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Abstract—This paper presents the design of a pre-diagnostic
system for Parkinson’s Disease (PD) based on the analysis of

hand-drawn spiral patterns using machine learning
techniques. Parkinson’s disease is a progressive
neurodegenerative disorder  whose early motor

manifestations—such as micrographia and tremors—can be
reflected in fine motor tasks like handwriting. Although
handwriting disturbances are not part of the core diagnostic
criteria, they are frequently observed in early stages and are
recognized by the Movement Disorder Society as supportive
markers. In this study, grayscale spiral drawings are
preprocessed and binarized using Otsu’s thresholding
method. From each image, 100 equidistant pixel coordinates
are extracted where the trace is present, forming structured
feature vectors. These coordinates are then used to train and
evaluate several machine learning classifiers, including
Random Forest, k-Nearest Neighbors, and Support Vector
Machines. The proposed method prioritizes simplicity,
explainability, and computational efficiency, offering a
lightweight yet effective tool for early Parkinson’s detection.
Experimental results demonstrate the model’s potential as a
clinically relevant and accessible diagnostic support system.

Keywords—Parkinson disease, spiral drawing, random forest,
Otsu’s thresholding, feature extraction

I. INTRODUCTION

A Parkinson’s Disease (PD) is a progressive
neurodegenerative disease of the motor system that is
characterized by tremors, rigidity, and bradykinesia; which
gradually deteriorates Early diagnosis of PD still is a major
challenge in clinical routine, as the symptoms usually
appear insidiously and may be attributed to physiological
aging and other diseases. Early and accurate diagnosis is
crucial to both delaying the progression of the disease and
to enhancing quality of life for the patient via timely
interventions [1-3].

One of the distinctive characteristics of PD is the usual
positive response to dopaminergic treatment. Levodopa is
still regarded as the most effective treatment for motor
symptoms including bradykinesia and rigidity; and is
featured on the WHO Model Lists of Essential
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Medicines [4]. This dopaminergic therapy responsiveness
is clinically important as well as a useful supportive
category in the differential diagnosis of PD [5].

Meanwhile, significant cost-effectiveness burdens have
arisen from efforts to identify clinical, imaging, and
molecular biomarkers for the differential diagnosis of
Parkinson’s Disease (PD). However, many of these
approaches still fail to achieve sufficient diagnostic
accuracy to reliably support early or definitive treatment
decisions for PD [6, 7].

Physicians  typically use standardized motor
assessments in routine clinical care to assess the extent of
disability in patients, for instance, using the Unified
Parkinson’s Disease Rating Scale (UPDRS) [8]. These
tests are low-cost, simple-to-administer methods and can
potentially be used as adjuncts in the diagnostic process,

including in combination with digital, quantitative
assessments such as drawing tests.
Although  handwriting  impairments such as

micrographia and dysgraphia are not part of the core
diagnostic criteria for PD, they are often among the earliest
observable motor signs prompting clinical consultation.
For this reason, the Movement Disorder Society (MDS)
includes handwriting analysis among its recommended
ancillary tests in the diagnostic evaluation of PD [2].

Over the past two decades, the quantitative analysis of
handwritten tasks has emerged as a promising objective
biomarker for early diagnosis, as handwriting integrates
various motor and cognitive systems that are frequently

affected in the ecarly stages of Parkinsonian
pathophysiology [9].
II. LITERATURE REVIEW

Over the past few years, Artificial Intelligence (Al) and
pattern recognition-based Computer-Aided Diagnostic
(CAD) systems have emerged as a highly promising tools
to assist medical experts in diagnosing PD. Among various
non-invasive monitoring techniques, spiral tracing tasks
have proven effective in capturing subtle motor
dysfunctions associated with Parkinsonian tremors.
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However, their analysis requires the identification of
characteristic patterns with undulatory morphology [10].

These sketches contain useful spatial and kinematic
information for the purpose of an automatic separation
between healthy subjects and Patients with Parkinson’s
Disease (PD) [11, 12].

Bange et al. [13] conducted a study to investigate
differences in spiral drawing performance between 29
patients with PD and 31 healthy controls. Participants
traced Archimedean spirals on predefined templates using
a digital pen, while their brain activity was simultaneously
recorded via Electroencephalography (EEG). Resting-
state functional Magnetic Resonance Imaging (MRI) scans
were conducted, and positional signals were exported to
MATLAB for further processing. Although no significant
differences were found in drawing duration, average
velocity, or acceleration, PD patients exhibited higher
sample entropy values and greater irregularities,
particularly in the non-dominant hand. These findings
suggest subtle impairments in fine motor control even in
the absence of overt kinematic differences. An important
limitation of this type of study is the need for specialized
equipment, which may not be readily accessible.

At Mount Sinai Beth Isracl Medical Center, 138 patients
with PD including 50 with early-stage PD and 150 healthy
controls were recruited. Each participant traced 10 spirals
with each hand on a digitizing tablet, generating coordinate
(%, y, z), pressure, and timing data. Several indices were
derived to evaluate spiral performance, including overall
execution severity, shape irregularity, kinematic

disturbances, rigidity, mean velocity, and width variability.

The groups were matched by age and handedness, and
significant differences in spiral indices were found
between PD patients and controls. A machine learning
model trained on this data achieved strong discriminative
validity (sensitivity = 0.86, specificity = 0.81), which
remained consistent even among early-stage PD
patients [14]. However, this approach requires a digitizing
tablet and more comprehensive data to ensure broader
generalization.

In another study, Varalakshmi et al. [15] used a dataset
of 102 scanned hand-drawn spirals to diagnose PD using
machine learning and deep learning models, including
pretrained networks such as RESNETS50, VGGI16,
AlexNet, and VGG19. Their hybrid RESNET50 + SVM
model achieved the best performance metrics, reaching an
accuracy of 98.45%, sensitivity of 99%, and specificity of
98%. Although the study achieved excellent results using
only the images, it required greater computational
resources due to the use of transfer learning and hybrid
models, and it sacrificed interpretability.

More recently, Shanmugam and Arumugam [16]
proposed a hybrid optimization-enabled deep learning
approach that integrates voice signals and hand-drawn
images for multimodal Parkinson’s classification, taking
into account stroke dynamics, pen pressure, and stroke-
width variability which capture geometric smoothness,
motor-control  consistency, and force modulation,
respectively. Their results highlight the promise of
combining different input modalities with deep
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architectures, although such methods require greater
computational resources and careful optimization
strategies.

This work proposes a pre-diagnostic system for
Parkinson’s disease based on the analysis of hand-drawn
spiral images. Unlike deep learning approaches that
process the entire image, our method focuses on extracting
a compact and informative set of spatial features.
Nevertheless, integrating deep learning methods could
potentially improve the generalization capability of the
model [16, 17]. Each spiral image is first preprocessed and
binarized using Otsu’s thresholding method. From the
resulting binary mask, the system identifies 100
equidistant pixel locations where the spiral trace
(foreground) is present—specifically, where the pixel
value is zero. These (x, y) coordinates are stored in a
structured matrix, which serves as the input for traditional
machine learning classifiers.

This approach emphasizes simplicity, interpretability,
and computational efficiency while retaining relevant
geometric information. The performance of several
classifiers is evaluated under a consistent experimental
framework, demonstrating the effectiveness of this
feature-based strategy for early Parkinson’s detection [18].

Traditional handcrafted methods remain relevant in
low-data scenarios due to their simplicity, interpretability,
and low computational cost, making them a useful
complement to routine clinical assessments. Unlike prior
work that uses high-dimensional kinematic data or raw
pixel inputs, this study proposes a compact geometric
descriptor. This enables efficient classification with
standard machine learning models and provides insight
into trace irregularities characteristic of Parkinsonian
movement.

I1I. MATERIALS AND METHODS

The proposed methodology involves several steps
ranging from data acquisition to model evaluation. The
approach emphasizes the extraction of spatial features
from binarized images of hand-drawn spirals, followed by
the application of supervised machine learning techniques.

A. Data Collection and Preprocessing

The dataset used in this study consists of grayscale
spiral drawings captured from both, Parkinson’s patients
and healthy individuals. Each image is resized to a uniform
resolution of 256x256 pixels.

Fig. 1 shows a comparison between an original spiral
image taken directly from the dataset and the same image
after applying preprocessing steps such as grayscale
conversion, image binarization, and median filtering. The
original image, as provided in the dataset, exhibits noise
and contrast variations that may hinder direct feature
extraction. To address this, a 3x3 median filter was applied
to enhance local homogeneity and preserve edge structures.

The data used in this study were obtained from Kaggle,
from a dataset titled Parkinson’s Drawings [19], which
includes both spiral and wave images. For this experiment,
only the spiral drawings were used. The training set (70%)
consists of 72 images, 36 from patients with Parkinson’s
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disease and 36 from healthy individuals, while the testing
set (30%) includes 30 images, with 15 from each class. The
dataset was originally derived from the work by Zham et
al. [20], in which spiral drawings were collected to
differentiate stages of Parkinson’s disease based on speed
and pen-pressure metrics during sketching. For these
experiments, we combined the dataset and generated &
stratified folds for cross-validation.

Median Filtered (3x3)
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\

. /
e

Fig. 1. Filter spiral image example.
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Binarization is the process of converting a grayscale
image I(x,y) € [0,255] into a binary image B(x,y) € {0,1}
by separating foreground (the trace) from the background.
A simple thresholding rule is defined as:

1
0

if llx,y)>T
otherwise

B(x,y) ={ (1)

where T'is a threshold value.

In this work, Otsu’s method is used to automatically
determine the optimal threshold 7* that maximizes the
between-class variance a7 (T), calculated as:

02 (T) = wo(T)w; (T [ (T) — 3 (T)]? &)
here:
wo(T) and w4 (T) are the probabilities of the two-
pixel classes (background and object),
Uo(T) and p4 (T) are the mean intensities of those
classes.
The optimal threshold is then selected as:

T* = argmax aZ(T) 3)

This method is robust for images with bimodal
histograms, as is common in digitized spiral drawings, as
shown in Fig. 2.

A 3x3 median filter is used to remove salt-and-pepper
noise while preserving edges in the image like shows
Fig. 3. For each pixel /(x,y), the value is replaced with the
median of its 3x3 neighborhood N5 (x, y), defined as:

Naxs(x,y) = )
{1GD]ielx—1xx+1}, je{y—1yy+1}}
The output image is computed as:
Loye(x,y) = median(N;lX3(x: Y)) (%)

60

This nonlinear operation helps to reduce noise without
blurring critical structural information, such as the spiral
trace.

Binarized (Otsu)

TN
o/ / AN
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N\

Fig. 2. Binarized image example.

3x3 Window (Input to Median Filter)

100

Fig. 3. Median filter.

B. Feature Extraction

Once the binary image is obtained, spatial coordinates
of the foreground pixels (those with value 0) are extracted.
From this set of pixels, 100 equidistant points are selected
using linear sampling over the length of the array. These
points represent the trace geometry in a highly compact
form.

The (x,y) coordinates of the 100 selected points are then
stored as feature vectors in a structured format: each image
yields a 200-dimensional vector (100 for x, 100 for y). An
additional column is appended to indicate the class label (1
for Parkinson’s, 0 for healthy). Fig. 4 illustrates the binary
spiral image with the 100 equidistant x-pixel positions (in
black) that define the spatial trace used as input for
classification.

C. Model Training Evaluation

Once the feature matrix is assembled, it is used to train
and evaluate multiple machine learning classifiers
including Random Forests, Support Vector Machines
(SVM), k-Nearest Neighbors (k-NN), Multi-Layer
Perceptron and Naive Bayes; with the hyperparameters
defined in Table I. All models were trained and evaluated
using the dataset’s fixed scheme of 5-times repeated,
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stratified 10-fold cross-validation with a random seed of
42. We averaged the scores across the 50 folds to obtain
more stable estimates and ensure a fair comparison with
the Kaggle dataset [19]. Performance metrics such as
sensitivity, specificity, balanced accuracy and F1-score are
calculated to assess the effectiveness of each classifier in
detecting Parkinson’s disease.

Imd'age 4 - Binarized with 100 Points in x where pixel is 0

50 L
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Fig. 4. Image binarized with 100 points in X where pixel is 0.

TABLE I. HYPERPARAMETERS

Algorithm Hyperparameters
n_estimators: 100
Max depth: 10
Min samples split: 4
Random seed: 42
Hidden layers: (50, 20)
Activation: ReLU
Optimizer: Adam

Random Forest

Multilayer Perceptron Learning rate: 0.0001
Max iterations: 500
Random seed: 42
KNN kS

Distance metric: Manhattan
Type: Gaussian Naive Bayes

Naive Bayes Assumption: Feature
independence
. Kernel: linear
SVM (linear)

Random seed: 42

This methodology prioritizes computational efficiency
and explainability, making it suitable for integration into
real-time pre-screening tools or as support for clinical
diagnostics.

IV. RESULT AND DISCUSSION

The source code and experimental configurations are

available at: https://github.com/Axell54/Parkinson_wavel.

A. Description and Configuration of the Models
1) SVM (linear)

Linear Support Vector Machines (SVMs) are
supervised learning models that aim to find the optimal
hyperplane that separates data into distinct classes with the
maximum possible margin. They are particularly effective
in high-dimensional spaces and have been widely applied
in medical and pattern recognition tasks due to their
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robustness and generalization capacity [21]. A random
seed equal to 42 was used in the experiment for
reproducibility.
2) Naive bayes

The Naive Bayes is a probabilistic classifier based on
Bayes’ theorem, assuming independence among features.
Despite its simplicity, it is particularly effective in high-
dimensional datasets and is commonly used in text
classification and early-stage medical diagnosis [22]. The
experiment applies Bayes’ theorem with the “naive”
feature independence assumption.

3) K-NN

The k-Nearest Neighbors (k-NN) algorithm classifies a
sample based on the majority label of its & closest
neighbors in the feature space. Despite its simplicity, k-NN
remains a powerful non-parametric method for pattern
recognition and is often employed as a baseline in
classification problems [23]. This model occupied the
Manhattan distance and 5 nearest neighbors.

4) Multilayer Perceptron (MLP)

The Multilayer Perceptron (MLP) is a feedforward
artificial neural network consisting of an input layer,
hidden layers, and output layer. It uses backpropagation
for training and can model fairly complicated nonlinear
relationships between input features and output class.
MLPs are widely used in bioinformatics and image
classification [24]. The Multilayer Perceptron (MLP)
model adopted in this experiment was set with two hidden
layers with 50 and 20 neurons, respectively.

We used ReLU (Rectified Linear Unit) as an activation
function, because of its ability to manage non-linearities,
prevent vanishing gradients, and its efficiency. The model
was trained using the Adam optimizer with an adaptive
learning rate that was initialized to 0.0001; the stopping
criterion was 500 iterations. Weights were initialized using
a random seed of 42 for reproducibility.

5) Random forest

Random Forest is an ensemble learning method that
constructs a multitude of decision trees during training and
outputs the class that is the mode of the classes predicted
by individual trees. It offers high accuracy, robustness to
overfitting, and the ability to handle both categorical and
numerical data, making it suitable for classification tasks
in noisy biomedical datasets [25]. In this study, the
Random Forest classifier was configured with 100 trees, a
maximum depth of 10, a minimum split of 4 samples, and
arandom seed of 42 to ensure reproducibility.

B. Comparison of Results

1)  Performance metrics summary

In this study, the selected performance metrics revealed
strong results for the Random Forest classifier, which
consistently outperformed the other models. The
Multilayer Perceptron, 5-NN, and Naive Bayes exhibited
moderate performance across the evaluated datasets. In
contrast, the Linear SVM model showed poor performance,
as evidenced by the results presented in Table I and
illustrated in Fig. 5.
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Fig. 5. Balanced accuracy comparison between models.

The metrics in Table II correspond to the Parkinson
class only. Values are reported as percentages and
represent the mean over the 5x10 stratified cross-
validation; standard deviations are shown in parentheses.
This approach provides a balanced assessment of model
behavior.

TABLE II. PERFORMANCE METRICS

. g s e . Balanced
Algorithm  Specificity Sensitivity F1-Score Accuracy
Random 0 c701.00) 73.93(18.18) 71.93(15.40) 70.30(15.10)
Forest
Multilayer
Perception 13132465 6247(29.68) 55.86(2033) 53.80(14.67)

SNN  7327(18.97) 51.87(20.77) 57.43(18.29) 62.57(14.72)
g:;‘;z 85.40(17.48) 54.13(24.92) 61.61(22.33) 69.77(13.26)
SVM 6 40(19.73)  56.53(19.66) 58.35(16.71) 59.47(14.48)
(linear) O 2oL 20 AR

Paired Wilcoxon signed-rank tests (Table III) were
conducted comparing the Random Forest (top balanced-
accuracy) against each baseline across the 5x10 stratified
CV folds; p-values were adjusted using Holm’s step-down
procedure (o = 0.05) to assess significance.

TABLE III. INVARIANT FEATURE EXTRACTION

Algorithm vs Random

s o
Forest Precision (%)

Recall (%)

Multilayer Perceptron ~ 0.000003177343817  0.00001270937527

SVM (linear) 0.001463100538 0.002926201076
5-NN 0.001034547711 0.003103643132
Naive Bayes 0.7207078301 0.7207078301

After applying Holm’s correction, Random Forest
remained significantly better than all baselines except
Naive Bayes, for which the difference was not significant
(adjusted p > 0.05).

The results obtained in this study indicate that the
Random Forest classifier outperformed other machine
learning models across all performance metrics, as shown
in Table II and Fig. 5. This superior performance can be
attributed to Random Forest’s ensemble nature and its
robustness in handling high-dimensional, noisy, and non-
linearly separable data—properties often observed in
image-derived features from hand-drawn spirals. Unlike

models such as Linear SVM or Naive Bayes, which
assume linear boundaries or feature independence,
Random Forest is capable of modeling complex decision
surfaces and feature interactions without strong parametric
assumptions [22].

Previous studies using sketch-based or handwriting
datasets for Parkinson’s disease detection have shown
thatmanually extracted geometric and kinematic features
can be as effective as deep learning approaches in
scenarios with relatively small, domain-specific datasets.
Notably, Zham et al. [20] proposed using composite
indices of speed and pen pressure during spiral drawing
tasks to distinguish between Parkinson’s disease stages,
while Al-Kasasbeh et al. [22], systematically reviewed
various machine learning approaches for handwriting-
based detection. These studies suggest that conventional
feature engineering methods often outperform deep
learning when data is limited. While powerful, deep
learning models such as Convolutional Neural Networks
(CNNs) typically require large, labeled datasets and
substantial computational resources, with an increased risk
of overfitting on small samples [23].

Moreover, traditional clinical approaches for
Parkinson’s diagnosis such as the UPDRS motor score or
neuroimaging techniques are either subjective, resource-
intensive, or invasive. In contrast, the proposed method is
low-cost, non-invasive, and automatable, relying only on
simple drawing tasks and lightweight preprocessing. The
advantage of Random Forest in this context lies in its
ability to generalize well without intensive hyperparameter
tuning and its interpretability, as feature importance scores
can provide insights into the underlying structure of the
drawing data.

In summary, the Random Forest model demonstrates
strong potential for practical deployment in early
Parkinson’s screening tools, particularly in low-resource
settings or as a complementary system to clinical
evaluation. However, further validation on larger and more
diverse datasets remains necessary.

2)  Geometric invariant feature extraction

Additional invariant features were incorporated into the
best-performing model. First, the spiral trace was centered
by subtracting the centroid of the extracted coordinates.
Furthermore, Hu Moments were computed from the
binarized image to capture global shape descriptors that
are invariant to rotation, translation, and scale. The original
spatial vectors were replaced by these invariant features.

TABLE IV. INVARIANT FEATURE EXTRACTION

. P P Balanced
Algorithm  Specificity ~ Sensitivity =~ F1-Score Accuracy
Random
Forest 66.67(21.90) 73.93(18.18) 71.93(15.40) 70.30(15.10)
Centroid

normalization 72.47(19.93) 77.13(17.88) 75.89(14.03) 74.80(14.03)
Centroid

“°rfrf1;izuat1°“ 71.73(21.99)  77.00(16.60) 75.71(12.14) 74.37(13.33)
moments
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However, as shown in Table IV, this integration led to
an increase in the model’s performance metrics when
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using the same hyperparameters as in previous

experiments.

3) Comparison with Convolutional Neural Networks
(CNN)

For this experiment, we adopted a technique similar to
that employed by the best-performing models reported in
the literature, particularly in the work of Varalakshmi et
al. [16]. Specifically, we used pretrained convolutional
neural networks ResNet50, VGG16, and VGG19 to extract

image features, which were then classified using a Support
Vector Machine (SVM) with a linear kernel and a
regularization parameter C = 1. A batch size of 16 was
used during feature extraction. Although the performance
metrics obtained were comparable to those of our proposed
Random Forest model (as shown in Table V and Fig. 6),
the execution time for the deep learning-based approach
exceeded 40 s per model, whereas the Random Forest
model required less than 5 s to run.

TABLE V. COMPARISON WITH CNN

Algorithm Specificity

Sensitivity

F1-Score Balanced Accuracy

Random Forest 66.67(21.90)

73.93(18.18)

71.93(15.40) 70.30(15.10)

Centroid normalization +

Hu moments 71.73(21.99)

77.00(16.60)

75.71(12.14) 74.37(13.33)

ResNet50 + SVM 91.20(10.81)

78.53(18.54)

83.30(13.58) 84.87(10.87)

VGG16+SVM 83.13(15.63)

80.80(18.87)

81.52(14.12) 81.97(12.88)

VGG19+SVM 79.07(13.70)

72.40(22.08)

74.01(16.03) 75.73(12.40)

Transfer Learning (+5SVM} — Cross-validated Balanced Accuracy (10x5)

1 1
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Fig. 6. Balanced accuracy comparison between CNN models.

V. CONCLUSION

A. Main Features

This study shows good performance in approaching
Parkinson’s disease diagnosis using geometric features
extracted from binarized spiral drawings. The proposed
methodology demonstrated promising results, particularly
when evaluated with Random Forest classifier.

Among the models tested, Random Forest achieved the
highest overall performance across accuracy, precision,
recall, and Fl-score, highlighting its robustness and
suitability for biomedical classification tasks involving
hand-drawn patterns.

Our approach offers a complementary, lightweight, and
interpretable alternative suited to low-resource settings
and early screening. Moreover, integrating deep-learning
function approximation could further enhance accuracy
and robustness.

B. Limitation and Future Work

Future work will focus on validating the proposed
method with larger and more diverse datasets, as well as
exploring hybrid architectures that combine handcrafted
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feature extraction with deep learning components to
further enhance performance and generalizability.

A key limitation of the proposed approach is the risk of
overfitting given the relatively small dataset. Although
repeated stratified cross-validation was used to mitigate
this, models trained on limited samples may still learn
noise or dataset-specific artifacts rather than generalizable
Parkinson’s signatures. This concern is especially salient
in medical applications, where robust generalization is
essential for safe deployment. Future work should validate
the method on larger and more diverse cohorts ideally with
external (multi-site) test sets and enforce patient-level
separation to prevent information leakage.

A practical avenue is to extend the current coordinate-
based representation with additional descriptors: (i)
curvature (e.g., local turning curvature k along the trace),
(i) stroke-width variability (estimated from the binarized
mask via distance transform or skeleton-to-boundary
distances), and (iii) pen-pressure (when captured by a
digital tablet) can provide complementary information.
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