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Abstract—Online meetings and Virtual Reality (VR) 
applications require innovative approaches to interpret user 
emotions and behavior. Since verbal communication is 
constrained in virtual environments, facial expression 
analysis is essential for understanding emotional states. 
Recent research demonstrates that the periocular region 
provides significant diagnostic information regarding affect 
and attention, exhibiting pronounced responses to emotional 
stimuli and offering a more reliable indicator of user state 
than full-face analysis. This study addresses this gap by 
evaluating lightweight convolutional neural network 
architectures—MobileNetV1, MobileNetV2, MobileNetV3, 
and EfficientNetV2—specifically for periocular-based 
recognition. Experiments are conducted on the Taiwanese 
Facial Expression Image Database (TFEID) benchmark, with 
further validation on the Chinese Face dataset using transfer 
learning for Android platform deployment. Through a 
detailed analysis, we evaluate the effectiveness of each 
architecture based on metrics such as accuracy, precision, 
recall, and F1-Score, providing insights into their suitability 
for periocular-based expression recognition. In contrast to 
earlier studies that employed full-face input, this research 
proposes a periocular-only approach, rendering it more 
efficacious in confined environments such as virtual reality 
or masked-face settings. The findings of this study 
demonstrate that the MobileNetV3-Small architecture offers 
an optimal trade-off, attaining an accuracy of 83.62% while 
sustaining a highly efficient inference time of 16.4 
milliseconds per image. Moreover, the deployment of these 
models on Android devices demonstrates their practicality in 
real-world settings, particularly in the context of lightweight, 
mobile-based emotion recognition systems. This research 
contributes to advancing emotion recognition systems, 
offering practical and robust solutions for real-world 
applications. 

Keywords—facial expression, periocular area, MobileNet, 
EfficientNetV2, Taiwanese Facial Expression Image 
Database (TFEID), Chinese Face dataset 


I. INTRODUCTION

Communication is the most basic activity performed by 
humans to interact with each other, to then share 
information, build relationships, and lead social lives. 
Non-verbal communication, particularly facial 
expressions, plays a crucial role in conveying emotions, 

Manuscript received July 18, 2025; revised August 5, 2025; accepted 
September 15, 2025; published January 16, 2026. 

intentions, and thoughts universally understood across 
cultures [1]. In social interactions, facial expressions are 
essential because they serve as a bridge to understand the 
feelings of others without exchanging words. Because it is 
not limited by language barriers, this mode of 
communication is extremely effective. It enables people 
from a variety of backgrounds to interpret feelings and 
intentions in a more natural and intuitive manner. 

Facial expression is a manifestation of emotions, 
intentions, and purposes through the movement of facial 
muscles [2]. From a person’s facial expression, the 
emotional state of that individual can be identified. Facial 
expressions in humans are divided into two types: neutral 
faces and expressive faces [3]. Expressive faces are 
divided into six categories: happiness, surprise, anger, 
sadness, fear, disgust [4]. These expression categories 
have different characteristics interpreted in the form of 
Action Units (AU) [5], as shown in Table I.  

TABLE I. TYPES OF FACIAL EXPRESSIONS FACES NEUTRAL HAPPY 

SURPRISE ANGER SADNESS FEAR DISGUST 

Neutral Happy Surprise Anger

Sadness Fear Disgust

The rapid expansion of online communication platforms 
and advancements in mobile technology have made virtual 
interactions, such as remote meetings [6], online 
gaming [7], and Virtual Reality (VR) environments [8], 
increasingly prevalent and essential. In these digital 
spaces, the implementation of facial expression 
recognition is highly recommended to make 
communication more interactive and immersive, 
enhancing user experience. However, the limitations of 
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physical presence in virtual settings pose challenges to 
conveying emotions and intentions effectively. Facial 
expressions, therefore, serve as a critical tool to bridge the 
gap between the virtual and real worlds, enabling users to 
connect and communicate emotions in a more authentic 
and engaging way. 

Devices for VR, head-mounted devices, as depicted in 
Fig. 1, typically capture only the area around the user’s 
eye [9]. Apart from VR, the use of masks has become 
commonplace in everyday activities. The COVID-19 
pandemic, which began in 2019, has impacted various 
aspects of life, including the widespread adoption of mask-
wearing. This poses a challenge for facial expression 
recognition, as the area available for machine learning 
models to analyze becomes increasingly limited, focusing 
solely on the periocular region, or the area around the 
eyes [10], as illustrated in Fig. 2. Implementation of facial 
expression recognition on embedded systems like Internet 
of Things (IoT) or mobile devices introduces additional 
complexity, particularly in this constrained area. Studies 
have shown that focusing on the periocular region allows 
for effective emotion recognition despite facial 
obstructions [11, 12]. Focusing on the periocular area 
instead of the full face reduces distractions from facial 
features that may not affect emotion recognition [13]. 

 

 
Fig. 1. Example of a head-mounted Virtual Reality (VR) device that 
obstructs the lower facial region, necessitating emotion recognition from 
the visible periocular area [9]. 

 
Fig. 2. Illustration of the periocular region as the area of interest for facial 
expression recognition in scenarios with obstructions, such as mask-
wearing (left) or in un-occluded faces (right) [10]. 

This study differs from previous research in two 
significant ways. Firstly, it presents a periocular-only 
model that demonstrates enhanced robustness in occluded 
or partially visible environments. Secondly, it emphasizes 
a deployment-oriented perspective by systematically 
analyzing the trade-offs between accuracy, model size, and 
inference speed of lightweight Convolutional Neural 
Networks (CNNs) when applied on mobile and embedded 
devices. Unlike prior works that mainly pursue accuracy 
improvements using large-scale CNNs, our contribution 
lies in providing a comprehensive evaluation of resource-
constrained deployment for periocular expression 
recognition. This perspective highlights practical 

feasibility and addresses a critical gap in current literature, 
where deployment aspects of periocular biometrics remain 
underexplored. 

This paper investigates the effectiveness of utilizing the 
periocular area in classifying facial expressions. Since 
only the periocular region is visible in certain real-world 
scenarios (e.g., due to mask usage or in VR/AR headsets), 
focusing on this region allows for a more realistic and 
adaptable approach to facial expression recognition. The 
periocular region represents a noteworthy biometric 
characteristic for the purpose of human identification [11]. 

Conducted an in-depth analysis of the MobileNet family 
and EfficientNetV2 (B0, B1, B2) architectures to 
determine which is better suited to the original problem. 
Because of their small size and great efficiency, these 
models are perfect for embedded or mobile systems [14], 
and the CNN approach works well for emotion 
recognition [15]. 

II. RELATED AND PREVIOUS WORKS 

This section delivers an overview of the literature 
regarding datasets and the architecture used in the 
research, along with investigations previously done that is 
related to the material in this paper. 

A. Related Theories 

MobileNet is a series of convolutional neural network 
architectures created by Google to facilitate efficient deep 
learning on mobile and embedded devices [16]. The 
architecture employs depth-wise separable convolution, 
which divides the convolution process into two distinct 
operations: depth-wise and point-wise convolution [17]. 
This innovative approach significantly reduces the 
computational demands and the number of parameters 
required for convolutional layers, making MobileNet 
particularly suitable for applications on resource-
constrained platforms. This distinction between the two 
convolution types is illustrated in Fig. 3. Its lightweight 
design has made it a popular choice for various tasks, 
including image classification, object detection, and facial 
expression recognition [18]. 

 

 
Fig. 3. Illustration of depth-wise and point-wise convolutions in 

MobileNet. 
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In addition to MobileNet, the study also examines 
EfficientNetV2 (B0, B1, B2), another efficient model 
family developed by Google that utilizes advanced 
techniques in model scaling and architecture design. 
EfficientNetV2 optimizes performance for mobile and 
resource-limited devices by balancing network depth, 
width, and resolution through a method known as 
compound scaling [19]. This family of models expands the 
options for high-performance, lightweight deep learning 
applications, providing an alternative approach to 
achieving a balance between speed and accuracy. Both 
MobileNet and EfficientNetV2 are well-equipped for 
deployment in environments with limited resources, as 
they effectively implement various strategies to maintain 
high accuracy while ensuring computational 
efficiency [20]. 

1) MobileNetV1: Depthwise separable convolutions 

MobileNetV1 is based on depthwise separable 
convolutions [21]. Compared to traditional convolutions, 
this approach uses a single filter for each input channel, 
making it more economical. It also reduces the number of 
channels in the output, preserving feature dimensionality. 
MobileNetV1 applies a single filter to each input channel 
individually, resulting in a smaller output. This approach 
significantly reduces computations while preserving 
feature extraction capabilities. Compared to MobileNetV2 
and MobileNetV3, MobileNetV1 relies solely on 
depthwise separable convolutions. 

2) MobileNetV2: Linear bottlenecks and residual 
connections 

MobileNetV2 is a novel architecture that improves 
efficiency and performance by incorporating linear 
bottlenecks and residual connections [22]. It introduces a 
low-dimensional bottleneck layer between depthwise and 
pointwise convolutions, lowering computational costs 
while maintaining accuracy. It also includes shortcut 
connections from earlier to later layers, which allows the 
network to learn more complex features. These 
enhancements, inspired by ResNet architecture, improve 
gradient flow and performance, making MobileNetV2 a 
more reliable and efficient alternative to MobileNetV1. 

3) MobileNetV3: Squeeze-and-excite blocks and efficient 
inverted residuals 

MobileNetV3 improves efficiency through two key 
innovations: Squeeze-and-Excite (SE) blocks, which learn 
channel-wise importance weights, and Efficient Inverted 
Residuals, which reorder operations within the residual 
block, prioritizing non-linearity over the bottleneck 
layer [23]. These innovations enable thinner bottlenecks 
while maintaining good accuracy. MobileNetV3 uses SE 
blocks to analyze feature maps and adjust their importance 
using learned weights, whereas Efficient Inverted 
Residuals places nonlinearity before the bottleneck layer 
to improve efficiency. 

The overview on MobileNetV1, MobileNetV2, and 
MobileNetV3 is shown in Table II. Overall, MobileNet 
family of architectures offers a range of options optimized 
for different requirements, from MobileNetV1 for basic 
applications to MobileNetV3 for more demanding tasks 

where both accuracy and efficiency are crucial. By 
adopting these approaches, the computational demands 
and parameter count of the convolutional layer are 
significantly reduced, enhancing efficiency particularly for 
applications on mobile and embedded devices. 

TABLE II. COMPARISON OF KEY ARCHITECTURAL FEATURES ACROSS 

THE MOBILENET FAMILY 

Feature 
MobileNetV1 

[21] 
MobileNetV2 

[22] 
MobileNetV3 

[23] 

Basic 
Building 

Block 

Depthwise 
Separable 

Convolution 

Depthwise 
Separable 

Convolution 
with Linear 
Bottlenecks 

Efficient 
Inverted 
Residual 

Residual 
Connection 

No Yes Yes 

Channel 
Attention 

No No 
Squeeze-and-
Excite (SE) 

Block 

Focus 
Reduce 

computational 
cost 

Improve 
efficiency and 
performance 

Further 
improve 

efficiency and 
performance 

 

4) EfficientNetV2 

Tan and Le [19] introduced an advanced family of 
convolutional networks called EfficientNetV2 was 
introduced. It improves training speed and parameter 
efficiency with new techniques like training-aware neural 
architecture search and Fused-MBConv layers, which are 
a modified version of the traditional MBConv block [19]. 
This model features progressive learning, where image 
resolution and architectural complexity are gradually 
increased during training, leading to reduced training times 
and improved efficiency [24]. By streamlining the search 
for optimal neural architecture parameters and inference 
time, it is made to be both smaller and faster. 
EfficientNetV2 offers scalability with three variants 
(EfficientNetV2B0, EfficientNetV2B1, and 
EfficientNetV2B2) each progressively increasing in depth, 
width, and image resolution to cater to different 
computational needs and accuracy requirements. In 
performance benchmarks, EfficientNetV2 surpasses many 
leading models, including ResNet and EfficientNetV1, 
making it particularly effective for real-world applications 
that demand quick inference on devices with limited 
resources, especially in tasks like image classification and 
object detection. 

B. Previous Research 

The forehead area did not yield a significant increase in 
accuracy [25]. Various descriptors were employed, 
including Gabor, LBP, Histogram of Oriented Gradient 
(HOG), Gray-Level Co-occurrence Matrix (GLCM), and 
GIST, with Support Vector Machine (SVM) as the 
classifier. Two scenarios were tested: large area and small 
area, divided into 1616 and 3232 blocks, as depicted in 
Fig. 4. 

Research on emotion detection utilizing the periocular 
area involved extracting the Region of Interest (RoI) area 
from 5 landmark points obtained using Dlib [26]. The 
upper boundary was determined by adding approximately 
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75% of the eye center’s height, while the lateral boundary 
was set by adding about 25% of the distance from the eye 
center, as shown in Fig. 5. 
 

 

Fig. 4. Example of Region of Interest (RoI) extraction from a previous 
study, showing larger (96224) and smaller (64224) periocular crops 
for analysis [25]. 

 
Fig. 5. Periocular area extraction [26]. 

Experiments were conducted by first training on the 
Faces dataset, followed by testing on Chicago Faces to 
assess the model’s robustness under cross-dataset testing. 
The accuracy results obtained using MobileNet-V2 and 
HOG-SVM architectures were 76.77% and 62.47%, 
respectively. 

III. MATERIALS AND METHODS 

The aim of this study was to determine how using the 
periocular area affects expression classification 
performance. To achieve this goal, the researchers 
conducted experiments using the Taiwanese Facial 

Expression Image Database (TFEID) dataset and 
MobileNet family architectures consists of MobileNetV1, 
MobileNetV2, and MobileNetV3. The researchers focused 
on face recognition in pandemic conditions, where masks 
are widely recommended in almost all countries, and in the 
use of head-mounted VR devices that limits the exposed 
facial area only on the periocular region. We begin by 
providing an overview of the dataset exploration consists 
of dataset preparation and dataset preprocessing, 
continued with the detailed step from each of MobileNet 
architectures. Performance metrics then obtained from 
experiments conducted including accuracy, precision, 
recall, and F1-Score, which serve as indicators of the 
effectiveness of our approach in accurately classifying 
facial expressions. 

The methodology employed in this study involves 
several key steps for training and deploying a facial 
expression classification model using MobileNet 
architectures and periocular images. Initially, the training 
phase utilizes the TFEID, a well-known benchmark dataset 
for facial expression analysis. The next step is Facial 
Mapping, which means that images within this dataset are 
first processed to extract 68 landmark points using the Dlib 
library. Subsequently, the periocular area is isolated by 
selecting 22 landmark points corresponding to this specific 
facial region. These extracted periocular images serve as 
the input data to the model training step to train the 
classification model using MobileNetV1, MobileNetV2, 
and MobileNetV3 architectures. 

The classification task is treated as a multiclass problem, 
wherein each image is categorized into one of the 
following classes: ‘happy’, ‘angry’, ‘sad’, ‘disgust’, ‘fear’, 
or ‘neutral’. Through the training process, the performance 
of each MobileNet variant is evaluated, and the best-
performing model is identified based on accuracy and 
other relevant metrics.  

 

 

Fig. 6. The complete workflow of the proposed study, detailing the stages from dataset processing and facial mapping to model training, evaluation, 
and final deployment on a mobile device via transfer learning.

After showing the optimal model, it is implemented on 
an Android-based mobile device for real-time expression 
classification. The testing phase involves using images not 
included in dataset to assess the model’s generalization 
capability. The Android module consists of several 
components, including an image acquisition module 
responsible for capturing images, an image processing 

module for preprocessing the acquired images, and an 
expression classification module utilizing TensorFlow 
Lite and TensorFlow modules to classify expressions. 
Finally, the display module presents the classification 
results, including object labels and prediction outcomes, 
providing users with real-time feedback on facial 
expressions. This comprehensive methodology ensures the 
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development of an effective and deployable expression 
classification system suitable for mobile platforms. The 
overall architecture is as seen in Fig. 6. 

A. Dataset Preparation 

The research is held using TFEID dataset which are 
valuable resources in the field of facial expression 
analysis, particularly concerning research focusing on the 
periocular region [27]. This dataset comprises 336 images, 
obtained from 40 models (20 males, 20 females), 
representing eight facial expressions: ‘Neutral’, ‘Angry’, 
‘Contempt’, ‘Disgust’, ‘Fear’, ‘Happy’, ‘Sad’, and 
‘Surprise’. Sample images of TFEID dataset is as follows 
in Fig. 7(a). This research also utilizes the Chinese Face 
Dataset to evaluate the model integrated into the mobile 
platform. Chinese Face Dataset contains 840 StyleGAN-
synthesized facial images [28]. The dataset has 60 men and 
60 women proportionally and includes seven basic 
emotional expressions (neutral, happiness, anger, fear, 
sadness, disgust, and surprise). This dataset is intended to 
aid psychology and related research, particularly in facial 
perception, emotional recognition, and age-related social 
judgments. Unlike TFEID, this synthetic dataset serves 
specifically to test the model’s robustness and 
generalization capability under a different data 
distribution, which is crucial for assessing its performance 
in real-world, on-device scenarios. Fig. 7(b) presents some 
examples of images that are included in the Chinese Face 
Dataset. 

 

 
(a) TFEID Dataset 

 
(b) Chinese Face Dataset 

Fig. 7. Sample images from the two datasets used: (a) The Taiwanese 
Facial Expression Image Database (TFEID) used for training [27], and (b) 
the StyleGAN-synthesized Chinese Face dataset used for mobile 
deployment testing [28]. 

B. Dataset Preprocessing 

We first analyze the distribution of expressions within 
the images in each dataset and observe data imbalances, as 
shown in Table III. 

To address data imbalances, we apply image 
augmentation for each image in every category to achieve 
a total of 1000 images. But before performing the 
augmentation, we first extracted the periocular area from 
each image. Periocular extraction was performed utilizing 
the Dlib library as a face landmark detector that annotated 
68 facial landmark points, as illustrated in Fig. 8(a). Dlib 
is an open-source library that offers various machine 
learning algorithms for tackling complex problems. It is 
known for its ease of implementation, ability to work with 
unconventional angles, and capability to handle occluded 
faces [29]. 

TABLE III. EXPRESSIONS DISTRIBUTION IN TFEID 

Expression Number of Images 
Anger 34 

Contempt 68 
Disgust 40 

Fear 40 
Happy 40 
Neutral 39 
Sadness 39 
Surprise 36 

 

 
(a) 68 Landmark Points Extracted using Dlib. 

 
(b) Pseudocode to extract periocular. 
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(c) Extracted Periocular Area. 

Fig. 8. The periocular area extraction process: (a) The 68 facial landmark 
points are first detected using Dlib, (b) Pseudocode for the proposed 
periocular region extraction algorithm, and (c) the final region is cropped 
based on specific landmark boundaries for model training. 

The periocular region was then extracted from each 
image using a custom algorithm that leverages specific 
facial landmarks. This method defines the precise cropping 
boundaries by utilizing the coordinates of key points on the 
eyebrows, eyes, and nose. The detailed logic for this 
extraction procedure is formally presented in Fig. 8(b). 
The area resulted is as shown in Fig. 8(c). 

Augmentation techniques included horizontal flipping, 
rotation up to a maximum of 50°degrees both left and 
right, adjustments to brightness and contrast, and gamma 
adjustment. All augmentation processes were performed 
randomly. Subsequently, the balanced dataset was divided 
into three subsets for each emotion category: training, 
testing, and validation, with a ratio of 80% for training, 
10% for testing, and 10% for validation, respectively, 
based on the total number of images per emotion category. 

C. Experiments 

As outlined in the dataset preparation section, the 
dataset is divided into three components: training, testing, 
and validation. Each component maintains the same 
emotional categorization. Images for training, testing, and 
validation are randomly selected, ensuring that each model 
is exposed to identical datasets across all stages.  

During model training, various hyperparameters are 
utilized, including the number of epochs, batch size, 
momentum, and the Adamax optimizer. The number of 
epochs in model training refers to how many times the full 
training dataset is run through the neural network to update 
the weights. Each epoch is a complete pass of the whole 
dataset in which the model processes all the training data 
to update the network’s weights. Increased epochs provide 
the model with additional opportunity to assimilate 
knowledge from the data. 

Momentum defines how much the freshly determined 
statistical value (from the current batch) contributes 
relative to the prior batch’s value. The optimizer manages 
how the model’s weights are adjusted based on the 
gradient of the loss function, improving the model’s 
prediction and classification capabilities [30]. These 
hyperparameter values (Table IV) are selected based on 
the available literature and then held constant to allow for 
a fair comparison of the models utilized [31, 32].  

Choosing the appropriate batch size is critical for model 
training since a small batch size achieves convergence 
faster than a big batch size. Moreover, while larger batch 
sizes can reach the optimal minimum value, smaller 
batches may struggle achieve this. In this study, each pre-
trained model was additionally given five layers: two 
dropout layer and three dense layers. The dropout rate in 
the dropout layer is 50%, and the first dense layer has 256 
neurons, the second has 128 neurons, and the last dense 
has 8 neurons to categorize 8 distinct moods using the 
SoftMax activation function. This study was carried out 
using a MacBook OS Sonoma with an Apple M1 Pro 
processor and 16 GB RAM. 

TABLE IV. HYPERPARAMETER SETTINGS USED FOR TRAINING ALL MODELS 

Parameters MobileNetV1 MobileNetV2 MobileNetV3 Small MobileNetV3 Large EfficientNetV2 Family 
Epoch 55 35 55 55 35 
Batch 5 5 5 5 5 

Optimizer Adamax Adamax Adamax Adamax Adamax 

Loss Function 
Categorical Cross 

Entropy 
Categorical Cross 

Entropy 
Categorical Cross 

Entropy 
Categorical Cross 

Entropy 
Categorical Cross 

Entropy 
Momentum 0.99 0.99 0.99 0.99 0.99 

Learning Rate 10−5 10−5 10−5 10−5 10−5 

 

D. Mobile Application Implementation 

The optimal machine-learning model will be deployed 
on an Android device to test its real-world performance. 
Using the TensorFlow Lite Task Library API, models were 
converted to tflite interpreters to deploy trained machine 
learning on mobile devices. TensorFlow Lite converter 
and interpreter enable mobile model deployment [33]. 
First, TensorFlow-created Keras models were exported to 
HDF5 binary data format (h5) models. A second step 
involved the conversion of the h5 models to TensorFlow 
Lite models using the TensorFlow Lite Converter. Finally, 
the TensorFlow Lite interpreter executed models on 
smartphones to maximize detection performance using 
smartphone hardware [34]. The Flutter framework and 
TensorFlow Lite library were used to create an Android 

OS mobile app for TensorFlow Lite models. A Keras-
based Tensorflow Lite model processed each image and 
generated confidence scores indicating its class 
probability. 

E. Evaluation 

This study uses confusion matrix serves as a tool to 
assess the effectiveness of the model resulted in each 
experiment. In the confusion matrix of a multiclass 
problems, there are values for True Positive (TP), False 
Positive (FP), False Negative (FN), and True Negative 
(TN) as served in Table V. 

From the confusion matrix, we employ accuracy, 
precision, recall, and the F1-Score as metrics to evaluate 
the model’s performance. Accuracy represents the 
proportion of correctly classified instances (both TP and 
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TN) out of the total number of instances in the dataset. It 
measures the overall correctness of the model’s predictions 
across all expression classes (Eq. (1)). Precision measures 
the model’s ability to correctly classify instances of a 
particular expression class out of all instances classified as 
that class by the model. It is calculated as the ratio of TP 
to the sum of TP and FP (Eq. (2)). 

                 
TP TN

Accuracy
TP FP TN FN




  
                  (1) 

                         
TP

Precision
TP FP




                          (2) 

TABLE V. CONFUSION MATRIX 

Predicted 
Values 

Actual Values 
True (+) False (−) 

Positive (+) 
True Positive 

(Correct 
result) 

False Positive 
(Unexpected result) 

Negative (−) 

False 
Negative 
(Missing 

result) 

True Negative 
(Correct absence of 

result) 

 
Recall, also known as sensitivity or true positive rate, 

measures the model’s ability to correctly identify instances 
of a particular expression class out of all instances that 
truly belong to that class. It is calculated as the ratio of TP 
to the sum of TP and FN (Eq. (3)). The F1-Score, derived 
from Eq. (4), is the harmonic mean of precision and recall. 

It provides a balance between precision and recall, 
allowing for a comprehensive assessment of the model’s 
performance. The F1-Score takes both false positives and 
false negatives into account and is particularly useful when 
there is an imbalance between the classes or when both 
precision and recall are equally important. 

                            
TP

Recall
TP FN




                            (3) 

               1 2
Precision Recall

F Score
Precision Recall


  


             (4) 

The inference time (Eq. (5)) metric uses the model’s 
average time to forecast a picture class. This was achieved 
by setting a timer at the start and conclusion of the review 
process. This measure uses milliseconds as its unit. 

                 
 

 

Training Time
Time

epoch batch batch size


 
                (5) 

IV. RESULT AND ANALYSIS 

In this section, we present the results of our 
investigation into the utilization of the periocular region in 
facial expression classification using the TFEID dataset 
and MobileNet family architectures and EfficientNetV2 
family architectures. Figs. 9 and 10 illustrate the 
performance of the models that were investigated.  

 

 
Fig. 9. Training and validation loss curves for each of the seven evaluated models over the training epochs. 
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Fig. 10. Training and validation accuracy progression for each model, showing how model learning develops over time.

Table VI illustrates a distinct performance trend: the 
MobileNet family consistently surpasses the EfficientNet 
family on this particular periocular dataset. This finding is 
significant, indicating that MobileNet’s architectural 
design, which emphasizes depth-wise separable 
convolutions and efficient building blocks, is especially 
adept at extracting pertinent features from the periocular 
region, particularly in contrast to EfficientNet’s compound 
scaling approach. The MobileNetV3-Small architecture 
exemplifies an ideal equilibrium, with the greatest 
accuracy of 83.62% with an exceptionally short inference 
time of under 16.4 milliseconds. This model exemplifies a 
significant trade-off wherein a more compact and efficient 
architecture outperforms both its larger equivalents and the 
more intricate EfficientNet models in terms of 
performance. Although MobileNetV1, MobileNetV2, and 
MobileNetV3-Large exhibit competitive performance (all 
achieving accuracies exceeding 81%), MobileNetV3-
Small stands out by offering the optimal balance of high 
accuracy and exceptional speed, rendering it an exemplary 
choice for resource-limited mobile applications. 
Conversely, the EfficientNetV2 family exhibited constant 
underperformance, with accuracy markedly declining as 
the model size escalated from B0 to B2. The extended 
inference durations for EfficientNetV2B1 (66.5 ms) and 
EfficientNetV2B2 (67.9 ms), along with diminished 
accuracies (76% and 70% respectively), further validate 
their inadequate appropriateness for this particularly task. 

TABLE VI. FINAL PERFORMANCE COMPARISON OF ALL MODELS ON 

THE TEST SET 

Metrics 
MobileNet MobileNetV3 EfficientNetV2 

V1 V2 Small Large B0 B1 B2 
1 I 83.1 82.2 83.6 81.4 80.6 76 70 

2 II 82.8 82.1 82.9 81.3 81.9 71.8 69.6 
3 III 30.2 31.7 16.4 29.1 48.2 66.5 67.9 

1Accuracy (%); 2F1-Score (%); 3Inference time per image (ms). 

Based on these findings, it seems like the EfficientNet 
architecture might need a few more epochs to reach its full 
potential on this periocular dataset. Overall, 
MobileNetV3-small emerged as the optimal choice for 
balancing accuracy, F1-Score, and training time efficiency. 
On the other hand, the EfficientNet architecture turned out 
to be less effective for this specific assignment. 

The confusion matrix is an effective visualization tool 
for CNN network performance. Fig. 11 shows the 
confusion matrix of all the models used to classify eight 
emotions. This makes it easier to see which classes caused 
the trained models to be the most inaccurate. Table VII 
shows the performance graph between emotions, which 
will further confirm the confusion matrix’s findings. The 
accuracy and F1-Score for each emotion indicate that 
MobileNetV1 and MobileNetV3-small excel in classifying 
most emotions, particularly in the classes of disgust, 
happiness, and surprise, which exhibit consistent and 
precise prediction levels. 

A more granular analysis using the confusion matrices 
(Fig. 11) provides deeper insights into per-class 
performance and reveals the models’ specific strengths and 
weaknesses. It becomes evident that across all models, 
certain emotions are consistently more challenging to 
classify from the periocular region alone. In particular, fear 
stands out as the most difficult emotion to categorize, a 
challenge that is likely due to its subtle and often shared 
features with other expressions, as seen in the low recall 
and F1-Scores for this class (Table VII). Similarly, 
emotions like Anger and Neutral also pose difficulties, 
suggesting that the primary cues for these expressions may 
reside in other facial areas (e.g., the mouth or jaw). 

Conversely, emotions such as Disgust and Happiness 
are consistently the easiest to categorize, with all models 
showing high precision and recall. This indicates that the 
muscle movements around the eyes and eyebrows for these 
expressions are highly distinct and serve as strong 
indicators.  
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Fig. 11. Confusion matrices for each model, visualizing the classification performance across the eight emotion classes. The diagonal elements 

represent correctly classified instances. 

TABEL VII. DETAILED PER-CLASS PERFORMANCE METRICS (PRECISION, RECALL, F1-SCORE) FOR EACH MODEL 

Model Metrics Model Anger Contempt Disgust Fear Happiness Neutral Sadness Surprise 

Precision 

MobileNetV1 0.8411 0.625 0.9804 0.9167 0.9423 0.5857 0.8627 0.9505 
MobileNetV2 0.8111 0.6373 1 0.8933 0.8333 0.7263 0.7615 0.9674 

MobileNetV3-Small 0.8182 0.783 0.9897 0.871 0.9259 0.7882 0.7111 0.8403 
MobileNetV3-Large 0.7808 0.5769 1 0.9306 0.9798 0.7011 0.6875 1 
EfficientNetV2B0 0.7714 0.6154 1 0.8902 0.99 0.471 0.8818 0.9688 
EfficientNetV2B1 0.6667 0.75 0.9327 1 0.7615 0.6364 0.8058 0.7299 
EfficientNetV2B2 0.6947 0.6753 1 1 0.8772 0.4591 0.5465 0.7143 

Recall 

MobileNetV1 0.9 0.45 1 0.66 0.98 0.82 0.88 0.96 
MobileNetV2 0.73 0.65 0.96 0.67 1 0.69 0.99 0.89 

MobileNetV3-Small 0.72 0.83 0.96 0.54 1 0.67 0.96 1 
MobileNetV3-Large 0.57 0.75 1 0.67 0.97 0.61 0.99 0.95 
EfficientNetV2B0 0.54 0.64 1 0.73 0.99 0.65 0.97 0.93 
EfficientNetV2B1 0.92 0.09 0.97 0.44 0.99 0.84 0.83 1 
EfficientNetV2B2 0.66 0.52 0.98 0.31 1 0.73 0.47 1 

F1-Score 

MobileNetV1 0.8696 0.5233 0.9901 0.7674 0.9608 0.6833 0.8713 0.9552 
MobileNetV2 0.7684 0.6436 0.9796 0.7657 0.9091 0.7077 0.8609 0.9271 

MobileNetV3-Small 0.766 0.8058 0.9746 0.6667 0.9615 0.7243 0.817 0.9132 
MobileNetV3-Large 0.659 0.6522 1 0.7791 0.9749 0.6524 0.8115 0.9744 
EfficientNetV2B0 0.6353 0.6275 1 0.8022 0.99 0.5462 0.9238 0.949 
EfficientNetV2B1 0.7731 0.1607 0.951 0.6111 0.8609 0.7241 0.8177 0.8439 
EfficientNetV2B2 0.6769 0.5876 0.9899 0.4733 0.9346 0.5637 0.5054 0.8333 

While MobileNetV3-Small is the overall best performer, 
its strength is particularly pronounced in these more-

distinguishable classes. The superior performance of 
MobileNet models over EfficientNet is also visible at the 
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class level; the EfficientNetV2B1 and V2B2 models, for 
instance, exhibit a high degree of misclassification for 
emotions like contempt and fear, confirming their inferior 
efficacy beyond just overall accuracy. 

While data augmentation was employed to create a 
balanced training dataset, it is crucial to acknowledge a 
potential limitation regarding the model’s generalizability 
in real-world scenarios. This situation can cause a majority 
class bias, which means that a model is more likely to 
correctly predict dominant classes and does worse on 
minority classes that aren’t seen very often. So, the model 
does well on our balanced test set, but it might not be as 
good at detecting rare emotions in real life. This points to 
a problem that needs more research using more advanced 
techniques for dealing with imbalances. 

Based on its overall better performance, MobileNetV3 
was chosen as the best machine-learning model for 
deployment. The Android smartphone that has been 
installed with the model will retrieve images from storage 
to evaluate the performance of the deployment. For the 
model to make a prediction, the selected image will first 
be cropped at the periocular area. Each image included in 
the Chinese Face dataset will be individually identified. 
All the results of each expression were written down so 
that they could be kept track of. Following that, the 
performance of each expression was analyzed using the 
recorded results (Table VIII). The model performed well 
in categories with dominant features like Happiness but 
poorly in categories with ambiguous expressions like Fear. 
It is evident from Table VIII that the MobileNetV3 model 
is capable of accurately classifying certain expressions that 
are consistent with the training results during deployment 
on Android platforms. 

TABLE VIII. ON-DEVICE PERFORMANCE OF THE DEPLOYED 

MOBILENETV3-SMALL MODEL ON THE CHINESE FACE DATASET 

Model Metrics a b c d e f g 

Precision 
0.8
1 

0.4
8 

0.5
4 

0.4
4 

0.7
3 

0.4
7 

0.4
7 

Recall 
0.1
4 

0.5
9 

0.2
2 

0.9
0 

0.1
6 

0.5
8 

0.7
5 

F1-Score 
0.2
4 

0.5
3 

0.3
1 

0.5
9 

0.2
6 

0.5
1 

0.5
8 

a: anger, b: disgust, c: Fear, d: happiness, e: neutral, f: sadness, g: 
surprise. 

TABLE IX. COMPARISON OF MODEL FILE SIZES IN TENSORFLOW LITE 

(TFLITE) FORMAT 

Model Size (MB) 
MobileNetV1 14 
MobileNetV2 10.3 

MobileNetV3-Small 4.5 
MobileNetV3-Large 13 
EfficientNetV2B0 24.9 
EfficientNetV2B1 28.9 
EfficientNetV2B2 36.3 

 
To further evaluate the models’ suitability for mobile 

deployment, the file size of each converted TensorFlow 
Lite (.tflite) model was measured, as presented in 
Table IX. The results show that MobileNetV3-Small is by 
far the lightest model, weighing in at only 4.5 MB, which 

is much less than any other architecture. For mobile apps, 
a smaller model size is a key sign of efficiency because it 
means less storage space, less memory use, and faster 
loading times. Also, a lighter model usually means less 
inference latency and better energy use, which makes it a 
better choice for devices with limited resources and proves 
that it provides a better user experience. 

V. CONCLUSION 

This study employs a transfer learning approach with 
CNN-based models to differentiate between eight distinct 
emotions. This study makes use of the following CNN 
models: MobileNetV1, MobileNetV2, MobileNetV3-
Small, MobileNetV3-Large, EfficientNetV2B0, 
EfficientNetV2B1, and EfficientNetV2B2. With 
accuracies of 83.13%, 82.25%, 83.62%, 80.62%, 76%, and 
70% correspondingly, these models demonstrate effective 
generalization on the TFEID dataset. In addition, the 
trained model is converted to the TensorFlow Lite version 
and then used on the Android mobile platform, allowing 
for the optimal MobileNetV3-Small model. 

This study successfully demonstrated the effectiveness 
of lightweight deep learning models for periocular facial 
expression recognition. A thorough evaluation of seven 
architectures, encompassing the MobileNet and 
EfficientNetV2 families, was performed on the TFEID 
dataset. The results show that MobileNetV3-Small is the 
best model because it has the highest accuracy of 83.62%. 
It is even better because it is only 4.5 MB in size, making 
it highly efficient for mobile deployment. The successful 
implementation and testing on an Android platform, 
validated through testing on the Chinese Face dataset, 
confirm the practical feasibility of this model for real-
world applications where facial visibility is limited, such 
as in VR environments or due to mask usage. The model 
performs well, but future research could investigate more 
advanced methods for dealing with class imbalances in the 
real world and making it even more robust for difficult 
emotions like fear and contempt. 
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