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Abstract—This paper presents the design of a pre-diagnostic 
system for Parkinson’s Disease (PD) based on the analysis of 
hand-drawn spiral patterns using machine learning 
techniques. Parkinson’s disease is a progressive 
neurodegenerative disorder whose early motor 
manifestations—such as micrographia and tremors—can be 
reflected in fine motor tasks like handwriting. Although 
handwriting disturbances are not part of the core diagnostic 
criteria, they are frequently observed in early stages and are 
recognized by the Movement Disorder Society as supportive 
markers. In this study, grayscale spiral drawings are 
preprocessed and binarized using Otsu’s thresholding 
method. From each image, 100 equidistant pixel coordinates 
are extracted where the trace is present, forming structured 
feature vectors. These coordinates are then used to train and 
evaluate several machine learning classifiers, including 
Random Forest, k-Nearest Neighbors, and Support Vector 
Machines. The proposed method prioritizes simplicity, 
explainability, and computational efficiency, offering a 
lightweight yet effective tool for early Parkinson’s detection. 
Experimental results demonstrate the model’s potential as a 
clinically relevant and accessible diagnostic support system.  

Keywords—Parkinson disease, spiral drawing, random forest, 
Otsu’s thresholding, feature extraction 

I. INTRODUCTION

A Parkinson’s Disease (PD) is a progressive 
neurodegenerative disease of the motor system that is 
characterized by tremors, rigidity, and bradykinesia; which 
gradually deteriorates Early diagnosis of PD still is a major 
challenge in clinical routine, as the symptoms usually 
appear insidiously and may be attributed to physiological 
aging and other diseases. Early and accurate diagnosis is 
crucial to both delaying the progression of the disease and 
to enhancing quality of life for the patient via timely 
interventions [1–3]. 

One of the distinctive characteristics of PD is the usual 
positive response to dopaminergic treatment. Levodopa is 
still regarded as the most effective treatment for motor 
symptoms including bradykinesia and rigidity; and is 
featured on the WHO Model Lists of Essential 

Manuscript received June 20, 2025; revised July 15, 2025; accepted 
September 3, 2025; published 16, 2026.  

Medicines[4]. This dopaminergic therapy responsiveness 
is clinically important as well as a useful supportive 
category in the differential diagnosis of PD [5]. 

Meanwhile, significant cost-effectiveness burdens have 
arisen from efforts to identify clinical, imaging, and 
molecular biomarkers for the differential diagnosis of 
Parkinson’s Disease (PD). However, many of these 
approaches still fail to achieve sufficient diagnostic 
accuracy to reliably support early or definitive treatment 
decisions for PD [6, 7].  

Physicians typically use standardized motor 
assessments in routine clinical care to assess the extent of 
disability in patients, for instance, using the Unified 
Parkinson’s Disease Rating Scale (UPDRS) [8]. These 
tests are low-cost, simple-to-administer methods and can 
potentially be used as adjuncts in the diagnostic process, 
including in combination with digital, quantitative 
assessments such as drawing tests. 

Although handwriting impairments such as 
micrographia and dysgraphia are not part of the core 
diagnostic criteria for PD, they are often among the earliest 
observable motor signs prompting clinical consultation. 
For this reason, the Movement Disorder Society (MDS) 
includes handwriting analysis among its recommended 
ancillary tests in the diagnostic evaluation of PD [2].  

Over the past two decades, the quantitative analysis of 
handwritten tasks has emerged as a promising objective 
biomarker for early diagnosis, as handwriting integrates 
various motor and cognitive systems that are frequently 
affected in the early stages of Parkinsonian 
pathophysiology [9]. 

II. LITERATURE REVIEW

Over the past few years, Artificial Intelligence (AI) and 
pattern recognition-based Computer-Aided Diagnostic 
(CAD) systems have emerged as a highly promising tools 
to assist medical experts in diagnosing PD. Among various 
non-invasive monitoring techniques, spiral tracing tasks 
have proven effective in capturing subtle motor 
dysfunctions associated with Parkinsonian tremors. 
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However, their analysis requires the identification of 
characteristic patterns with undulatory morphology [10].  

These sketches contain useful spatial and kinematic 
information for the purpose of an automatic separation 
between healthy subjects and Patients with Parkinson’s 
Disease (PD) [11, 12]. 

Bange et al. [13] conducted a study to investigate 
differences in spiral drawing performance between 29 
patients with PD and 31 healthy controls. Participants 
traced Archimedean spirals on predefined templates using 
a digital pen, while their brain activity was simultaneously 
recorded via Electroencephalography (EEG). Resting-
state functional Magnetic Resonance Imaging (MRI) scans 
were conducted, and positional signals were exported to 
MATLAB for further processing. Although no significant 
differences were found in drawing duration, average 
velocity, or acceleration, PD patients exhibited higher 
sample entropy values and greater irregularities, 
particularly in the non-dominant hand. These findings 
suggest subtle impairments in fine motor control even in 
the absence of overt kinematic differences. An important 
limitation of this type of study is the need for specialized 
equipment, which may not be readily accessible. 

At Mount Sinai Beth Israel Medical Center, 138 patients 
with PD including 50 with early-stage PD and 150 healthy 
controls were recruited. Each participant traced 10 spirals 
with each hand on a digitizing tablet, generating coordinate 
(x, y, z), pressure, and timing data. Several indices were 
derived to evaluate spiral performance, including overall 
execution severity, shape irregularity, kinematic 
disturbances, rigidity, mean velocity, and width variability. 
The groups were matched by age and handedness, and 
significant differences in spiral indices were found 
between PD patients and controls. A machine learning 
model trained on this data achieved strong discriminative 
validity (sensitivity = 0.86, specificity = 0.81), which 
remained consistent even among early-stage PD 
patients[14]. However, this approach requires a digitizing 
tablet and more comprehensive data to ensure broader 
generalization. 

In another study, Varalakshmi et al. [15] used a dataset 
of 102 scanned hand-drawn spirals to diagnose PD using 
machine learning and deep learning models, including 
pretrained networks such as RESNET50, VGG16, 
AlexNet, and VGG19. Their hybrid RESNET50 + SVM 
model achieved the best performance metrics, reaching an 
accuracy of 98.45%, sensitivity of 99%, and specificity of 
98%. Although the study achieved excellent results using 
only the images, it required greater computational 
resources due to the use of transfer learning and hybrid 
models, and it sacrificed interpretability. 

More recently, Shanmugam and Arumugam [16] 
proposed a hybrid optimization-enabled deep learning 
approach that integrates voice signals and hand-drawn 
images for multimodal Parkinson’s classification, taking 
into account stroke dynamics, pen pressure, and stroke-
width variability which capture geometric smoothness, 
motor-control consistency, and force modulation, 
respectively. Their results highlight the promise of 
combining different input modalities with deep 

architectures, although such methods require greater 
computational resources and careful optimization 
strategies. 

This work proposes a pre-diagnostic system for 
Parkinson’s disease based on the analysis of hand-drawn 
spiral images. Unlike deep learning approaches that 
process the entire image, our method focuses on extracting 
a compact and informative set of spatial features. 
Nevertheless, integrating deep learning methods could 
potentially improve the generalization capability of the 
model [16, 17]. Each spiral image is first preprocessed and 
binarized using Otsu’s thresholding method. From the 
resulting binary mask, the system identifies 100 
equidistant pixel locations where the spiral trace 
(foreground) is present—specifically, where the pixel 
value is zero. These (x, y) coordinates are stored in a 
structured matrix, which serves as the input for traditional 
machine learning classifiers. 

This approach emphasizes simplicity, interpretability, 
and computational efficiency while retaining relevant 
geometric information. The performance of several 
classifiers is evaluated under a consistent experimental 
framework, demonstrating the effectiveness of this 
feature-based strategy for early Parkinson’s detection [18]. 

Traditional handcrafted methods remain relevant in 
low-data scenarios due to their simplicity, interpretability, 
and low computational cost, making them a useful 
complement to routine clinical assessments. Unlike prior 
work that uses high-dimensional kinematic data or raw 
pixel inputs, this study proposes a compact geometric 
descriptor. This enables efficient classification with 
standard machine learning models and provides insight 
into trace irregularities characteristic of Parkinsonian 
movement. 

III. MATERIALS AND METHODS 

The proposed methodology involves several steps 
ranging from data acquisition to model evaluation. The 
approach emphasizes the extraction of spatial features 
from binarized images of hand-drawn spirals, followed by 
the application of supervised machine learning techniques. 

A. Data Collection and Preprocessing 

The dataset used in this study consists of grayscale 
spiral drawings captured from both, Parkinson’s patients 
and healthy individuals. Each image is resized to a uniform 
resolution of 256×256 pixels.  

Fig.  1 shows a comparison between an original spiral 
image taken directly from the dataset and the same image 
after applying preprocessing steps such as grayscale 
conversion, image binarization, and median filtering. The 
original image, as provided in the dataset, exhibits noise 
and contrast variations that may hinder direct feature 
extraction. To address this, a 3×3 median filter was applied 
to enhance local homogeneity and preserve edge structures. 

The data used in this study were obtained from Kaggle, 
from a dataset titled Parkinson’s Drawings [19], which 
includes both spiral and wave images. For this experiment, 
only the spiral drawings were used. The training set (70%) 
consists of 72 images, 36 from patients with Parkinson’s 
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disease and 36 from healthy individuals, while the testing 
set (30%) includes 30 images, with 15 from each class. The 
dataset was originally derived from the work by Zham et 
al.  [20], in which spiral drawings were collected to 
differentiate stages of Parkinson’s disease based on speed 
and pen-pressure metrics during sketching. For these 
experiments, we combined the dataset and generated k 
stratified folds for cross-validation. 

 

 
Fig. 1. Filter spiral image example. 

Binarization is the process of converting a grayscale 
image I(x,y) ∈ [0,255] into a binary image B(x,y) ∈ {0,1} 
by separating foreground (the trace) from the background. 
A simple thresholding rule is defined as: 

,ݔሺܤ  ሻݕ ൌ ቄ1 ݂݅	݈ሺݔ, ሻݕ > ܶ0 ݁ݏ݅ݓݎ݄݁ݐ݋  (1) 

 

where T is a threshold value. 
In this work, Otsu’s method is used to automatically 

determine the optimal threshold T* that maximizes the 
between-class variance ߪ௕ଶሺܶሻ, calculated as: 

௕ଶሺܶሻߪ  ൌ ߱଴ሺܶሻ߱ଵሺܶሻሾߤ଴ሺܶሻ െ  ଵሺܶሻሿଶ (2)ߤ

 

here: 
 ߱଴ሺܶሻ and ߱ଵሺܶሻ are the probabilities of the two-

pixel classes (background and object), 
 ߤ଴ሺܶሻ and ߤଵሺܶሻ are the mean intensities of those 

classes. 
The optimal threshold is then selected as: 
 ܶ∗ ൌ argmax୘  ௕ଶሺܶሻ (3)ߪ

 

This method is robust for images with bimodal 
histograms, as is common in digitized spiral drawings, as 
shown in Fig. 2. 

A 3×3 median filter is used to remove salt-and-pepper 
noise while preserving edges in the image like shows 
Fig.3. For each pixel I(x,y), the value is replaced with the 
median of its 3×3 neighborhood ଷࣨ௑ଷሺݔ,  :ሻ, defined asݕ

 ଷࣨ௑ଷሺݔ, ሻݕ ൌ ൛ ,ሺ݅ܫ ݆ሻ ∣∣ ݅ ∈ ሼݔ െ 1, ,ݔ ݔ ൅ 1ሽ, 	݆ ∈ ሼݕ െ 1, ,ݕ ݕ ൅ 1ሽ ൟ (4) 

The output image is computed as: 
,ݔ௢௨௧ሺܫ  ሻݕ ൌ ݉݁݀݅ܽ݊൫ ଷࣨ௑ଷሺݔ,  ሻ൯ (5)ݕ

This nonlinear operation helps to reduce noise without 
blurring critical structural information, such as the spiral 
trace. 

 

 
Fig. 2. Binarized image example. 

 
Fig. 3. Median filter. 

B. Feature Extraction 

Once the binary image is obtained, spatial coordinates 
of the foreground pixels (those with value 0) are extracted. 
From this set of pixels, 100 equidistant points are selected 
using linear sampling over the length of the array. These 
points represent the trace geometry in a highly compact 
form. 

The (x,y) coordinates of the 100 selected points are then 
stored as feature vectors in a structured format: each image 
yields a 200-dimensional vector (100 for x, 100 for y). An 
additional column is appended to indicate the class label (1 
for Parkinson’s, 0 for healthy). Fig. 4 illustrates the binary 
spiral image with the 100 equidistant x-pixel positions (in 
black) that define the spatial trace used as input for 
classification. 

C. Model Training Evaluation 

Once the feature matrix is assembled, it is used to train 
and evaluate multiple machine learning classifiers 
including Random Forests, Support Vector Machines 
(SVM), k-Nearest Neighbors (k-NN), Multi-Layer 
Perceptron and Naive Bayes; with the hyperparameters 
defined in Table I. All models were trained and evaluated 
using the dataset’s fixed scheme of 5-times repeated, 
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stratified 10-fold cross-validation with a random seed of 
42. We averaged the scores across the 50 folds to obtain 
more stable estimates and ensure a fair comparison with 
the Kaggle dataset [19]. Performance metrics such as 
sensitivity, specificity, balanced accuracy and F1-score are 
calculated to assess the effectiveness of each classifier in 
detecting Parkinson’s disease. 

 

 
Fig. 4. Image binarized with 100 points in X where pixel is 0. 

TABLE I. HYPERPARAMETERS 

Algorithm Hyperparameters 

Random Forest 

n_estimators: 100 
Max depth: 10 

Min samples split: 4 
Random seed: 42 

Multilayer Perceptron 

Hidden layers: (50, 20) 
Activation: ReLU 
Optimizer: Adam 

Learning rate: 0.0001 
Max iterations: 500 
Random seed: 42 

kNN 
k: 5 

Distance metric: Manhattan 

Naïve Bayes 
Type: Gaussian Naive Bayes 

Assumption: Feature 
independence 

SVM (linear) 
Kernel: linear 

Random seed: 42 
 

This methodology prioritizes computational efficiency 
and explainability, making it suitable for integration into 
real-time pre-screening tools or as support for clinical 
diagnostics. 

IV. RESULT AND DISCUSSION 

The source code and experimental configurations are 
available at: https://github.com/Axell54/Parkinson_wave1.  

A. Description and Configuration of the Models 

1) SVM (linear)  
Linear Support Vector Machines (SVMs) are 

supervised learning models that aim to find the optimal 
hyperplane that separates data into distinct classes with the 
maximum possible margin. They are particularly effective 
in high-dimensional spaces and have been widely applied 
in medical and pattern recognition tasks due to their 

robustness and generalization capacity [21]. A random 
seed equal to 42 was used in the experiment for 
reproducibility. 
2) Naive bayes 

The Naive Bayes is a probabilistic classifier based on 
Bayes’ theorem, assuming independence among features. 
Despite its simplicity, it is particularly effective in high-
dimensional datasets and is commonly used in text 
classification and early-stage medical diagnosis [22]. The 
experiment applies Bayes’ theorem with the “naive” 
feature independence assumption. 
3) K-NN 

The k-Nearest Neighbors (k-NN) algorithm classifies a 
sample based on the majority label of its k closest 
neighbors in the feature space. Despite its simplicity, k-NN 
remains a powerful non-parametric method for pattern 
recognition and is often employed as a baseline in 
classification problems [23]. This model occupied the 
Manhattan distance and 5 nearest neighbors. 
4) Multilayer Perceptron (MLP) 

The Multilayer Perceptron (MLP) is a feedforward 
artificial neural network consisting of an input layer, 
hidden layers, and output layer. It uses backpropagation 
for training and can model fairly complicated nonlinear 
relationships between input features and output class. 
MLPs are widely used in bioinformatics and image 
classification [24]. The Multilayer Perceptron (MLP) 
model adopted in this experiment was set with two hidden 
layers with 50 and 20 neurons, respectively. 

We used ReLU (Rectified Linear Unit) as an activation 
function, because of its ability to manage non-linearities, 
prevent vanishing gradients, and its efficiency. The model 
was trained using the Adam optimizer with an adaptive 
learning rate that was initialized to 0.0001; the stopping 
criterion was 500 iterations. Weights were initialized using 
a random seed of 42 for reproducibility. 
5) Random forest 

Random Forest is an ensemble learning method that 
constructs a multitude of decision trees during training and 
outputs the class that is the mode of the classes predicted 
by individual trees. It offers high accuracy, robustness to 
overfitting, and the ability to handle both categorical and 
numerical data, making it suitable for classification tasks 
in noisy biomedical datasets [25]. In this study, the 
Random Forest classifier was configured with 100 trees, a 
maximum depth of 10, a minimum split of 4 samples, and 
a random seed of 42 to ensure reproducibility. 

B. Comparison of Results 

1) Performance metrics summary 
In this study, the selected performance metrics revealed 

strong results for the Random Forest classifier, which 
consistently outperformed the other models. The 
Multilayer Perceptron, 5-NN, and Naive Bayes exhibited 
moderate performance across the evaluated datasets. In 
contrast, the Linear SVM model showed poor performance, 
as evidenced by the results presented in Table I and 
illustrated in Fig. 5. 
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Fig. 5. Balanced accuracy comparison between models. 

The metrics in Table II correspond to the Parkinson 
class only. Values are reported as percentages and 
represent the mean over the 5×10 stratified cross-
validation; standard deviations are shown in parentheses. 
This approach provides a balanced assessment of model 
behavior. 

TABLE II. PERFORMANCE METRICS 

Algorithm Specificity Sensitivity F1-Score 
Balanced 
Accuracy 

Random 
Forest 

66.67(21.90) 73.93(18.18) 71.93(15.40) 70.30(15.10) 

Multilayer 
Perceptron 

45.13(24.65) 62.47(29.68) 55.86(20.33) 53.80(14.67) 

5NN 73.27(18.97) 51.87(20.77) 57.43(18.29) 62.57(14.72) 

Naïve 
Bayes 

85.40(17.48) 54.13(24.92) 61.61(22.33) 69.77(13.26) 

SVM 
(linear) 

62.40(19.73) 56.53(19.66) 58.35(16.71) 59.47(14.48) 

 

Paired Wilcoxon signed-rank tests (Table III) were 
conducted comparing the Random Forest (top balanced-
accuracy) against each baseline across the 5×10 stratified 
CV folds; p-values were adjusted using Holm’s step-down 
procedure (α = 0.05) to assess significance. 

TABLE III. INVARIANT FEATURE EXTRACTION 

Algorithm vs Random 
Forest 

Precision (%) Recall (%) 

Multilayer Perceptron 0.000003177343817 0.00001270937527 

SVM (linear) 0.001463100538 0.002926201076 

5-NN 0.001034547711 0.003103643132 

Naïve Bayes 0.7207078301 0.7207078301 

 

After applying Holm’s correction, Random Forest 
remained significantly better than all baselines except 
Naive Bayes, for which the difference was not significant 
(adjusted ݌ > 0.05). 

The results obtained in this study indicate that the 
Random Forest classifier outperformed other machine 
learning models across all performance metrics, as shown 
in Table II and Fig. 5. This superior performance can be 
attributed to Random Forest’s ensemble nature and its 
robustness in handling high-dimensional, noisy, and non-
linearly separable data—properties often observed in 
image-derived features from hand-drawn spirals. Unlike 

models such as Linear SVM or Naive Bayes, which 
assume linear boundaries or feature independence, 
Random Forest is capable of modeling complex decision 
surfaces and feature interactions without strong parametric 
assumptions [22]. 

Previous studies using sketch-based or handwriting 
datasets for Parkinson’s disease detection have shown 
thatmanually extracted geometric and kinematic features 
can be as effective as deep learning approaches in 
scenarios with relatively small, domain-specific datasets. 
Notably, Zham et al. [20] proposed using composite 
indices of speed and pen pressure during spiral drawing 
tasks to distinguish between Parkinson’s disease stages, 
while Al-Kasasbeh et al. [22], systematically reviewed 
various machine learning approaches for handwriting-
based detection. These studies suggest that conventional 
feature engineering methods often outperform deep 
learning when data is limited. While powerful, deep 
learning models such as Convolutional Neural Networks 
(CNNs) typically require large, labeled datasets and 
substantial computational resources, with an increased risk 
of overfitting on small samples [23]. 

Moreover, traditional clinical approaches for 
Parkinson’s diagnosis such as the UPDRS motor score or 
neuroimaging techniques are either subjective, resource-
intensive, or invasive. In contrast, the proposed method is 
low-cost, non-invasive, and automatable, relying only on 
simple drawing tasks and lightweight preprocessing. The 
advantage of Random Forest in this context lies in its 
ability to generalize well without intensive hyperparameter 
tuning and its interpretability, as feature importance scores 
can provide insights into the underlying structure of the 
drawing data. 

In summary, the Random Forest model demonstrates 
strong potential for practical deployment in early 
Parkinson’s screening tools, particularly in low-resource 
settings or as a complementary system to clinical 
evaluation. However, further validation on larger and more 
diverse datasets remains necessary.  
2) Geometric invariant feature extraction 

Additional invariant features were incorporated into the 
best-performing model. First, the spiral trace was centered 
by subtracting the centroid of the extracted coordinates. 
Furthermore, Hu Moments were computed from the 
binarized image to capture global shape descriptors that 
are invariant to rotation, translation, and scale. The original 
spatial vectors were replaced by these invariant features. 

TABLE IV. INVARIANT FEATURE EXTRACTION 

Algorithm Specificity Sensitivity F1-Score 
Balanced 
Accuracy 

Random 
Forest 

66.67(21.90) 73.93(18.18) 71.93(15.40) 70.30(15.10) 

Centroid 
normalization 

72.47(19.93) 77.13(17.88) 75.89(14.03) 74.80(14.03) 

Centroid 
normalization 

+ Hu 
moments 

71.73(21.99) 77.00(16.60) 75.71(12.14) 74.37(13.33) 

 

However, as shown in Table IV, this integration led to 
an increase in the model’s performance metrics when 
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using the same hyperparameters as in previous 
experiments. 
3) Comparison with Convolutional Neural Networks 

(CNN) 
For this experiment, we adopted a technique similar to 

that employed by the best-performing models reported in 
the literature, particularly in the work of Varalakshmi et 
al.[16]. Specifically, we used pretrained convolutional 
neural networks ResNet50, VGG16, and VGG19 to extract 

image features, which were then classified using a Support 
Vector Machine (SVM) with a linear kernel and a 
regularization parameter C = 1. A batch size of 16 was 
used during feature extraction. Although the performance 
metrics obtained were comparable to those of our proposed 
Random Forest model (as shown in Table V and Fig. 6), 
the execution time for the deep learning-based approach 
exceeded 40 s per model, whereas the Random Forest 
model required less than 5 s to run. 

TABLE V. COMPARISON WITH CNN 

Algorithm Specificity Sensitivity F1-Score Balanced Accuracy 

Random Forest 66.67(21.90) 73.93(18.18) 71.93(15.40) 70.30(15.10) 

Centroid normalization + 
Hu moments 

71.73(21.99) 77.00(16.60) 75.71(12.14) 74.37(13.33) 

ResNet50 + SVM 91.20(10.81) 78.53(18.54) 83.30(13.58) 84.87(10.87) 

VGG16+SVM 83.13(15.63) 80.80(18.87) 81.52(14.12) 81.97(12.88) 

VGG19+SVM 79.07(13.70) 72.40(22.08) 74.01(16.03) 75.73(12.40) 

 

 
Fig. 6. Balanced accuracy comparison between CNN models. 

V. CONCLUSION 

A. Main Features 

This study shows good performance in approaching 
Parkinson’s disease diagnosis using geometric features 
extracted from binarized spiral drawings. The proposed 
methodology demonstrated promising results, particularly 
when evaluated with Random Forest classifier.  

Among the models tested, Random Forest achieved the 
highest overall performance across accuracy, precision, 
recall, and F1-score, highlighting its robustness and 
suitability for biomedical classification tasks involving 
hand-drawn patterns. 

Our approach offers a complementary, lightweight, and 
interpretable alternative suited to low-resource settings 
and early screening. Moreover, integrating deep-learning 
function approximation could further enhance accuracy 
and robustness.  

B.  Limitation and Future Work 

Future work will focus on validating the proposed 
method with larger and more diverse datasets, as well as 
exploring hybrid architectures that combine handcrafted 

feature extraction with deep learning components to 
further enhance performance and generalizability. 

A key limitation of the proposed approach is the risk of 
overfitting given the relatively small dataset. Although 
repeated stratified cross-validation was used to mitigate 
this, models trained on limited samples may still learn 
noise or dataset-specific artifacts rather than generalizable 
Parkinson’s signatures. This concern is especially salient 
in medical applications, where robust generalization is 
essential for safe deployment. Future work should validate 
the method on larger and more diverse cohorts ideally with 
external (multi-site) test sets and enforce patient-level 
separation to prevent information leakage. 

A practical avenue is to extend the current coordinate-
based representation with additional descriptors: (i) 
curvature (e.g., local turning curvature κ along the trace), 
(ii) stroke-width variability (estimated from the binarized 
mask via distance transform or skeleton-to-boundary 
distances), and (iii) pen-pressure (when captured by a 
digital tablet) can provide complementary information.  
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