
extraction framework integrated with QGWO for 
enhanced CBIR. By leveraging the powerful 
representational capacity of deep CNNs Inception V1, 
Inception V2, ResNet-50 and combining it with an 
advanced quantum-inspired optimization algorithm, our 
approach effectively addressed two critical challenges in 
CBIR: high-dimensional feature redundancy and 
suboptimal retrieval relevance. Extensive experiments 
across the benchmark dataset—Corel-1K, Corel-5K and 
Corel-10K demonstrated that the proposed method 
significantly outperforms baseline models in terms of 
retrieval precision, recall and retrieval accuracy, all while 

reducing the feature dimensionality. Comparative studies 
further showed that QGWO surpasses existing models in 
terms of accuracy, recall and precision. The percent of 
wrongly retrieved images obtained using the proposed 
model is 1.08%. The integration of quantum behaviour—
through probabilistic sampling and tunnelling-inspired 
mutation—into the optimization process proved highly 
effective for deep feature selection, offering both robust 
convergence and adaptive search dynamics. 

Despite its strong performance, the current framework 
opens several directions for further scope of work. 
Incorporating textual and audio cues using multimodal 
embeddings (e.g., CLIP or BLIP) could enhance semantic 
retrieval across domains. Leveraging Neural Architecture 
Search (NAS) or reinforcement learning could automate 
the tuning of QGWO parameters and improve 
generalizability across datasets. Ultimately, the proposed 
QGWO-based framework provides a scalable, accurate, 
and adaptive solution for modern CBIR systems, with 
strong potential for real-world deployment in fields such 
as digital asset management, medical imaging, and 
surveillance. 
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