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Abstract—Online meetings and Virtual Reality (VR)
applications require innovative approaches to interpret user
emotions and behavior. Since verbal communication is
constrained in virtual environments, facial expression
analysis is essential for understanding emotional states.
Recent research demonstrates that the periocular region
provides significant diagnostic information regarding affect
and attention, exhibiting pronounced responses to emotional
stimuli and offering a more reliable indicator of user state
than full-face analysis. This study addresses this gap by
evaluating lightweight convolutional neural network
architectures—MobileNetV1, MobileNetV2, MobileNetV3,
and EfficientNetV2—specifically for periocular-based
recognition. Experiments are conducted on the Taiwanese
Facial Expression Image Database (TFEID) benchmark, with
further validation on the Chinese Face dataset using transfer
learning for Android platform deployment. Through a
detailed analysis, we evaluate the effectiveness of each
architecture based on metrics such as accuracy, precision,
recall, and F1-Score, providing insights into their suitability
for periocular-based expression recognition. In contrast to
earlier studies that employed full-face input, this research
proposes a periocular-only approach, rendering it more
efficacious in confined environments such as virtual reality
or masked-face settings. The findings of this study
demonstrate that the MobileNetV3-Small architecture offers
an optimal trade-off, attaining an accuracy of 83.62% while
sustaining a highly efficient inference time of 16.4
milliseconds per image. Moreover, the deployment of these
models on Android devices demonstrates their practicality in
real-world settings, particularly in the context of lightweight,
mobile-based emotion recognition systems. This research
contributes to advancing emotion recognition systems,
offering practical and robust solutions for real-world
applications.

Keywords—facial expression, periocular area, MobileNet,
EfficientNetV2, Taiwanese Facial Expression Image
Database (TFEID), Chinese Face dataset

I. INTRODUCTION

Communication is the most basic activity performed by
humans to interact with each other, to then share
information, build relationships, and lead social lives.
Non-verbal ~ communication,  particularly  facial
expressions, plays a crucial role in conveying emotions,
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intentions, and thoughts universally understood across
cultures [1]. In social interactions, facial expressions are
essential because they serve as a bridge to understand the
feelings of others without exchanging words. Because it is
not limited by language barriers, this mode of
communication is extremely effective. It enables people
from a variety of backgrounds to interpret feelings and
intentions in a more natural and intuitive manner.

Facial expression is a manifestation of emotions,
intentions, and purposes through the movement of facial
muscles [2]. From a person’s facial expression, the
emotional state of that individual can be identified. Facial
expressions in humans are divided into two types: neutral
faces and expressive faces [3]. Expressive faces are
divided into six categories: happiness, surprise, anger,
sadness, fear, disgust [4]. These expression categories
have different characteristics interpreted in the form of
Action Units (AU) [5], as shown in Table 1.

TABLE I. TYPES OF FACIAL EXPRESSIONS FACES NEUTRAL HAPPY
SURPRISE ANGER SADNESS FEAR DISGUST

Neutral Ha, Surprise Anger

Sadness Fear

The rapid expansion of online communication platforms
and advancements in mobile technology have made virtual
interactions, such as remote meetings [6], online
gaming [7], and Virtual Reality (VR) environments [8],
increasingly prevalent and essential. In these digital
spaces, the implementation of facial expression
recognition is  highly recommended to make
communication more interactive and immersive,
enhancing user experience. However, the limitations of
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physical presence in virtual settings pose challenges to
conveying emotions and intentions effectively. Facial
expressions, therefore, serve as a critical tool to bridge the
gap between the virtual and real worlds, enabling users to
connect and communicate emotions in a more authentic
and engaging way.

Devices for VR, head-mounted devices, as depicted in
Fig. 1, typically capture only the area around the user’s
eye [9]. Apart from VR, the use of masks has become
commonplace in everyday activities. The COVID-19
pandemic, which began in 2019, has impacted various
aspects of life, including the widespread adoption of mask-
wearing. This poses a challenge for facial expression
recognition, as the area available for machine learning
models to analyze becomes increasingly limited, focusing
solely on the periocular region, or the area around the
eyes [10], as illustrated in Fig. 2. Implementation of facial
expression recognition on embedded systems like Internet
of Things (IoT) or mobile devices introduces additional
complexity, particularly in this constrained area. Studies
have shown that focusing on the periocular region allows
for effective emotion recognition despite facial
obstructions [11, 12]. Focusing on the periocular area
instead of the full face reduces distractions from facial
features that may not affect emotion recognition [13].

Fig. 1. Example of a head-mounted Virtual Reality (VR) device that
obstructs the lower facial region, necessitating emotion recognition from
the visible periocular area [9].

Fig. 2. Illustration of the periocular region as the area of interest for facial
expression recognition in scenarios with obstructions, such as mask-
wearing (left) or in un-occluded faces (right) [10].

This study differs from previous research in two
significant ways. Firstly, it presents a periocular-only
model that demonstrates enhanced robustness in occluded
or partially visible environments. Secondly, it emphasizes
a deployment-oriented perspective by systematically
analyzing the trade-offs between accuracy, model size, and
inference speed of lightweight Convolutional Neural
Networks (CNNs) when applied on mobile and embedded
devices. Unlike prior works that mainly pursue accuracy
improvements using large-scale CNNs, our contribution
lies in providing a comprehensive evaluation of resource-
constrained deployment for periocular expression
recognition. This perspective highlights practical
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feasibility and addresses a critical gap in current literature,
where deployment aspects of periocular biometrics remain
underexplored.

This paper investigates the effectiveness of utilizing the
periocular area in classifying facial expressions. Since
only the periocular region is visible in certain real-world
scenarios (e.g., due to mask usage or in VR/AR headsets),
focusing on this region allows for a more realistic and
adaptable approach to facial expression recognition. The
periocular region represents a noteworthy biometric
characteristic for the purpose of human identification [11].

Conducted an in-depth analysis of the MobileNet family
and EfficientNetV2 (B0, Bl, B2) architectures to
determine which is better suited to the original problem.
Because of their small size and great efficiency, these
models are perfect for embedded or mobile systems [14],
and the CNN approach works well for emotion
recognition [15].

II. RELATED AND PREVIOUS WORKS

This section delivers an overview of the literature
regarding datasets and the architecture used in the
research, along with investigations previously done that is
related to the material in this paper.

A. Related Theories

MobileNet is a series of convolutional neural network
architectures created by Google to facilitate efficient deep
learning on mobile and embedded devices [16]. The
architecture employs depth-wise separable convolution,
which divides the convolution process into two distinct
operations: depth-wise and point-wise convolution [17].
This innovative approach significantly reduces the
computational demands and the number of parameters
required for convolutional layers, making MobileNet
particularly suitable for applications on resource-
constrained platforms. This distinction between the two
convolution types is illustrated in Fig. 3. Its lightweight
design has made it a popular choice for various tasks,
including image classification, object detection, and facial
expression recognition [18].
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Fig. 3. lllustration of depth-wise and point-wise convolutions in
MobileNet.
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In addition to MobileNet, the study also examines
EfficientNetV2 (B0, B1, B2), another efficient model
family developed by Google that utilizes advanced
techniques in model scaling and architecture design.
EfficientNetV2 optimizes performance for mobile and
resource-limited devices by balancing network depth,
width, and resolution through a method known as
compound scaling [ 19]. This family of models expands the
options for high-performance, lightweight deep learning
applications, providing an alternative approach to
achieving a balance between speed and accuracy. Both
MobileNet and EfficientNetV2 are well-equipped for
deployment in environments with limited resources, as
they effectively implement various strategies to maintain
high  accuracy  while ensuring  computational
efficiency [20].

1) MobileNetV1: Depthwise separable convolutions

MobileNetV1 is based on depthwise separable
convolutions [21]. Compared to traditional convolutions,
this approach uses a single filter for each input channel,
making it more economical. It also reduces the number of
channels in the output, preserving feature dimensionality.
MobileNetV1 applies a single filter to each input channel
individually, resulting in a smaller output. This approach
significantly reduces computations while preserving
feature extraction capabilities. Compared to MobileNetV2
and MobileNetV3, MobileNetV1 relies solely on
depthwise separable convolutions.

2) MobileNetV2: Linear bottlenecks
connections

and residual

MobileNetV2 is a novel architecture that improves
efficiency and performance by incorporating linear
bottlenecks and residual connections [22]. It introduces a
low-dimensional bottleneck layer between depthwise and
pointwise convolutions, lowering computational costs
while maintaining accuracy. It also includes shortcut
connections from earlier to later layers, which allows the
network to learn more complex features. These
enhancements, inspired by ResNet architecture, improve
gradient flow and performance, making MobileNetV2 a
more reliable and efficient alternative to MobileNetV1.

3) MobileNetV3: Squeeze-and-excite blocks and efficient
inverted residuals

MobileNetV3 improves efficiency through two key
innovations: Squeeze-and-Excite (SE) blocks, which learn
channel-wise importance weights, and Efficient Inverted
Residuals, which reorder operations within the residual
block, prioritizing non-linearity over the bottleneck
layer [23]. These innovations enable thinner bottlenecks
while maintaining good accuracy. MobileNetV3 uses SE
blocks to analyze feature maps and adjust their importance
using learned weights, whereas Efficient Inverted
Residuals places nonlinearity before the bottleneck layer
to improve efficiency.

The overview on MobileNetV1, MobileNetV2, and
MobileNetV3 is shown in Table II. Overall, MobileNet
family of architectures offers a range of options optimized
for different requirements, from MobileNetV1 for basic
applications to MobileNetV3 for more demanding tasks
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where both accuracy and efficiency are crucial. By
adopting these approaches, the computational demands
and parameter count of the convolutional layer are
significantly reduced, enhancing efficiency particularly for
applications on mobile and embedded devices.

TABLE II. COMPARISON OF KEY ARCHITECTURAL FEATURES ACROSS
THE MOBILENET FAMILY

Feature MobileNetV1 MobileNetV2 MobileNetV3
[21] [22] [23]
Depthwise
Basic Depthwise Separable Efficient
Building Separable Convolution Inverted
Block Convolution with Linear Residual
Bottlenecks
ReSldulfll No Yes Yes
Connection
Squeeze-and-
/St}tl:g:ilzil No No Excite (SE)
Block
Reduce Improve iﬁlﬁgiz
Focus computational efficiency and P
efficiency and
cost performance
performance

4) EfficientNetV?2

Tan and Le [19] introduced an advanced family of
convolutional networks called EfficientNetV2 was
introduced. It improves training speed and parameter
efficiency with new techniques like training-aware neural
architecture search and Fused-MBConv layers, which are
a modified version of the traditional MBConv block [19].
This model features progressive learning, where image
resolution and architectural complexity are gradually
increased during training, leading to reduced training times
and improved efficiency [24]. By streamlining the search
for optimal neural architecture parameters and inference
time, it is made to be both smaller and faster.
EfficientNetV2 offers scalability with three variants
(EfficientNetV2BO, EfficientNetV2B1, and
EfficientNetV2B2) each progressively increasing in depth,
width, and image resolution to cater to different
computational needs and accuracy requirements. In
performance benchmarks, EfficientNetV?2 surpasses many
leading models, including ResNet and EfficientNetV1,
making it particularly effective for real-world applications
that demand quick inference on devices with limited
resources, especially in tasks like image classification and
object detection.

B. Previous Research

The forehead area did not yield a significant increase in
accuracy [25]. Various descriptors were employed,
including Gabor, LBP, Histogram of Oriented Gradient
(HOG), Gray-Level Co-occurrence Matrix (GLCM), and
GIST, with Support Vector Machine (SVM) as the
classifier. Two scenarios were tested: large area and small
area, divided into 16x16 and 32x32 blocks, as depicted in
Fig. 4.

Research on emotion detection utilizing the periocular
area involved extracting the Region of Interest (Rol) area
from 5 landmark points obtained using Dlib [26]. The
upper boundary was determined by adding approximately
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75% of the eye center’s height, while the lateral boundary
was set by adding about 25% of the distance from the eye
center, as shown in Fig. 5.

INPUT IMAGE

REGION OF INTEREST
Larger ROI (96 x 224)
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Fig. 4. Example of Region of Interest (Rol) extraction from a previous
study, showing larger (96x224) and smaller (64x224) periocular crops
for analysis [25].
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Fig. 5. Periocular area extraction [26].

Experiments were conducted by first training on the
Faces dataset, followed by testing on Chicago Faces to
assess the model’s robustness under cross-dataset testing.
The accuracy results obtained using MobileNet-V2 and
HOG-SVM architectures were 76.77% and 62.47%,
respectively.

III. MATERIALS AND METHODS

The aim of this study was to determine how using the
periocular area affects expression classification
performance. To achieve this goal, the researchers
conducted experiments using the Taiwanese Facial

Expression Image Database (TFEID) dataset and
MobileNet family architectures consists of MobileNetV1,
MobileNetV2, and MobileNetV3. The researchers focused
on face recognition in pandemic conditions, where masks
are widely recommended in almost all countries, and in the
use of head-mounted VR devices that limits the exposed
facial area only on the periocular region. We begin by
providing an overview of the dataset exploration consists
of dataset preparation and dataset preprocessing,
continued with the detailed step from each of MobileNet
architectures. Performance metrics then obtained from
experiments conducted including accuracy, precision,
recall, and F1-Score, which serve as indicators of the
effectiveness of our approach in accurately classifying
facial expressions.

The methodology employed in this study involves
several key steps for training and deploying a facial
expression classification model using MobileNet
architectures and periocular images. Initially, the training
phase utilizes the TFEID, a well-known benchmark dataset
for facial expression analysis. The next step is Facial
Mapping, which means that images within this dataset are
first processed to extract 68 landmark points using the Dlib
library. Subsequently, the periocular area is isolated by
selecting 22 landmark points corresponding to this specific
facial region. These extracted periocular images serve as
the input data to the model training step to train the
classification model using MobileNetV1, MobileNetV2,
and MobileNetV3 architectures.

The classification task is treated as a multiclass problem,
wherein each image is categorized into one of the
following classes: ‘happy’, ‘angry’, ‘sad’, ‘disgust’, ‘fear’,
or ‘neutral’. Through the training process, the performance
of each MobileNet variant is evaluated, and the best-
performing model is identified based on accuracy and
other relevant metrics.

Dataset Facial Mapping Split
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Extracting Facial 68
Landmark Points

4
=
m
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Fig. 6. The complete workflow of the proposed study, detailing the stages from dataset processing and facial mapping to model training, evaluation,
and final deployment on a mobile device via transfer learning.

After showing the optimal model, it is implemented on
an Android-based mobile device for real-time expression
classification. The testing phase involves using images not
included in dataset to assess the model’s generalization
capability. The Android module consists of several
components, including an image acquisition module
responsible for capturing images, an image processing

68

module for preprocessing the acquired images, and an
expression classification module utilizing TensorFlow
Lite and TensorFlow modules to classify expressions.
Finally, the display module presents the classification
results, including object labels and prediction outcomes,
providing users with real-time feedback on facial
expressions. This comprehensive methodology ensures the
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development of an effective and deployable expression
classification system suitable for mobile platforms. The
overall architecture is as seen in Fig. 6.

A. Dataset Preparation

The research is held using TFEID dataset which are
valuable resources in the field of facial expression
analysis, particularly concerning research focusing on the
periocular region [27]. This dataset comprises 336 images,
obtained from 40 models (20 males, 20 females),
representing eight facial expressions: ‘Neutral’, ‘Angry’,
‘Contempt’, ‘Disgust’, ‘Fear’, ‘Happy’, ‘Sad’, and
‘Surprise’. Sample images of TFEID dataset is as follows
in Fig. 7(a). This research also utilizes the Chinese Face
Dataset to evaluate the model integrated into the mobile
platform. Chinese Face Dataset contains 840 StyleGAN-
synthesized facial images [28]. The dataset has 60 men and
60 women proportionally and includes seven basic
emotional expressions (neutral, happiness, anger, fear,
sadness, disgust, and surprise). This dataset is intended to
aid psychology and related research, particularly in facial
perception, emotional recognition, and age-related social
judgments. Unlike TFEID, this synthetic dataset serves
specifically to test the model’s robustness and
generalization capability under a different data
distribution, which is crucial for assessing its performance
in real-world, on-device scenarios. Fig. 7(b) presents some
examples of images that are included in the Chinese Face
Dataset.

(a) TFEID Dataset

2 82 =2 A

wd~ el N vi!.;a

& A -
AN Sl wle

(b) Chinese Face Dataset

Fig. 7. Sample images from the two datasets used: (a) The Taiwanese
Facial Expression Image Database (TFEID) used for training [27], and (b)
the StyleGAN-synthesized Chinese Face dataset used for mobile
deployment testing [28].
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B. Dataset Preprocessing

We first analyze the distribution of expressions within
the images in each dataset and observe data imbalances, as
shown in Table III.

To address data imbalances, we apply image
augmentation for each image in every category to achieve
a total of 1000 images. But before performing the
augmentation, we first extracted the periocular area from
each image. Periocular extraction was performed utilizing
the DIib library as a face landmark detector that annotated
68 facial landmark points, as illustrated in Fig. 8(a). Dlib
is an open-source library that offers various machine
learning algorithms for tackling complex problems. It is
known for its ease of implementation, ability to work with
unconventional angles, and capability to handle occluded
faces [29].

TABLE III. EXPRESSIONS DISTRIBUTION IN TFEID

Expression Number of Images
Anger 34
Contempt 68
Disgust 40
Fear 40
Happy 40
Neutral 39
Sadness 39
Surprise 36

Upper
Boundary
w19 *20 21 ¥ 23 *24 % 26

#18 *2r

%38 %39 28 *44 % 45
%37, 42441740 #4348+ 47746 L

Jht %29 w7 Bour
dary

Lower 18

*2
i Boundary

#3233, 34356 “15
*3
#51 %52 *53

*50 gy +63 x64 "t ma

#49¢61 *65¢ 55
*68 *66
#60

*67 %56
*5 *59 Ls5g *57

*6

557 *11

*10
*8 *9

(a) 68 Landmark Points Extracted using Dlib.

Procedure Extract Periocular (source_image)

/1 1. Detect Face and Landmarks
detected_faces <- Detect_Faces(source_image)
For each face in detected_faces:

landmarks <- Predict_Landmarks(face)

/1 2. Define Cropping Boundaries
left_bound <- X_coord(landmarks[17]) // Outer left eyebrow
right_bound <- X_coord(landmarks[26]) // Outer right eyebrow

eyebrow_y <-Y_coord(landmarks[19])
top_margin <- eyebrow_y * 0.3
top_bound <- eyebrow_y - top_margin

nose_tip_y <- Y_coord(landmarks[30])
jaw_edge_y <- Y_coord(landmarks[0])
bottom_bound <- jaw_edge_y + (nose_tip_y - jaw_edge_y)

// 3. Crop and Return Image
cropped_image <- Crop(source_image,
from=(left_bound, top_bound),
to=(right_bound, bottom_bound))
Return cropped_image
End For
(b) Pseudocode to extract periocular.
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During model training, various hyperparameters are
utilized, including the number of epochs, batch size,
momentum, and the Adamax optimizer. The number of
epochs in model training refers to how many times the full
training dataset is run through the neural network to update
the weights. Each epoch is a complete pass of the whole
Fig. 8. The periocular area extraction process: (a) The 68 facial landmark dataset in which the mOdel, processes all the training d_ata
points are first detected using Dlib, (b) Pseudocode for the proposed to update the network’s weights. Increased epochs provide

periocular region extraction algorithm, and (c) the final region is cropped the model with additional opportunity to assimilate
based on specific landmark boundaries for model training. knowledge from the data.

(c) Extracted Periocular Area.

Momentum defines how much the freshly determined
statistical value (from the current batch) contributes
relative to the prior batch’s value. The optimizer manages
how the model’s weights are adjusted based on the
gradient of the loss function, improving the model’s
prediction and classification capabilities [30]. These
: e hyperparameter values (Table IV) are selected based on
The area resulted is as shown in Fig. 8(c). o the available literature and then held constant to allow for

Augmentation techniques included horizontal flipping,  , fir comparison of the models utilized [31, 32].
rotation up to a maximum of 50° degrees both left and Choosing the appropriate batch size is critical for model
right, adjustments to brightness and contrast, and gamma  trajning since a small batch size achieves convergence
adjustment. All augmentation processes were performed  faster than a big batch size. Moreover, while larger batch
randomly. Subsequently, the balanced dataset was divided  gjzes can reach the optimal minimum value, smaller
into three subsets for each emotion category: training,  patches may struggle achieve this. In this study, each pre-
testing, and validation, with a ratio of 80% for training,  {rained model was additionally given five layers: two
10% for testing, and 10% for validation, respectively,  dropout layer and three dense layers. The dropout rate in
based on the total number of images per emotion category.  the dropout layer is 50%, and the first dense layer has 256
neurons, the second has 128 neurons, and the last dense
has 8 neurons to categorize 8 distinct moods using the

As quthp ?d n the dataset preparatlon. gec‘uon, .the SoftMax activation function. This study was carried out
dataset is divided into three components: training, testing, : .
L S using a MacBook OS Sonoma with an Apple M1 Pro
and validation. Each component maintains the same
processor and 16 GB RAM.

emotional categorization. Images for training, testing, and
validation are randomly selected, ensuring that each model
is exposed to identical datasets across all stages.

The periocular region was then extracted from each
image using a custom algorithm that leverages specific
facial landmarks. This method defines the precise cropping
boundaries by utilizing the coordinates of key points on the
eyebrows, eyes, and nose. The detailed logic for this
extraction procedure is formally presented in Fig. 8(b).

C. Experiments

TABLE IV. HYPERPARAMETER SETTINGS USED FOR TRAINING ALL MODELS

Parameters MobileNetV1 MobileNetV2 MobileNetV3 Small  MobileNetV3 Large  EfficientNetV2 Family
Epoch 55 35 55 55 35
Batch 5 5 5 5 5
Optimizer Adamax Adamax Adamax Adamax Adamax
. Categorical Cross Categorical Cross Categorical Cross Categorical Cross Categorical Cross
Loss Function
Entropy Entropy Entropy Entropy Entropy
Momentum 0.99 0.99 0.99 0.99 0.99
Learning Rate 10°° 10°° 1073 10°° 1073

OS mobile app for TensorFlow Lite models. A Keras-
based Tensorflow Lite model processed each image and

The optimal machine-learning model will be deployed generated confidence scores indicating its class
on an Android device to test its real-world performance.  probability.

Using the TensorFlow Lite Task Library API, models were

converted to tflite interpreters to deploy trained machine ~ £-  Evaluation

learning on mobile devices. TensorFlow Lite converter This study uses confusion matrix serves as a tool to
and interpreter enable mobile model deployment [33].  assess the effectiveness of the model resulted in each
First, TensorFlow-created Keras models were exported to  experiment. In the confusion matrix of a multiclass
HDF5 binary data format (hS) models. A second step  problems, there are values for True Positive (TP), False
involved the conversion of the h5 models to TensorFlow  Positive (FP), False Negative (FN), and True Negative
Lite models using the TensorFlow Lite Converter. Finally,  (TN) as served in Table V.

the TensorFlow Lite interpreter executed models on From the confusion matrix, we employ accuracy,
smartphones to maximize detection performance using  precision, recall, and the F1-Score as metrics to evaluate
smartphone hardware [34]. The Flutter framework and the model’s performance. Accuracy represents the
TensorFlow Lite library were used to create an Android  proportion of correctly classified instances (both TP and

D. Mobile Application Implementation
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TN) out of the total number of instances in the dataset. It It provides a balance between precision and recall,
measures the overall correctness of the model’s predictions  allowing for a comprehensive assessment of the model’s
across all expression classes (Eq. (1)). Precision measures  performance. The F1-Score takes both false positives and
the model’s ability to correctly classify instances of a  false negatives into account and is particularly useful when
particular expression class out of all instances classified as  there is an imbalance between the classes or when both
that class by the model. It is calculated as the ratio of TP precision and recall are equally important.

to the sum of TP and FP (Eq. (2)).

TP
= 3
Accuracy = TP+TN " Recall e 3)
TP+ FP+TN + FN
Precisionx Recall
P F1-Score=2x — “)
Precision = @) Precision + Recall
TP+ FP
The inference time (Eq. (5)) metric uses the model’s
average time to forecast a picture class. This was achieved
TABLE V. CONFUSION MATRIX by setting a timer at the start and conclusion of the review
Predicted Actual Values process. This measure uses milliseconds as its unit.
Values True (+) False (-)
True Positive . ) Trainine Time
Positive (+) (Correct UFalse POZI'EIVC | Time = g - %)
result) (Unexpected result) epoch x batch x batch size
Fals; True Negative
Neeative (— Negative
egative (—) (Missing (Correct absence of
result) result) IV. RESULT AND ANALYSIS

In this section, we present the results of our
investigation into the utilization of the periocular region in
facial expression classification using the TFEID dataset
and MobileNet family architectures and EfficientNetV2
family architectures. Figs. 9 and 10 illustrate the
performance of the models that were investigated.

Recall, also known as sensitivity or true positive rate,
measures the model’s ability to correctly identify instances
of a particular expression class out of all instances that
truly belong to that class. It is calculated as the ratio of TP
to the sum of TP and FN (Eq. (3)). The F1-Score, derived
from Eq. (4), is the harmonic mean of precision and recall.
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Fig. 9. Training and validation loss curves for each of the seven evaluated models over the training epochs.
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Fig. 10. Training and validation accuracy progression for each model, showing how model learning develops over time.

Table VI illustrates a distinct performance trend: the
MobileNet family consistently surpasses the EfficientNet
family on this particular periocular dataset. This finding is
significant, indicating that MobileNet’s architectural
design, which emphasizes depth-wise separable
convolutions and efficient building blocks, is especially
adept at extracting pertinent features from the periocular
region, particularly in contrast to EfficientNet’s compound
scaling approach. The MobileNetV3-Small architecture
exemplifies an ideal equilibrium, with the greatest
accuracy of 83.62% with an exceptionally short inference
time of under 16.4 milliseconds. This model exemplifies a
significant trade-off wherein a more compact and efficient
architecture outperforms both its larger equivalents and the
more intricate EfficientNet models in terms of
performance. Although MobileNetV1, MobileNetV2, and
MobileNetV3-Large exhibit competitive performance (all
achieving accuracies exceeding 81%), MobileNetV3-
Small stands out by offering the optimal balance of high
accuracy and exceptional speed, rendering it an exemplary
choice for resource-limited mobile applications.
Conversely, the EfficientNetV2 family exhibited constant
underperformance, with accuracy markedly declining as
the model size escalated from BO to B2. The extended
inference durations for EfficientNetV2B1 (66.5 ms) and
EfficientNetV2B2 (67.9 ms), along with diminished
accuracies (76% and 70% respectively), further validate
their inadequate appropriateness for this particularly task.

TABLE VI. FINAL PERFORMANCE COMPARISON OF ALL MODELS ON

THE TEST SET
. MobileNet MobileNetV3 EfficientNetV2
Metrics
V1 V2  Small Large B0 Bl B2
'T 83.1 822 83.6 814 80.6 76 70
211 82.8 82.1 82.9 81.3 819 71.8 69.6
3111 30.2  31.7 16.4 29.1 482 66.5 679

!'Accuracy (%); *F1-Score (%); *Inference time per image (ms).
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Based on these findings, it seems like the EfficientNet
architecture might need a few more epochs to reach its full
potential on this periocular dataset. Overall,
MobileNetV3-small emerged as the optimal choice for
balancing accuracy, F1-Score, and training time efficiency.
On the other hand, the EfficientNet architecture turned out
to be less effective for this specific assignment.

The confusion matrix is an effective visualization tool
for CNN network performance. Fig. 11 shows the
confusion matrix of all the models used to classify eight
emotions. This makes it easier to see which classes caused
the trained models to be the most inaccurate. Table VII
shows the performance graph between emotions, which
will further confirm the confusion matrix’s findings. The
accuracy and F1-Score for each emotion indicate that
MobileNetV1 and MobileNetV3-small excel in classifying
most emotions, particularly in the classes of disgust,
happiness, and surprise, which exhibit consistent and
precise prediction levels.

A more granular analysis using the confusion matrices
(Fig. 11) provides deeper insights into per-class
performance and reveals the models’ specific strengths and
weaknesses. It becomes evident that across all models,
certain emotions are consistently more challenging to
classify from the periocular region alone. In particular, fear
stands out as the most difficult emotion to categorize, a
challenge that is likely due to its subtle and often shared
features with other expressions, as seen in the low recall
and F1-Scores for this class (Table VII). Similarly,
emotions like Anger and Neutral also pose difficulties,
suggesting that the primary cues for these expressions may
reside in other facial areas (e.g., the mouth or jaw).

Conversely, emotions such as Disgust and Happiness
are consistently the easiest to categorize, with all models
showing high precision and recall. This indicates that the
muscle movements around the eyes and eyebrows for these
expressions are highly distinct and serve as strong
indicators.
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Fig. 11. Confusion matrices for each model, visualizing the classification performance across the eight emotion classes. The diagonal elements
represent correctly classified instances.

TABEL VII. DETAILED PER-CLASS PERFORMANCE METRICS (PRECISION, RECALL, F1-SCORE) FOR EACH MODEL

Model Metrics Model Anger Contempt Disgust Fear Happiness Neutral Sadness Surprise
MobileNetV1 0.8411 0.625 0.9804 09167 0.9423 0.5857 0.8627 0.9505
MobileNetV2 0.8111 0.6373 1 0.8933 0.8333 0.7263 0.7615 0.9674
MobileNetV3-Small  0.8182 0.783 0.9897 0.871 0.9259 0.7882 0.7111 0.8403
Precision MobileNetV3-Large 0.7808 0.5769 1 0.9306 0.9798 0.7011 0.6875 1
EfficientNetV2B0 0.7714 0.6154 1 0.8902 0.99 0.471 0.8818 0.9688
EfficientNetV2B1 0.6667 0.75 0.9327 1 0.7615 0.6364 0.8058 0.7299
EfficientNetV2B2 0.6947 0.6753 1 1 0.8772 0.4591 0.5465 0.7143
MobileNetV1 0.9 0.45 1 0.66 0.98 0.82 0.88 0.96
MobileNetV2 0.73 0.65 0.96 0.67 1 0.69 0.99 0.89
MobileNetV3-Small 0.72 0.83 0.96 0.54 1 0.67 0.96 1
Recall MobileNetV3-Large 0.57 0.75 1 0.67 0.97 0.61 0.99 0.95
EfficientNetV2B0 0.54 0.64 1 0.73 0.99 0.65 0.97 0.93
EfficientNetV2B1 0.92 0.09 0.97 0.44 0.99 0.84 0.83 1
EfficientNetV2B2 0.66 0.52 0.98 0.31 1 0.73 0.47 1
MobileNetV1 0.8696 0.5233 0.9901  0.7674 0.9608 0.6833 0.8713 0.9552
MobileNetV2 0.7684 0.6436 0.9796  0.7657 0.9091 0.7077 0.8609 0.9271
MobileNetV3-Small  0.766 0.8058 0.9746  0.6667 0.9615 0.7243 0.817 0.9132
F1-Score MobileNetV3-Large  0.659 0.6522 1 0.7791 0.9749 0.6524 0.8115 0.9744
EfficientNetV2B0 0.6353 0.6275 1 0.8022 0.99 0.5462 0.9238 0.949
EfficientNetV2B1 0.7731 0.1607 0.951 0.6111 0.8609 0.7241 0.8177 0.8439
EfficientNetV2B2 0.6769 0.5876 0.9899  0.4733 0.9346 0.5637 0.5054 0.8333

While MobileNetV3-Small is the overall best performer,
its strength is particularly pronounced in these more-

distinguishable classes. The superior performance of
MobileNet models over EfficientNet is also visible at the
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class level; the EfficientNetV2B1 and V2B2 models, for
instance, exhibit a high degree of misclassification for
emotions like contempt and fear, confirming their inferior
efficacy beyond just overall accuracy.

While data augmentation was employed to create a
balanced training dataset, it is crucial to acknowledge a
potential limitation regarding the model’s generalizability
in real-world scenarios. This situation can cause a majority
class bias, which means that a model is more likely to
correctly predict dominant classes and does worse on
minority classes that aren’t seen very often. So, the model
does well on our balanced test set, but it might not be as
good at detecting rare emotions in real life. This points to
a problem that needs more research using more advanced
techniques for dealing with imbalances.

Based on its overall better performance, MobileNetV3
was chosen as the best machine-learning model for
deployment. The Android smartphone that has been
installed with the model will retrieve images from storage
to evaluate the performance of the deployment. For the
model to make a prediction, the selected image will first
be cropped at the periocular area. Each image included in
the Chinese Face dataset will be individually identified.
All the results of each expression were written down so
that they could be kept track of. Following that, the
performance of each expression was analyzed using the
recorded results (Table VIII). The model performed well
in categories with dominant features like Happiness but
poorly in categories with ambiguous expressions like Fear.
It is evident from Table VIII that the MobileNetV3 model
is capable of accurately classifying certain expressions that
are consistent with the training results during deployment
on Android platforms.

TABLE VIII. ON-DEVICE PERFORMANCE OF THE DEPLOYED
MOBILENETV3-SMALL MODEL ON THE CHINESE FACE DATASET

Model Metrics a b ¢ d e f g
Precision 08 04 05 04 07 04 04
1 8 4 4 3 7 7
Recall 0.1 05 02 09 0.1 05 07
4 9 2 0 6 8 5
02 05 03 05 02 05 05
F1-Score

4 3 1 9 6 1 8

a: anger, b: disgust, c: Fear, d: happiness, e: neutral, f: sadness, g:
surprise.

TABLE IX. COMPARISON OF MODEL FILE SIZES IN TENSORFLOW LITE

(TFLITE) FORMAT
Model Size (MB)
MobileNetV1 14
MobileNetV2 10.3
MobileNetV3-Small 4.5
MobileNetV3-Large 13
EfficientNetV2B0 24.9
EfficientNetV2B1 289
EfficientNetV2B2 36.3

To further evaluate the models’ suitability for mobile
deployment, the file size of each converted TensorFlow
Lite (.tflite) model was measured, as presented in
Table IX. The results show that MobileNetV3-Small is by
far the lightest model, weighing in at only 4.5 MB, which
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is much less than any other architecture. For mobile apps,
a smaller model size is a key sign of efficiency because it
means less storage space, less memory use, and faster
loading times. Also, a lighter model usually means less
inference latency and better energy use, which makes it a
better choice for devices with limited resources and proves
that it provides a better user experience.

V. CONCLUSION

This study employs a transfer learning approach with
CNN-based models to differentiate between eight distinct
emotions. This study makes use of the following CNN

models: MobileNetV1, MobileNetV2, MobileNetV3-
Small, MobileNetV3-Large, EfficientNetV2BO0,
EfficientNetV2B1, and EfficientNetV2B2.  With

accuracies of 83.13%, 82.25%, 83.62%, 80.62%, 76%, and
70% correspondingly, these models demonstrate effective
generalization on the TFEID dataset. In addition, the
trained model is converted to the TensorFlow Lite version
and then used on the Android mobile platform, allowing
for the optimal MobileNetV3-Small model.

This study successfully demonstrated the effectiveness
of lightweight deep learning models for periocular facial
expression recognition. A thorough evaluation of seven
architectures, encompassing the MobileNet and
EfficientNetV2 families, was performed on the TFEID
dataset. The results show that MobileNetV3-Small is the
best model because it has the highest accuracy of 83.62%.
It is even better because it is only 4.5 MB in size, making
it highly efficient for mobile deployment. The successful
implementation and testing on an Android platform,
validated through testing on the Chinese Face dataset,
confirm the practical feasibility of this model for real-
world applications where facial visibility is limited, such
as in VR environments or due to mask usage. The model
performs well, but future research could investigate more
advanced methods for dealing with class imbalances in the
real world and making it even more robust for difficult
emotions like fear and contempt.
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