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width. Teleradiography, a medical subfield that enables remote
consultations, X-ray images, and expertise sharing, faces major
challenges in rural and remote settings, primarily due to
bandwidth and internet connectivity limitations. These issues
compromise effective and secure communications, particularly
in urgent cases where transmission speeds affect patient health.
To meet these requirements, telemedicine uses traditional com-
pression methods such as Joint Photographic Experts Group
(JPEG), which is based on the Discrete Cosine Transform
(DCT). However, this solution introduces blocking artifacts
at high compression rates, where block boundaries become
evident [1]. Similarly, although JPEG 2000 is superior in many
respects, it introduces blurring artifacts at high compression
levels, affecting high-frequency details essential for accurate
and clinically reliable diagnosis [1].

Moreover, communication security is a major factor in
data transmission systems, checking to guarantee the con-
fidentiality, integrity, and availability of patient records. To
ensure these requirements, traditional cryptography such as
symmetric (e.g., Data Encryption Standard (DES), Triple Data
Encryption Standard (3DES)) and asymmetric (e.g., Rivest-
Shamir-Adleman (RSA)) modalities have been applied to
medical images. Although effective in text and binary data,
these solutions face major challenges when applied to high-
resolution images due to their unique characteristics: high
correlation of pixels, high redundancy, and bulk data capacity,
which make them unsuitable for real-time applications [2].
Furthermore, these methods do not adequately address the
issue of bit errors that may occur during image transmission
over noisy channels, further limiting their effectiveness in
securing multimedia data [2].

The dual challenges of compressing and securing vo-
luminous medical images require innovative solutions that
can address both concerns simultaneously. Artificial intel-
ligence, particularly Deep Learning (DL) technologies, has
been proven to be transformative in numerous fields, offering
promising solutions for medical image transmission. Firstly,
DL technologies provided solutions in many domains, such as
computer vision and image classification [3], natural language
processing [4], autonomous navigation, and even anomaly
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I. Introduction

Digital communication and transmission serve as the back-
bone of today’s connected world, allowing users around the
globe to exchange data ranging from text and emails to videos
and images. Many domains, such as cloud services, Internet
of Things (IoT) gadgets, and especially telemedicine, rely
on secure and efficient da ta  tr an sm ission ov er  pr ot ec ted and
unprotected communication channels, driving the digital realm
to innovate solutions that respond to the increasing 
specific
needs tailored towards each domain.

Healthcare facilities prioritize both patient privacy and trans-
mission efficiency du e to  th e cr it ic al na tu re  of  me di ca l oper-
ations, which is particularly challenging as medical imaging
modalities produce large volumes of medical data. Computed
Tomography (CT), Magnetic Resonance Imaging (MRI), and
X-rays require considerable storage and transmission band-
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detection in cybersecurity [5]. In the medical field, DL models,
particularly Convolutional Neural Networks (CNN), excelled
in disease detection such as pneumonia on chest radiographs
[6], medical image segmentation to detect tumor regions [7],
lossless medical image based on DL [8] and lossy compression
[9].

Inspired by advances in the literature in the DL domain,
particularly in compression and feature extraction tasks, in
this work, we propose a fast and efficient medical image
transmission solution utilizing a DL-based Convolutional Au-
toencoder (CAE) [10]. The CAE compresses the images into a
compact, non-interpretable latent representation through non-
linear operations; an inherent protection mechanism that acts
as the first defense layer, because it requires the right decoder
and model parameters to restore the original image. Our neural
compressor reduces the overhead on bandwidth-constrained
channels, with an added benefit of lowering the cost of storage.
Nonetheless, the autoencoder’s outcome is not cryptographi-
cally secure. The learned latent space does not provide enough
entropy and randomness to stop a determined hacker from
restoring parts of the original image using differential and
statistical attacks. To counter this issue, we proposed an
additional security layer by encrypting the latent space with
a lightweight, chaos-based cryptosystem with a logistic map.
We explored the advantages of the properties of chaos theory,
such as sensitivity to initial conditions and randomness while
being deterministic, to confound and diffuse them into the data
to be protected. The used logistic map control parameters are
secret keys managed in the encryption scheme. In addition,
our solution is optimized for the latent space mathematical
properties, while traditional cryptographic methods are tailored
to operate on raw pixel values.

The lossy neural encoding stage of our transmission pipeline
uses a deep learning convolutional autoencoder, trained on the
COVID-19 Chest X-ray radiography dataset in grayscale, with
batch normalization, residual connections, and a Structural
Similarity Index Measure (SSIM) based loss function. Our
approach was able to achieve a high compression ratio, making
the image 8 times smaller than the original size, while ensuring
high reconstruction quality up to 96% SSIM score and 36 dB
Peak Signal to Noise Ratio (PSNR) value. The encrypted latent
space is evaluated using statistical (bit-level analysis, hori-
zontal, vertical, and diagonal correlations, randomness score,
and byte entropy), key sensitivity, and key space complexity
analysis.

The major contribution of this work lies in the combination
of innovative integration and optimization of these methods,
particularly for the secure transmission of medical images. It
includes the following three issues:
• Unlike traditional methods that encrypt raw images, we

encrypt the compressed representation (latent space),
achieving simultaneous compression and security with
minimal computational overhead.

• Most of the literature has focused on the compression
properties of autoencoders. However, our work focused
on acknowledging the obfuscation properties of latent

spaces and their security limitations. Then, addressed
them with the integration of a chaos-based latent space
symmetric encryption algorithm.

• In the encryption algorithm, we used adaptive key deriva-
tion, with a password-based key derivation function with
unique cryptographically secure nonces to ensure that
each encryption session used different round keys, pre-
venting replay attacks and improving secrecy.

The rest of the paper is organized as follows. Section II
reviews related work in medical image compression and
encryption. Section III presents the end-to-end transmission
designed pipeline. Section IV describes the proposed neu-
ral lossy compression module via the convolutional autoen-
coder, and Section V discusses the dataset and experimental
setup. Section VI evaluates the compression performance.
Section VII details the chaos-based latent space encryption
method. Section VIII analyzes the security performance of the
encrypted latent space. Finally, Section IX concludes the paper
and outlines directions for future work.

II. RelatedWork

The proposed solution is built upon existing literature in
both DL-based image compression, and Chaos-based image
encryption. To emphasize our contribution, we need to review
the current landscape to capture the advancements and identify
potential limitations. The following section is a review of
works in efficient image compression using autoencoders and
recent developments in chaos-based image encryption tech-
niques.

A. Deep Learning Approaches for Image Compression: Con-
volutional Recurrent Neural Network (Conv-RNNs), Varia-
tional autoencoders (VAEs), and Autoencoders (AEs)

Sushmit et al. [11] proposed an RNN-Conv network archi-
tecture for X-ray medical image compression. In their network,
both the encoder and the decoder contain recurrent units.
They performed the image compression experiments on the
National Institute of Health (NIH) ChestX-ray8 dataset [12].
Their model exceeds a 0.96 SSIM score and a 36 dB in PSNR
with an 8 fold compression ratio. In another study, Zhou et
al. [13] proposed an end-to-end trainable image compression
framework using a VAE that achieves a high compression ratio
and good PSNR (32dB). Naveen et al. [14] proposed an AE-
based image compression method that integrates dimension-
ality reduction with inherent encryption, using a composite
loss for improved reconstruction and security. All the methods
mentioned above exhibited high compression ratios and good
reconstruction quality.

B. Variable Rate Deep Image Compression with Modulated
Autoencoder

Autoencoder Yang et al. [15] address variable-rate compres-
sion by introducing a modulated autoencoder (MAE), where
a shared autoencoder is adapted to different Rate-Distortion
(R-D) tradeoffs via a modulation network. The authors ex-
perimented on CLIC and Kodak datasets. On the other hand,
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Choi et al. [16] proposed a variable-rate image compression
framework using a single conditional autoencoder, with rate
control managed through a Lagrange multiplier and quanti-
zation bin size. Both approaches are superior to traditional
methods especially at low bitrates.

C. Color Image Encryption Through Chaos maps

Alexan et al. [17] offered a solution for RGB image
encryption, by combining the KAA map with multiple chaotic
maps like the 2D logistic sine, tent, and Bernoulli maps,
while Qian et al. [18] used three-dimensional chaotic maps
(Logistic and Cat maps) for pixel value diffusion and position
confusion, also, Pak et al. [19] presented a color image
encryption solution that employed a 1D Logistic and Sine
map, derived from the output sequences of two existing chaotic
maps. Additionally, Sharma [20] introduced a 2D Adjusted
Logistic Map (2D-LALM) for image encryption, derived by
coupling a 2D logistic map with two 1D logistic maps, which
showed high statistical randomness for encryption. Madani et
al. [21] proposed an image-based cryptosystem using three-
dimensional chaotic maps combining a Discrete Skew Tent
Map (STM) with a discrete Piecewise Linear Chaotic Map
(PWLCM) to generate a dynamical key ensuring confusion,
and a logistic map to generate keystream ensuring diffusion.
All the solutions demonstrate robustness against visual, statis-
tical, and differential attacks with large key spaces.

While the reviewed works demonstrate significant progress
in their respective domains, our framework stands by its unique
integration and targeted application. On the compression front,
methods like Sushmit et al. [11] and Yang et al. [15] focus
on DL-based compression techniques, laying the ground on
rate-distortion optimization and variable-rate compression ca-
pabilities for general and medical image use cases. In contrast,
our approach utilizes a CAE architecture for high-quality
medical image reconstruction at a fixed, high compression
ratio, with an SSIM-based loss function critical for preserving
high-frequency details (lesions and bone structures), which
are extremely relevant in clinical settings, particularly tele-
radiography under bandwidth constraints.

More fundamentally, regarding security, existing chaos-
based encryption methods, such as those proposed by Alexan
et al. [17] and Sharma [20], operate directly on the image
pixel domain where they employ various chaos maps and
techniques, like pixel shuffling or the KAA map for confusion
and diffusion, on the raw image data. Our contribution lies
in shifting the encryption process entirely to the compressed
latent space, making it a hybrid strategy that offers several
advantages:
• Efficiency: by only encrypting the dimensionally reduced

latent space, reducing computation overhead.
• Syner gy: it leverages the inherent transformation per-

formed by the autoencoder, applying a tailored chaos-
based system optimized for the statistical properties of
the latent space, rather than generic raw pixel data.

• Integrated security: security is embedded within the
compression pipeline, not merely applied as a subsequent

Fig. 1. End to End Transmission Pipeline.

layer to the original or reconstructed image, offering a
more holistic approach to secure transmission.

Therefore, our work bridges the gap by presenting an end-
to-end solution that combines neural compression optimized
for medical fidelity with a lightweight, chaos-based cryp-
tographic system operating directly and efficiently on the
latent representation, addressing the specific dual challenges of
secure and efficient medical image transmission in bandwidth-
limited environments.

III. End-to-End Transmission Pipeline

Our main system is built to allow secure and efficient
medical image sharing over bandwidth constrained, potentially
insecure communication channels. The sending process starts
with the original 1 × 128 × 128 grayscale X-ray image, and
goes through two main phases :
• The compression : the input image is fed into the con-

volutional encoder module, which transforms the image
to a compact latent space of 32×8×8 (Channels, Height,
Width), achieving a reduction of 8:1 in our case.

• The encryption phase : the latent tensor, resulting from
the compression phase, is flattened and encrypted using
the chaos-based cryptosystem. Only the encrypted vector
will be transmitted over the communication channel.

At the receiver’s location, like a central hospital, the recon-
struction process starts by decrypting the received encrypted
vector using the same cryptosystem and keys, allowing the
recovery of the original latent space. After reshaping to
the original tensor form, the decrypted latent space will be
reconstructed back to the original medical image through
the convolutional decoder while preserving fine details for
accurate medical diagnosis. The architecture of the whole
system is illustrated in Fig. 1.

IV. Proposed Architecture: Neural Lossy Compression via
CAE

The proposed compression module is based on a convo-
lutional autoencoder, as detailed in Fig. 2. As we can see,
the model is composed of two main modules: an encoder
that downsamples the input image to a compact latent space
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through convolutional layers [14]. The bottleneck layer is a
bridge between the two modules that further compresses the
latent space, by selecting the most important features for
learning, and a mirrored decoder that learns to restore the
original image from the latent space through deconvolutional
layers [14] while minimizing the reconstruction error. To
stabilize training and allow deep feature extraction, we opted
for residual connections, through residual skip connections
inspired by the ResNet network [22].

A. SSIM Loss Function

Our neural network was trained with an SSIM-based loss
function defined by Loss = 1−S S IM, working to minimize the
loss to yield high SSIM values. We chose the SSIM parameter
to evaluate images because it focuses on perceptual quality,
focusing on factors such as luminance, contrast, and structural
information. It is defined according to a general Formula 1
[23].

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ

2
y + c1)(σ2

x + σ
2
y + c2)

(1)

On one hand, traditional loss functions such as Mean
Squared Error (MSE) and Mean Absolute Error (MAE) fail
to align with human visual perception and diagnostic re-
quirements and focus on pixel perfect reconstruction. On
the other hand, SSIM prioritizes structural coherence, essen-
tial in maintaining high-frequency details, highly relevant in
maintaining pathological indicators for effective and accurate
medical diagnosis.

Therefore, we optimized the SSIM calculations on the loss
function to be efficient during training. Initially, we leverage
GPU acceleration for faster SSIM computation, and applied
reflective padding to minimize boundary artifacts, we also
employed efficient convolutions for calculating local statistics.

V. Experimental Setup and Dataset

A. Training Dataset Description

To train and evaluate the proposed CAE, we opted for
the publicly available COVID-19 radiography dataset. This
specific dataset comprises 21,165 grayscale X-ray images
spanning over four categories: normal, COVID-19, lung opac-
ity, and viral pneumonia. The preprocessing included resizing
images to 128×128 pixels format to ensure uniform input size
for the model, and encoding the resized images as tensors with
the shape (1, 128, 128). The dataset was randomly split into
70% for training, 15% for validation, and 15% for testing.

B. Training the 8:1 Compression Model :

Pytorch framework based on Python was used to train
our autoencoder, which provided powerful tools for building
the architecture. To accelerate training, Nvidia’s CUDA GPU
technology was used with a Tesla K80 and 12GB of VRAM.

The autoencoder is composed of a convolutional encoder
and a mirrored decoder. The input grayscale 1 × 128 × 128
(Channels, Height, Width) image is mapped into 256 channels

of size 8 × 8 through four convolutional layers, with inter-
mediate residual blocks and batch normalization for fast and
stable training. The number of channels is reduced to 32 for
a compressed latent space (32 × 8 × 8).

The goal of the mirrored decoder is to reconstruct the
original image from the compact latent space by upsampling
the feature maps through deconvolutional layers.

The model was trained over 45 epochs, with a learning rate
of 10−3 and Adam optimizer. We also employed a learning
rate scheduler that monitors the validation loss and reduces
the learning rate by half if no improvement is noticed for three
consecutive epochs, ensuring efficient training and preventing
overfitting. The training and validation loss curves over the
45 epochs are presented in Fig. 3. The curves show that both
the training and validation losses decrease steadily over the
45 epochs, which indicates effective learning and minimal
overfitting.

VI. Compression Performance Evaluation

Our experiments demonstrate the effectiveness of the pro-
posed SSIM-based autoencoder for medical image compres-
sion at the target 8:1 (87.5%) compression ratio. It achieved
superior reconstruction quality compared to an identical archi-
tecture trained with a standard MSE loss function.

Quantitative performance metrics for both models on the test
set, comprised of 3176 images, are averaged and summarized
in Table I. Notably, the SSIM-trained model achieved an
average PSNR of 36.04 dB and an average SSIM score
of 0.9599. This represents a significant improvement over
the MSE-trained baseline (PSNR: 35.39 dB, SSIM: 0.9483),
particularly the 1.2% higher SSIM score, indicating better
preservation of high-frequency structural information criti-
cal for diagnostic purposes. The SSIM-based model exhibits
sharper details and fewer blurring artifacts compared to the
MSE-based model, particularly around complex anatomical
structures often relevant in radiographic images. Three sample
images are shown in Fig. 4.

Furthermore, we compared the performance of our neural
compressor to the study of Sushmit et al. [11] to highlight the
strong generalization and performance gains of our proposed
solution. Both models are configured for 8:1 compression
ratio, and a 128× 128 input size. Both models are tested on a
subset of (NIH) ChestX-ray8 dataset [12]. Our convolutional
autoencoder achieved superior performance on both SSIM and
PSNR metrics, with an increase of 0.56 dB in PSNR and 0.009
in SSIM compared to the reference method on the NIH dataset.
These results, presented in Table II, showcase the strong
performance and generalization capabilities of our medical
autoencoder, performing better on both in-distribution and out-
distribution of data, confirming the cross-dataset effectiveness,
which is extremely valuable in real-world scenarios where
deep learning models encounter data from various modalities
and equipment. Three sample images are shown in Fig. 5.
Both Figs. 4 and 5 compare SSIM-based reconstructions on
the COVID-19 and NIH Chest X-ray datasets, respectively.
As we can remark, these figures show original images, latent

Journal of Image and Graphics, Vol. 14, No. 1, 2026

52



Conv2D
4×4

32 Channels

ResBlock

32x64×64

Conv2D 4×4

64 Channels

ResBlock

64x32×32

Conv2D 4×4

128 Channels

ResBlock

128x16×16

Conv2D 4×4

256x8×8

Conv2D 1×1

32x8×8

Latent Space

ConvTranspose2d
4×4

256 Channels

ResBlock

256×16×16

ConvTranspose2d
4×4

128 Channels

ResBlock

128×32×32

ConvTranspose2d
4×4

64 Channels

ResBlock

64×64×64

ConvTranspose2d
4×4

32×128×128

Conv2D
1×1
+
Tanh

ReLU + BN ReLU + BN ReLU + BN ReLU + BN ReLU + BN ReLU + BN ReLU + BN ReLU + BN ReLU + BN

Medical Autoencoder Architecture

Fig. 2. CNN-based Lossy compression module.

Fig. 3. Training and validation loss (1 - SSIM) curves over 45 epochs. The
validation loss shows convergence without significant overfitting.

TABLE I
Quantitative Results at 8:1 Compression Ratio.

Loss Function MSE ↓ PSNR (dB) ↑ SSIM ↑

MSE Loss 0.000315 35.39 0.9483
SSIM Loss (Ours) 0.000277 36.04 0.9599

space encodings, and reconstructions, demonstrating consis-
tent performance across two different datasets with minor
variations in quality metrics scores.

Despite the good image reconstruction ratio of 96%, in

TABLE II
Comparative Results at 8:1 Compression Ratio.

Method Test Dataset PSNR (dB) ↑ SSIM ↑

Sushmit et al. [11] NIH 35.93 0.9579
Proposed NIH 36.50 0.9668

COVID-19 36.04 0.9599

a real application, a medical opinion is necessary to assess
whether the quality of the received image is sufficient for
diagnosis. However, the results obtained are still usable, and
we can easily recognize the details, as shown in Figs. 4 and 5.
This limit also remains relative and will always depend on the
medical field of application.

VII. Chaos-Based Latent Space EncryptionMethod

After compressing the input image into a latent space, we
encrypted the result using a chaos-based cryptosystem based
on a logistic chaotic map. The single-round algorithm applies
a logistic map random sequence, defined by the iterative Eq. 2.

xn+1 = rxn(1 − xn) (2)

where x0, xn ∈ [0, 1] and r ∈ [0, 4]. The generated sequence
is then bitwise XORed with the latent space to transform
it, representing the confusion step. The result is followed
by a cryptographically secure, yet deterministic permutation
based on the Fisher-Yates algorithm [24], representing the
diffusion step. This shuffle iterates through the data array
and permutes each element with another chosen randomly
from the remaining unvisited elements without repetition.
At each step, the choice is made pseudo-randomly using
Keyed-Hash Message Authentication Code (HMAC-SHA256).
The cryptosystem is controlled using three secret keys: K1
representing the logistic map’s initial seed, K2 representing
the permutation key, and K3 representing the control parameter
(r) of the chaotic map (see Eq. 2). Note that the three secret
encryption keys are encoded in 64-bits format, and should be
shared securely between the sender and the receiver before
starting communication. The encryption process is presented
in Fig. 6.

In a specific telemedicine application, the key exchange
process can be implemented, for example, according to the
following framework:
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Fig. 4. Visual assessment of the SSIM model reconstruction on the COVID-19 chest X-ray dataset. Left: original X-ray images; Center: first channel of
compressed latent space; Right: reconstructed images with PSNR and SSIM metrics.

• First, the medical entity generates the required keys
during the patient’s registration visit, for example, using
a Public Key Infrastructure (PKI) approach, leveraging
existing healthcare certification authorities. Next, an El-
liptic Curve Diffie-Hellman (ECDH) key agreement can
be used to establish the shared secrets between the
telemedicine endpoints. Then, integrate it with existing
key management systems for greater compatibility with
the current healthcare IT infrastructure.

• The process is then monitored by an operational key
management service to ensure the generation of session
keys (a unique encryption key per telemedicine session)
and automate key rotation (periodic key updates for the
next session without user intervention).

• Finally, after sharing secret keys between the hospital
entity and the patient, each party can start using the
proposed encryption scheme for its needs (to encrypt the
latent space on one side and to decrypt it and recover the
original on the other side).

The output is the final encrypted vector C f inal, which will be
transmitted. To restore the original image, the receiver decrypts
the received C f inal using the same cryptosystem and keys to

recover the latent space vector. Then, it uses the mirrored
CNN-based decoder to recover the plain image.

For the security evaluation, we opted for standard statistical
analysis techniques, including correlation analysis (horizontal,
vertical, diagonal), Shannon entropy calculation, Bit Random-
ness via Autocorrelation, key sensitivity, and key space tests.
The results, summarized in Section VIII, attest to the scheme’s
effectiveness in decorrelating latent values, maximizing ran-
domness, and exhibiting high sensitivity to key changes, indi-
cating strong resistance against common cryptanalytic attacks.

To clarify the security context and the importance of our
encryption scheme, we defined bellow two primary attacker
models relevant to telemedicine networks.

• Eavesdropping Attacker: If a passive adversary monitors
network traffic in transit, the chaos-encrypted latent space
ensures that the intercepted ciphertext reveals no structure
or content, even under statistical analysis, thanks to the
randomness of the generated keystream and sensitivity of
the chaotic map.

• Man-in-the-Middle Attacker: In the case of an active
adversary capable of modifying or injecting packets into
the transmitted data. Our encryption exhibits strong key
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Fig. 5. Visual assessment of the SSIM model reconstruction on the (NIH) Chest X-ray8 dataset. Left: original X-ray images; Center: first channel of
compressed latent space; Right: reconstructed images with PSNR and SSIM metrics.
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Fig. 6. Encryption diagram.

sensitivity to small changes in input or key, resulting
in 48˘49% bit-level variation, effectively breaking pre-
dictable relationships and making unauthorized tampering
easily detectable.

VIII. Security Analysis of the Encrypted Latent Space

TABLE III
Comparative bit-level security metrics across images (1 round encryption).

Metric Original Image 1 Image 2 Image 3
Bit Change Rate (%) – 48.7 48.7 48.3
Byte Entropy (bits) 6.64 7.92 7.91 7.91
Bit Randomness 0.938 0.995 0.995 0.996
Horizontal Correlation 0.122 0.004 -0.006 -0.004
Vertical Correlation 0.028 -0.005 -0.009 0.002
Diagonal Correlation 0.029 0.004 -0.007 0.003

To test the influence of the number of encryption rounds on
the security level of our cryptosystem, we compared a single-
round with a three-round encryption scheme scenario. But the
results are similar. Therefore, we considered in this work only
the one-round scenario to gain in terms of hardware resources.
This will facilitate implementing the proposal in an embedded
system real-life application.

A. Bit-Level Latent Space Encryption Analysis

To validate the effectiveness of our encryption scheme,
we tested 3 different latent spaces (images) using the same
encryption process. The results, shown in Table III, confirm
that all three achieve near-optimal bit change rates around
48–49%, which is close to the optimal value of 50%, indicating
strong diffusion properties. Furthermore, the byte-level entropy
significantly increases from 6.64 bits in the original latent
spaces to over 7.9-bits, approaching the theoretical maximum
of 8-bits while the bit randomness rises from a high baseline
of 0.938 (highlighting the inherent obfuscation of the compact
latent space) to a near-maximum of 0.995, suggesting a high
degree of unpredictability. Additionally, the encryption process
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TABLE IV
Key Sensitivity Analysis Results.

Rounds Avg Change (%) Test 1 Test 2 Test 3
1 48.55 48.54 48.97 48.13

effectively eliminates most spatial correlations present in the
original latent space in the horizontal, vertical, and diagonal
directions.

Consequently, by conducting this first preliminary secu-
rity analysis evaluating the: Byte Entropy, Bit Randomness,
and the Correlation (Horizontal, Vertical, and Diagonal), we
proved the good resistance of the proposed algorithm to
statistical attacks according to the results showed in Table III.

B. Key Sensitivity Analysis

A key sensitivity test was conducted by measuring how
changes in the secret key affect the encrypted output, which is
an important property in cryptography where strong encryption
algorithms should exhibit the avalanche effect, where a small
change in the input causes a significant change in the output.

1) Experimental Setup: For each test, we generated a ref-
erence ciphertext using the original key by modifying exactly
one bit of the encryption key. After generating a new ciphertext
using the modified key, we calculated the change percentage of
bits between the two ciphertexts. This experiment was repeated
three times (3 tests). Theoretically, an ideal encryption scheme
should produce approximately 50% bit change when a single
bit of the key is modified.

2) Results and Analysis: As shown in Table IV, the results
demonstrate excellent key sensitivity across all tested config-
urations. This proves that the proposed encryption exhibits
strong avalanche characteristics, by producing an average of
48.55% bit change rate.

3) Security robustness: In addition to the best statistical
resistance, the proposed cryptosystem is based on a chaotic
map known for its best security properties, such as deter-
minism (best randomness), non-linearity, extreme sensitivity
to very small changes in the initial conditions and control
parameters (10−12). This layer has contributed considerably to
improving the confusion and the key sensitivity of the whole
algorithm. Furthermore, the results of the performed tests, the
Bit Change Rate given in Table III, and the key sensitivity
given in Table IV proved the satisfaction of the avalanche
effect, proving the good resistance to linear cryptanalysis.

C. Key Space Analysis

As we already mentioned, the proposed cryptosystem is
based on three secret parameters (K1, K2, and K3). Each of
them has a size of 64-bits. Therefore, our proposition reach
a key space of 264∗3 = 2192. Consequently, this prove the
resistance of our architecture to the brute-force-attacks because
it surpasses the minimum key space complexity fixed actually
in the literature to 2128.

Moreover, the key space of the proposed system reaches
the best requirements compared with the state-of-the-art es-
tablished encryption standards, as shown in Table V.

TABLE V
Key space complexity comparison.

Encryption standard Key size Key space Brute-force resistance
DES 56-bits 256 Weak
3DES 112-bits 2112 Low
3DES 168-bits 2168 Acceptable

AES-128 128-bits 2128 Acceptable
AES-192 192-bits 2192 High
AES-256 256-bits 2256 High

The proposed 192-bits 2192 High

As it is clearly presented in Table V, we can conclude
that the proposed encryption algorithm key space and key
complexity are similar to AES-192, which is known to be
resistant to brute force attacks based on the current hardware
advancements. However, the security of our cryptosystem
is supported by the permutation applied function based on
the Fisher-Yates Shuffling function using a 64-bits additional
key. By considering this separate function, it reinforces the
resistance against brute-force cryptanalysis.

D. Discussion

In this work, we subjected our architecture to basic statis-
tical tests, such as entropy, correlation, and bit randomness.
The results showed the satisfaction of the expected theoretical
requirements. Additionally, the used non-linear and extremely
sensitive (a change of 2−12 in the initial conditions and control
parameters) chaotic map improved the confusion and the
key sensitivity properties of the proposed algorithm. Also,
it satisfies the avalanche effect, proving good resistance to
linear cryptanalysis. Furthermore, the key space complexity
of the algorithm can reach 2192. This characteristic bolsters
the resistance against brute force attacks.

Consequently, by considering all the performed security
tests and the obtained results, we conclude that the proposed
cryptosystem is robust against statistical, linear, and brute-
force cryptanalysis.

IX. Conclusion

This work proposes an adaptable end-to-end solution for
tele-medicine applications, by allowing fast and efficient trans-
mission with a modular deep learning-based convolutional
autoencoder, optimized with SSIM loss. The proposed neural
compressor exhibits 8 fold compression ratio while maintain-
ing high-frequency details on the reconstructed images. We
addressed the security weaknesses by embedding a lightweight
chaos-based cryptosystem into the latent space. The system
showcased excellent results on both fronts, with a 96% SSIM
and 36 dB PSNR, preserving clinically sound high-frequency
details, and showcased excellent generalization capabilities
validated on the COVID-19 and NIH X-ray datasets. The cryp-
tosystem demonstrated strong statistical resistance properties
with 7.9 entropy, 0.995 randomness, and near-zero correlation
scores. Our hybrid system offers a promising solution for
real-time, secure medical diagnosis over bandwidth-limited
networks.
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Our future work will explore adaptive compression and ex-
periment with different high-dimensional chaos maps for more 
cryptographic resistance. Additionally, it will explore more 
rigorous analysis, including resistance to known-plaintext at-
tacks, chosen-plaintext attacks, and differential cryptanalysis. 
We will also improve the system to reach the clinical validation 
requirements by including in the system a multi-modality 
image testing (validation across different m edical imaging 
types) and a clinical workflow ( trying f or a ssessment within 
real telemedicine environments) to facilitate the Radiologist 
evaluation study.
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