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 Abstract—Different breast cancer detection systems have 

been developed to help clinicians analyze screening 

mammograms. Breast cancer has been increasing gradually 

so scientists work to develop new methods to reduce the risks 

of this life-threatening disease. Convolutional Neural 

Networks (CNNs) have shown much promise In the field of 

medical imaging because of recent developments in deep 

learning. However, CNN’s based methods have been 

restricted due to the small size of the few public breast cancer 

datasets. This research has developed a new framework and 

introduced it to detect breast cancer. This framework utilizes 

Convolutional Neural Networks (CNNs) and image 

processing to achieve its goal because CNNs have been an 

important success in image recognition, reaching human 

performance. An efficient and fast CNN pre-trained object 

detector called RetinaNet has been used in this research. 

RetinaNet is an uncomplicated one-stage object detector. A 

two-stage transfer learning has been used with the selected 

detector to improve the performance. RetinaNet model is 

initially trained with a general-purpose dataset called COCO 

dataset. The transfer learning is then used to apply the 

RetinaNet model to another dataset of mammograms called 

the CBIS-DDSM dataset. Finally, the second transfer 

learning is used to test the RetinaNet model onto a small 

dataset of mammograms called the INbreast dataset. The 

results of the proposed two-stage transfer learning 

(RetinaNet → CBIS-DDSM → INbreast) are better than the 

other state-of-the-art methods on the public INbreast dataset. 

Furthermore, the True Positive Rate (TPR) is 0.99 ± 0.02 at 

1.67 False Positives per Image (FPPI), which is better than 

the one-stage transfer learning with a TPR of 0.94 ± 0.02 at 

1.67 FPPI.  

 

Keywords—breast cancer, image processing, machine 

learning, convolutional neural networks 

 

I. INTRODUCTION 

The most common cause of death in developed 

countries such as China is cancer. There are 9.9 million 

cancer-related deaths and 19.3 million new cases in 2020 

[1]. With an estimated (11.7%) of new cases, female breast 

cancer has exceeded lung cancer as the most widespread 
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cancer. Stomach (5.6%), prostate (7.3%), colorectal (10%) 

and lung (11.4%) are the percentages of other cancers [1]. 

The chance of occurrence of breast cancer is increased 

by several factors, i.e., smoking, use of alcohol, 

reproductive factor, hormonal factor, and family history. 

Consequently, early-stage detection of breast cancer is a 

hot research area.  

CNNs are deep feed-forward networks that are capable 

of achieving impressive results in many applications [2]. 

They can be used in medical applications effectively. 

However, the breast datasets are relatively small and are 

not enough to train CNNs. Consequently, there is a need 

for additional research to enhance the precision of cancer 

detection [3]. The enhancement can be achieved by using 

transfer learning and pre-trained models called RetinaNet. 

For the COCO challenge's object detection task, RetinaNet 

should classify objects into 80 classes [4]. However, 

RetinaNet must classify objects into two binary classes of 

mass and non-mass for the breast cancer detection task. 

The parameter that specifies the number of classes must be 

adjusted as a result. Appropriate learning rate, focusing 

parameter γ and weighting factor α should also be chosen 

carefully. 

Society is significantly benefited from the early 

detection of breast cancer. People with breast cancer and 

their family can obtain timely medical recommendations, 

therapies, and support when the cancer is diagnosed early. 

The risk of death due to breast cancer can also be reduced 

if it is detected in the early stage [5]. This research will 

make the diagnosis of breast cancer faster and more 

accurate and improves cancer outcomes by allowing 

providing care at the earliest possible stage. 

The main contributions that distinguish this research are 

highlighted as follows: First, a new framework for 

detecting breast cancer has been developed and is based on 

the RetinaNet model which is a cutting-edge, simple, one-

stage object detector and uses a convolution neural 

network. Although RetinaNet has demonstrated its ability 
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to perform common object detection tasks, it has not been 

fully evaluated to detect masses in mammograms. Second, 

a two-stage transfer learning has been used with the 

RetinaNet detector so the performance has been improved 

and better results have been achieved compared with the 

one-stage transfer learning methods. Third, the proposed 

framework is comprehensively evaluated using one-stage 

and two-stage transfer learning using CBIS-DDSM and 

INbreast datasets. Fig. 1 provides a more formal 

explanation of our research (hypothesis, the main objective, 

methodology, and result). 

 

Hypothesis: It is possible to automatically detect 

breast cancer using mammographic images and deep 

learning. 

 

 

Objectives: Propose and implement an automatic 

breast cancer detection based on image processing 

and a pre-trained model called RetinaNet. 

 

 

Methodology: A two-stage transfer learning has been 

used to improve the accuracy and to solve the problem 

of overfitting due to the small size of breast cancer 

datasets. The first stage of transfer learning has been 

implemented from the COCO dataset to CBIS-DDSM 

dataset whereas the second stage of transfer learning 

has been done to the INbreast dataset from the CBIS-

DDSM dataset. 

    

 

Results:  In comparison to cutting-edge techniques, 

the proposed framework performs with better 

accuracy. 

Figure 1. Hypothesis, main objective, methodology, and result. 

The rest of the paper is organized as follows: the details 

about previous research on detecting breast cancer are 

presented in Section II. The details about the datasets and 

CNN architectures that have been used are included in 

Section III. This section also describes the instructions 

regarding transfer learning and how to train and test CNN 

models for mass classification and detection. The details 

of the experiments carried out in this research are 

described in Section IV. Finally, Section V presents the 

conclusions and recommendations. 

II. LITERATURE REVIEW 

In the past decades, breast cancer has been detected 

using a variety of Computer-Aided Diagnosis (CAD) 

methods. The non-deep learning-based systems have used 

image filters and utilized conventional machine learning 

models which rely on hand-engineered features [6–8]. 

However, meaningful features are difficult to define on 

mammograms due to changes in tissue context, texture, 

contrast, brightness, and density. In challenging situations, 

these systems demonstrated only limited accuracy [9]. 

The deep learning-based breast cancer detection 

systems can automatically identify which image features 

are most useful for making diagnoses, which improves the 

efficiency of these systems. Although several researchers 

have considered using deep learning to detect masses, 

breast cancer detection research has been restricted 

because there are few and small public breast cancer 

datasets [10]. Some researchers have been used transfer 

learning to overcome the small breast cancer datasets [10–

12].  

The authors of [13] proposed a new method for 

detecting breast cancer using the fusion of MRI and CT 

pictures with Fisher’s Linear Discriminant Analysis 

(FLDA). A combination of techniques has been used in the 

proposed methods: filters for preprocessing pictures, and 

pixel normalization for CT and MRI images using 

histogram equalization; FLDA analysis has been used to 

select features from corresponding CT and MRI images. 

The MRI and CT images of each case are fused using 

FLDA. 

Angulo et al. [14] audit CAD systems that can be used 

to mark suspicious parts in mammographic images which 

can help physicians detect breast cancer. The authors have 

emerged modalities like Digital Breast Tomosynthesis 

(DBT) for improving lesion characterization and tissue 

overlapping. Different cases were assessed and evaluated 

using the DBT-based method. 

Agarwal et al. [10] Propose patch-based Convolutional 

Neural Networks (CNNs) to detect breast cancer. CBIS-

DDSM dataset has been used in the training. The trained 

model is then transferred and tested using the INbreast 

dataset. VGG16, ResNet50, and InceptionV3 are tested 

and evaluated in this research because they are widely used 

pre-trained CNNs. The authors conclude that the 

InceptionV3 model has a better result than the other. 

Lundervol et al. [15] have been focused on how to 

utilize deep learning in MRI. The latest advances and 

challenges of utilizing machine learning in medical image 

analysis and processing have been overviewed. The 

authors indicate how to utilize deep learning in MRI 

processing e.g. Image acquisition, image retrieval, image 

segmentation, and disease prediction.  

Jung et al. [9] propose the pre-trained RetinaNet for 

cancer detection. A deep CNN has been used to create the 

RetinaNet. It is a fast and efficient one-stage object 

detector. However, RetinaNet has not been tested and 

evaluated to detect cancers in mammograms. Two datasets, 

the public dataset INbreast and the in-house dataset GURO 

have been used to test their method. The proposed detector 
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outperforms the more complicated two-stage detectors, 

according to the results. 

In [16], the current molecular understanding of the MD 

is presented in this review. The association between its 

demography and the MD has also been reviewed. This 

review presents how to modulate MD using environmental 

factors. The law governing the detection of MD on a 

conventionally screened mammography has also been 

investigated. 

Two research gaps can be identified; first, the 

convolutional breast cancer systems rely on hand-

engineered features extraction which is difficult to define 

on mammograms due to changes in tissue context, texture, 

contrast, brightness, and density. Second, the deep 

learning based breast cancer systems suffers from 

overfitting due to the small size of breast cancer datasets. 

III.  METHODOLOGY 

In this section, the datasets that have been used to train 

and test the proposed framework have been described, and 

the architectures of the CNN have been presented. Finally, 

the proposed framework used for breast cancer detection 

has been introduced. Fig. 2 shows the block diagram of the 

proposed framework. 

A. Datasets 

Three datasets have been used to train, validate and test 

the proposed method: 

• COCO dataset 

The Common Objects in Context (COCO) dataset [17] 

in machine learning is a popular object recognition dataset. 

It contains hundreds of thousands of images that can be 

used for computer vision. It contains 330 K images and 

more than 200 K labeled. It contains 91 stuff categories 

and 80 object categories. It includes 330,000 images and 5 

captions per image. 

• CBIS-DDSM dataset 

The DDSM [18] is a public mammographic 

image dataset. It creates from scanned and compressed 

mammography films. They use lossless JPEG encoding for 

compression. This research uses the CBIS-DDSM dataset, 

a modern version of the DDSM dataset [19]. A DICOM 

format has been used in the new version. It contains 3061 

images of 1597 cases.  

The CBIS-DDSM dataset contains breast and non-

breast areas. Therefore, a segmentation stage is required to 

extract the breast area. The dataset is split into a training 

set and a testing set. 1231 images for training and 361 

images for testing. Moreover, 985 images from the training 

set have been used for training and 246 images have been 

used for validation. 

• INbreast dataset 

This dataset includes 410 DICOM-formatted digital 

mammograms [20]. It contains 410 images acquired from 

115 cases. In this research, to separate the breast area from 

the background in images, a global threshold is used. The 

dataset contains histological information and pixel-wise 

annotations about the type of cancer.  

B. Artificial Neural Networks (ANNs) 

ANNs are motivated by the biological neural networks 

found in animal brains. ANNs were introduced in the 

1950s [21].   

A hidden layer, an output layer, and an input layer make 

up the ANN. Nodes known as (artificial) neurons make up 

every layer. The connections among nodes are called edges. 

A numerical parameter called weight is associated with 

each input to transform its value within the network's 

layers. 

ANNs are not suitable for image processing because of 

the unmanageable weights in large images and overfitting 

can occur in the training stage. Furthermore, the loss of 

spatial information of input image. The CNNs can be used 

instead of ANNs with image processing. 

In the Machine learning field, CNNs are one of the best 

options for image recognition, image classifications, 

object detection, face recognition faces, etc. [9]. CNNs 

consist of several convolutional layers.  

The output value of each pixel is determined by 

applying a filter using a convolution operation.  

C. Model Description (RetinaNet) 

One-stage object detection is provided by RetinaNet [4]. 

Fig. 2 shows the architecture of the RetinaNet. It was 

presented in 2017 by Facebook AI Research (FAIR) team. 

It works well with small-scale and dense objects. The class 

imbalance has been identified as the main problem with 

one-stage detectors [9]. Two improvements have been 

added to RetinaNet to achieve better performance than 

existing one-stage object detection models in terms of 

running time and accuracy: Focal Loss [4]and Feature 

Pyramid Networks (FPN) [22].  

Focal Loss (FL) is a novel loss function that is simple 

but effective. FL is introduced with one-stage object 

detection models to handle the class imbalance problem. 

One-stage detectors suffer from the problem of a huge 

number of sampling of anchor boxes [4]. A few anchor 

boxes are assigned by the RetinaNet model to solve the 

problem.  

In computer vision, image pyramids provide an efficient 

representation for space scale invariant. This makes the 

pyramid scale invariant. Image pyramids subsample each 

image into lower resolution and smaller size images. The 

subsampled images are then used to extract different 

features [22]. Image pyramids are computing and memory 

intensive. 

CNNs can be used instead of image pyramids. The 

pyramid itself can be obtained from the structure of the 

CNNs. The pyramidal structure is formed by the CNNs 

because the size of feature maps decreases due to 

convolutional operations. Fig. 3(a–d) shows the network 

architecture of RetinaNet. 
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Figure 2. The block diagram of the proposed breast cancer detection system. The blue boxes in the RetinaNet model represent the training parts while 
white boxes represent the freezing parts. 

 

 

Figure 3. The network architecture of RetinaNet [4]. 

A backbone network and two subnetworks make up 

RetinaNet. The output of the backbone is subjected to 

convolutional bounding box regression and convolutional 

object classification by the subnetworks. 

Feature Pyramid Network Backbone: It is built on 

top of ResNet101 or ResNet50 [23]. Other classifiers can 

also be selected when designing the network. It generates 

different sizes of the feature. 

Anchors: Translation-invariant anchor boxes are used 

[22]. Three anchors of sizes {22/3, 21/3, 21/3} are added 

to each original three anchors. In total nine anchors have 

been used at each pyramid level. 

Classification Subnet: It is used to predict the 

probability of detecting an object at each spatial location 

[4]. Each pyramid level is attached to the classification 

subnet. Objects can be detected at a different scale at each 

level of the pyramid [9].  

Box Regression Subnet: The offset from each anchor 

box to an adjacent main object is regressed by this subnet 

to the object classification subnet. Every level of the 

pyramid has a box regression subnet connected [4].  

Focal Loss: Cross-entropy loss function (CE) is 

improved by using a modulation term called focal loss. It 

handles the class imbalance problem. Eq. (1) represents the 

Focal Loss function: 

 

𝐹𝐿(𝑝𝑡) = −𝛼𝑡(1 − 𝑝𝑡)
𝛾log⁡(𝑝𝑡)                (1) 

 

where γ is a parameter used to regulate the modulating 

term’s strength, the weight α is assigned to the minority 

class. 

D. Transfer Training 

In machine learning, It enables a model that has been 

trained on big image datasets to be applied to new tasks 

[12]. Training the CNN model using an insufficient dataset 

may lead to low performance. Therefore, sufficient 

datasets that are collected for a similar task can be used by 

researchers and then transfer learning to the insufficient 
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datasets [9]. The researchers can also use publicly 

available pre-trained CNN models to apply them to other 

datasets.  

In this research, we introduce a two-stage transfer 

learning of the RetinaNet model which is pre-trained using 

the COCO dataset. The proposed cascade of transfer 

learning is as below: 

• RetinaNet → CBIS-DDSM → INbreast 

The architecture of the CNN models consists of two 

parts: convolutional base and classifier [24]. The 

convolutional base is used for features extraction while the 

classifier is used for image classification. Hierarchical 

feature representations can be automatically learned by the 

CNN model [25]. As a result, the features of the last layers 

are specialized and dependent on the dataset and task 

selected, whereas the features of the first layers are general 

and may apply to different problem domains. In other 

words, the classifier component and part of the top layers 

of the convolutional base of CNN models correspond to 

specialized features, whereas the lower layers of the 

convolutional base, those closest to the inputs, refer to 

general features. Three strategies can be used for transfer 

learning: train the entire model, train only the classifier 

part, or train the classifier and part of the convolutional 

base [24]. Fig. 4 shows the architecture of the CNN models.  

 

Figure 4. The parts of pre-trained models. The yellow part represents the 
classifier, and the green and red parts represent the base of features 
extraction. 

• First Stage Transfer Learning 

The pre-trained RetinaNet is originally trained with the 

COCO dataset. This dataset contains hundreds of 

thousands of images so the model is capable to classify 

between 80 objects efficiently. As a consequence, it can be 

used as a base for transfer learning to significantly smaller 

mammographic image datasets. This circumstance will 

motivate us to go to the first stage of transfer learning. Two 

components of the RetianaNet model will be trained with 

the CBIS-DDSM dataset: the classifier and the top layers 

of the convolutional base.  

• Second Stage Transfer Learning 

The pre-trained model with the CBIS-DDSM dataset 

that is produced by the first stage of transfer learning will 

be used with the INbreast dataset. The CBIS-DDSM is a 

good size dataset that contains sufficient lesion cases. It is 

also very similar to the INbreast dataset and only the mode 

of acquisition is different. The classifier of the RetinaNet 

Model will only be trained in the second stage of transfer 

learning.  

IV.  EXPERIMENTAL RESULTS 

The performance of the proposed framework has been 

analyzed using three metrics: the TPR, FPPI and the FROC 

curve. The FROC curve is a method for simultaneously 

assessing a free-response framewok's performance at all 

decision thresholds [26]. It shows the relationship between 

the TPR and the FPPI. The TPR equation is given by: 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                              (2) 

 

where FN is the number of false negatives and TP is the 

number of true positives. The FPPI equation is given by: 

 

𝐹𝑃𝑃𝐼 =
𝐹𝑃

𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑡𝑒𝑠𝑡𝑒𝑑⁡𝑓𝑟𝑎𝑚𝑒𝑠
                 (3) 

 

where FP is the number of false positives. The number of 

classes of the breast cancer detection task is 2 (mass and 

non-mass) whereas it equals 80 classes for the COCO 

dataset's object detection task. As a result, the subnet's 

parameter K in the RetinaNet model, which specifies the 

number of classes, is set to 2 instead of 80. The best values 

that were proved in the original article about the RetinaNet 

model are used [4, 9], which were set to 0.25 for the 

weighting factor (α), 2 for the focusing parameter (γ) and 

0.00001 for the learning rate. The training and testing sets 

of the INbreast and CBIS-DDSM datasets have been 

chosen to be similar to [27], which means half of each 

dataset's images are utilized for training, and the other half 

is used for testing.  

Table I shows the performance of the RetinaNet model 

using a one-stage transfer learning (RetinaNet → INbreast), 

where the (μ ± σ) refers to the mean plus/minus the 

standard deviation. The higher TPR is 0.94 at 1.67 FPPI. 

Table II shows the performance RetinaNet model using a 

two-stage Transfer Learning (RetinaNet → CBIS-DDSM 

→ INbreast). The higher TPR is 0.99 at 1.67 FPPI. 

Consequently, the proposed two-stage Transfer Learning 

achieves better performance compared with the one-stage 

transfer learning. Table III pressents a performance 

comparison of the previous methods and the proposed 

framework. Fig. 4 shows the FROC curve on INbreast 

using one-stage learning transfer learning and two-stage 

learning transfer. 

The intermediate results using the CBIS-DDSM dataset 

are shown in Table IV. The accuracy is less than the 

accuracy of the proposed two-stage transfer learning due 

to the dissimilarity of the COCO and CBIS-DDSM 

datasets. However, this transfer learning is significantly 

useful because it can be used as a base for the second 

transfer learning. 

The results of the proposed framework with small and 

large mass sizes have been shown in Table V. The lesions 

in the INbreast dataset have been divided into two 

categories: the size of small lesions is smaller than 2 cm 

while larger lesions are equal to or greater than 2 cm. The 

TPR of the proposed framework with small lesions is 0.93 

at 0.5 FPPI, while the TPR with large lesions is 0.98 at 0.5 

FPPI. 
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TABLE I.  THE PERFORMANCE OF THE RETINANET MODEL USING A 

ONE-STAGE TRANSFER LEARNING 

Model 
Pretrained 

dataset 

Fine 

tune 
FPPI TPR (μ ± σ) 

Training 

cascade 

RetinaNet COCO YES 0.25 0.89 ± 0.07 
RetinaNet 

→ 

INbreast 

RetinaNet COCO YES 0.44 0.90 ± 0.06 
RetinaNet 

→ 

INbreast 

RetinaNet COCO YES 0.58 0.91 ± 0.05 

RetinaNet 

→ 
INbreast 

RetinaNet COCO YES 0.79 0.93 ± 0.03 

RetinaNet 

→ 

INbreast 

RetinaNet COCO YES 1.67 0.94 ± 0.02 

RetinaNet 

→ 

INbreast 

TABLE II.  THE PERFORMANCE OF THE RETINANET MODEL USING 

A TWO-STAGE TRANSFER LEARNING 

Model 
Pretrained 

dataset 

Fine 

tune  
FPPI TPR (μ ± σ)  

Training 

cascade 

RetinaNet CBIS-DDSM YES  0.25 
0.90 ± 0.06  

 

RetinaNet 

→ CBIS-

DDSM → 
INbreast 

RetinaNet CBIS-DDSM YES  0.44 0.93 ± 0.05 

RetinaNet 

→ CBIS-

DDSM → 
INbreast 

RetinaNet CBIS-DDSM YES  0.58 0.94 ± 0.04 

RetinaNet 

→ CBIS-

DDSM → 
INbreast 

RetinaNet CBIS-DDSM YES  0.79 0.96 ± 0.04 

RetinaNet 

→ CBIS-

DDSM → 
INbreast 

RetinaNet CBIS-DDSM YES  1.67 0.99 ± 0.02 

RetinaNet 

→ CBIS-

DDSM → 
INbreast 

TABLE III.  A COMPARISON OF THE PROPOSED FRAMEWORK AND 

PREVIOUSLY PUBLISHED METHODS 

Paper TPR (μ ± σ) @FPPI Method 

Ours 

0.90 ± 0.06@ 0.25 
0.93 ± 0.05@0.44 

0.94 ± 0.04@0.58 

0.96 ± 0.04@0.79 
0.99 ± 0.02@1.67 

Deep Learning 

(Two-stage 

Transfer Learning) 

Ribli et al. [28] 0.90 @ 0.3 Deep Learning 

Kozegar et al. 

[29] 
0.87 @3.67 

Ensemble 

Classifier 

Dhungel et al. 

[11] 

0.95 ± 0.02@5 

0.90 ± 0.02 @ 1.3 
Deep Learning 

Akselrod-Ballin et 

al. [30] 
0.93 @ 0.56 Deep Learning 

Agarwal et al. 

[10] 
0.98 ± 0.02 at 1.67 Deep Learning 

 

Figure 4. The FROC curve of One-stage learning transfer & Two-stage 
learning transfer (INbreast dataset). 

TABLE IV.  THE INTERMEDIATE PERFORMANCE OF THE RETINANET 

MODEL WITH THE CBIS-DDSM DATASET 

Model 
Pretrained 

Dataset 

Fine 

Tune 
FPPI TPR (Μ ± Σ) 

RetinaNet COCO YES 0.25 0.90 ± 0.06 

RetinaNet COCO YES 0.44 0.91 ± 0.05 

RetinaNet COCO YES 0.58 0.92 ± 0.04 

RetinaNet COCO YES 0.79 0.91 ± 0.04 

RetinaNet COCO YES 1.67 0.94 ± 0.03 

TABLE V.  THE PERFORMANCE OF THE PROPOSED FRAMEWORK WITH 

SMALL AND LARGE MASS SIZES (INBREAST DATASET) 

Lesion 

Size 

Fine 

Tune 
FPPI TPR Training Cascade 

small YES 0.5 0.93 
RetinaNet → CBIS-

DDSM → INbreast 

large YES 0.5 0.98 
RetinaNet → CBIS-
DDSM → INbreast 
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Figure 5. The results of the proposed framework of six samples in the 

INbreast dataset. 

Fig. 5 shows six examples of breast cancer detection 

performed using the proposed framework (A two-stage 

Transfer Learning). All examples are obtained from the 

INbreast dataset. Tables VI, VII and VIII show the results 

of the proposed system using different learning rates, 

weighting factors and focusing parameters, respectively. 

TABLE VI.  THE PERFORMANCE OF THE PROPOSED FRAMEWORK WITH 

DIFFERENT LEARNING RATE (INBREAST DATASET) 

Learning 

Rate 

Pretrained 

Dataset 
TPR @FPPI 

0.000001 CBIS-DDSM 0.95@1.67 

0.000005 CBIS-DDSM 0.96 @1.67 

0.00001(best) CBIS-DDSM 0.99 @1.67 

0.00005 CBIS-DDSM 0.91 @1.67 

0.0001 CBIS-DDSM 0.89 @1.67 

TABLE VII.  THE PERFORMANCE OF THE PROPOSED FRAMEWORK WITH 

DIFFERENT WEIGHTING FACTOR (INBREAST DATASET) 

Weighting 

Factor 

Pretrained 

Dataset 
TPR @FPPI 

0.15 CBIS-DDSM 0.88 @1.67 

0.2 CBIS-DDSM 0.91 @1.67 

0.25(best) CBIS-DDSM 0.99 @1.67 

0.3 CBIS-DDSM 0.98 @1.67 

0.35 CBIS-DDSM 0.90 @1.67 

TABLE VIII.  THE PERFORMANCE OF THE PROPOSED FRAMEWORK 

WITH DIFFERENT FOCUSING PARAMETER (INBREAST DATASET) 

Focusing 

Parameter 

Pretrained 

Dataset 
TPR @FPPI 

1.5 CBIS-DDSM 0.96 @1.67 

1.75 CBIS-DDSM 0.97 @1.67 

2(best) CBIS-DDSM 0.99 @1.67 

2.25 CBIS-DDSM 0.95 @1.67 

2.5 CBIS-DDSM 0.94 @1.67 

V. CONCLUSION 

In this research, a combination of two-stage transfer 

learning and a pre-trained object detector has been 

proposed for breast cancer detection. A one-stage CNN 

model called RetinaNet has been used. RetinaNet model is 

fast and efficient object detection model. In the first stage 

of transfer learning, the RetinaNet model is transferred 

onto another public dataset called CBIS-DDSM which is a 

new version of the DDSM dataset. In the second stage of 

transfer learning, the model is transferred and evaluated 

onto a small dataset of mammograms called INbreast. 

Comparisons with other current methods, our results show 

that the proposed framework can outperform existing 

cutting-edge methods in terms of TPR and FPPI metrics. 

In future work, the authors plan to investigate how to 

use 3D imaging datasets with the proposed framework. 

They are more difficult, computationally demanding, and 

space-intensive than 2D datasets, however, in reality, such 

datasets show to be more informative than 2D datasets. 
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