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Abstract—Nuclei detection in histopathology images of can- 

cerous tissue stained with conventional hematoxylin and 

eosin stain is a challenging task due to the complexity and 

diversity of cell data. Deep learning techniques have 

produced encouraging results in the field of nuclei detection, 

where the main emphasis is on classification and regression-

based methods. Recent research has demonstrated that 

regression-based techniques outperform classification. In 

this paper, we propose a classification model based on graph 

convolutions to classify nuclei, and similar models to detect 

nuclei using cascaded architecture. With nearly 29,000 

annotated nuclei in a large dataset of cancer histology images, 

we evaluated the Convolutional Neural Network (CNN) and 

Graph Convolutional Networks (GCN) based approaches. 

Our findings demonstrate that graph convolutions perform 

better with a cascaded GCN architecture and are more stable 

than centre-of-pixel approach. We have compared our two-

fold evaluation quantitative results with CNN-based models 

such as Spatial Constrained Convolutional Neural Network 

(SC-CNN) and Centre-of-Pixel Convolutional Neural 

Network (CP-CNN). We used two different loss functions, 

binary cross-entropy and focal loss function, and also 

investigated the behaviour of CP-CNN and GCN models to 

observe the effectiveness of CNN and GCN operators. The 

compared quantitative F1 score of cascaded-GCN shows an 

improvement of 6% compared to state-of-the-art methods. 
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I. INTRODUCTION 

Nuclei detection in histology images is an important 

parameter for many biomedical image analysis tasks. Due 

to the varying sizes and shapes of the nuclei, detecting 

accurate nuclei becomes a challenging task. In the past, 

many methods have been proposed, which can be 

categorised into classification and regression approaches. 

Since graph convolution networks are becoming more 

popular, solving this hard task in an irregular domain is 

important because it gives graph convolution the power 

and possibility to work on critical data. 

The tumour is the result of the cell’s utterly unrestrained 

development and demise. In the formation of tumours, this 

cell heterogeneity causes inflammation, angiogenesis, and 

tumour necrosis [1, 2]. The location, size, configuration, 

and placement of these diverse cell types also, reveal the 

many cancer-related stages [3, 4]. Therefore, the 

qualitative and quantitative analysis of nuclei helps to 

understand the condition of the tumour better and explore 

the different options for various cancer treatments. 

Pathologists use different colour markers and stains to 

understand many properties of cancer tissues. However, to 

identify informative markers, biological experts must have 

a thorough understanding of tumours, and also it is costly 

to repeatedly perform lab work and have access to cell data, 

which is not always available [5]. Creating an automated 

system to find nuclei would be a better way to save time in 

the lab while also allowing for effective analysis that 

would help biological professionals understand the 

different conditions of the tissue cell. 

There are many factors that affect the precise 

automation of the nuclei detection, mainly the noise and 

poor staining during the preparation process of the image 

slides. Disarrangement of nuclei, diversity of nuclear 

morphology, and complex tissue structure create a 

challenging task for computer vision researchers to 

automate and analyse. In addition, different types of cells 

often have irregular chromatin textures and seem to largely 

overlap each other, having a fairly visible boundary, which 

makes the detection of individual nuclei a challenging task. 

One more thing that makes it hard to automate the process 

of detecting nuclei is that there are so many different types 

of nuclei that look like the same type of nuclei [6]. 

However, many cell detection methods have been 

developed based on classification, regression, and 

conventional methods such as thresholding, region-

growing, K-means, and so on. Sirinukunwattana et al. [6] 

proposed a regression-based approach to train a 

convolutional neural network model to predict the centre 

coordinate of the nuclei used in the probability map carried 

by post-processing. In this method, the spatially 

constrained layer is used for regression-based nuclei centre 

coordinate prediction, and the parameter estimation layer 

is used to create a probability map. This work is influenced 

by the conventional method for object detection as centre-

of-the-pixel CNN (CP-CNN), where each path gives the 

probability of being the centre of nuclei or not, and second, 

work structural regression (SR-CNN) [7] where each patch 

is regressed instead of a single pixel. Veta et al. [8] 

proposed techniques for nucleus detection in routine H&E 

histology images that rely on morphological features such 

as symmetry and stability of the nuclear region to identify 
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nuclei, and the direction of the gradient tells where the 

centre of nucleus is. Cosatto et al. [9] use the Difference 

of Gaussian (DoG) and Hough transform to find 

symmetric shapes of cells for nuclei detection.  

There are many other methods that use the classification 

approach for cell detection. In images of breast cancer that 

have been stained with H & E, morphological features are 

one of the foundations for how cancer, lymphocytes, and 

stromal cells are classified. To do this, nuclei need to be 

segmented [10]. Lekha S Nair et al. [11] propose an 

immediate single-step detection approach with the use of 

the YOLOv4 model for mitotic nuclei detection in breast 

histopathology images where the model is trained to carry 

out classification and bounding box regression at a similar 

time. Malon et al. [12] used a CNN classifier for mitotic 

and non-mitotic cell classification using colour, texture, 

and shape information, and Nguyen et al. [13] also 

classified nuclei based on their texture and appearance. 

Cruz et al. [14] showed that deep learning approaches 

produce superior results compared to a predefined bag of 

features and canonical representation. In some of the 

recent work, Chenchen et al. [15] proposed a complex 

semi-supervised learning framework, which optimises the 

detection network with the involvement of unlabeled 

image reconstruction. Whereas Wang et al. [16] proposed 

a cascaded classifier to detect mitotic cells. Alom et al. [17] 

proposed systems that use three different deep learning 

models for nuclei classification, segmentation, and 

detection tasks. We suggested a cascading strategy for 

nuclei detection in histopathology images, drawing 

inspiration from the architectures employed in study [6] 

and recent advances in the graph convolution irregular data 

generalisation approach. 

In the second section that follows, we go through how 

graph convolution works and how to construct a cascaded 

architecture for detection. The dataset used and experiment 

findings are then explored in Section III, which is followed 

by Section IV of Conclusion. 

II. METHODS 

The problem of nuclei detection consists of finding a set 

of centroid coordinates of nuclei from a given input RGB 

image I. This problem is solved by a graph convolution-

based deep learning supervised approach where the 

detector is trained on training samples with ground truth 

information about centroid coordinates. Each pixel is 

categorised into nuclei or non-nuclei classes. Our detector 

is a GCN-based pixel classifier. All pixels in each training 

sample are assigned to one of two classes: nuclei, in which 

the ground-truth pixel p is centred on the training sample, 

and non-nuclei, in which the centred pixel is not within 

Euclidean distance d of ground-truth nuclei. The GCN 

network predicts that the class of the raw RGB image value 

will fall into the sample patch.   

A. Detecting Nuclei with GCN 

The architecture of the network is shown in Fig. 1. It 

consists of two graph convolution networks followed by 

two fully connected layers. The RGB pixel values of each 

sample are passed through the graph convolution operator 

to extract the features. The extracted feature vector is 

classified by fully connected layers. The last layer is a 

single unit dense classification layer with sigmoid non-

linearity. There are dropout and ReLU non-linear 

activation functions that are used before each dense layer 

to keep it from overfitting. 

 

Figure 1. Graph convolution architecture. 

 

Figure 2. Cascade GCN pipeline. Left to right – Stage 1, Stage 2, 
detection with NMS. 

We formulate nuclei detection as a simple binary 

classification problem. The architecture of the method is 

depicted in Fig. 1. Given an input histology image of size 

500×500, it extracts patches of size 27×27 with centre 

coordinates as ground truth nuclei centre as positive 

samples. To extract negative samples, we have chosen 

random coordinates which do not fall into the proximity of 

the ground truth nuclei centre c with distance d as shown 

below, 

 

𝑆𝑎𝑚𝑝𝑙𝑒 =  {
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒,                     ∀𝑐,                       
𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒,          𝑑𝑖𝑠𝑡(𝑁𝑐 −  𝑐) >  𝑑,

 

 

where 𝑁𝑐 is the random nuclei centre. 

To formulate the classification, we have labelled 

positive patches as 1 and negative patches as 0. The 

number of negative samples that must be extracted from 

each image has been randomly determined. We have used 

the spectral-based graph convolutional operator to learn 

features. To perform graph convolution, the patch of size 

27 × 27 is considered as a 2D grid graph having a set of 

nodes (𝑉) , a set of weighted edges (𝐸) , and a binary 

adjacency matrix (𝐴) of size 729 × 729 with the property 

that each node is connected with its neighbouring nodes, 

which form the basis of locality for the convolution 

operation.  

The graph structure of the image represents 2D grids of 

regular data and graph Laplacian is the core operator for 

the graph convolution layer. One form of the Laplacian 

operation is represented as 𝐿 = 𝐷 − 𝐴 , where 𝐷  is the 

degree matrix and 𝐴 , is the adjacency matrix. The 

Normalized Laplacian matrix is 𝐿 = 𝐼𝑛 − 𝐷−1/2𝐴𝐷−1/2 

where 𝐼𝑛  is the identity matrix that considers self-node 

features. The Laplacian matrix is decomposed into 

orthonormal vectors 𝑈 = 𝑢𝑖=1...𝑁  where 𝑢𝑖  is an 

eigenvector associated with eigenvalues 𝜆𝑖=1...𝑁 . Apply 

graph Laplacian and then eigendecomposition of the graph 
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Laplacian matrix, which gives the Fourier modes and 

graph frequencies [18]. In graph signal processing, a graph 

signal 𝑠 is a feature vector that lies on the node of the graph. 

When the graph Fourier transform (𝐹𝐺) is applied to signal 

s using a matrix 𝑈, the result is, 

 𝐹𝐺(𝑠) = �̂� = 𝑈𝑇𝑠  (1) 

 

Then the inverse graph Fourier transform is applied 

which gives original signal s [18, 19], 

 

 𝐹−1(�̂�) = 𝑈�̂� = 𝑈𝑈𝑇𝑠 = 𝑠,  (2) 

Now the convolution of signal s with a filter g in Fourier 

domain is defined as, 

 

 𝑠 ∗
𝐺

𝑔 = 𝐹𝐺
−1(𝐹𝐺(𝑠) ⊙ 𝑔),  (3) 

 

and can be represented in, 

 

 𝑠 ∗
𝐺

𝑔 = �̂�(𝐿)𝑠,  (4) 

 

After the graph convolution layer, there are two fully 

connected layers, with the last layer having one neuron 

activated by a sigmoid function to classify the feature 

vector extracted from the previous two graph 

convolutional layers. This graph convolutional layer-based 

classifier is used in a cascaded architecture to improve 

nuclei detection while maintaining a high recall value. 

B. Cascaded GCN 

The cascade method progressively removes negative 

samples at each stage. As an adverse reaction to the 

filtering process, some of the positive samples were also 

eliminated. Fig. 1 architecture used for classification 

filtering, and Fig. 2 shows the complete flowchart of the 

Cascade GCN detector. It consists of two phases. soft 

negative and hard negative elimination. Classification 

patches are generated by scanning input images in a sliding 

window fashion, with height and width shifting by one 

pixel. A large number of window patches were eliminated 

as background in the first stage. Among the positive 

samples remaining from the first stage, a false positive 

sample is further eliminated by the hard negative 

elimination of the second stage. The final detection is 

achieved by passing the remaining samples through Non-

Maximum Suppression (NMS) [20].  

In the soft negative elimination first stage of the 

cascaded-GCN, a large number of patches are generated 

by the sliding window method with window shifting one 

pixel at a time to save any loss of features in the image for 

training. Fig. 1 provides the architecture used for first-

stage soft negative patch removal where two graph 

convolutional network layers and two fully connected 

layers are used. Utilizing such an architecture is inspired 

by the previous CNN-based architecture for nuclei 

detection in CP-CNN and SP-CNN. In this architecture, 

the input 2D grid graph 27 × 27 has a binary adjacency 

matrix of size 729 × 729 and the input graph signal has 

been normalised between 0 and 1 by the normalisation 

function, 

 

 
𝑋 = (

𝑋 − 𝜇

𝜎
)  

(5) 

where X = image data, 𝜇  = mean and 𝜎  = standard 

deviation. Each node in the graph holds a three-channel 

RGB signal. The number of filters used in the first and 

second GCN is 36 and 48, which helps to preserve the 

desirable features and remove low-frequency features. To 

retain the most positive patches for the following stages, a 

high recall is achieved by training over the maximum 

precision-recall rate for patience level 10 and using a 

sigmoid classification layer with a decision boundary of 

0.50 for evaluation. For example, the two-fold cross-

validation recall rate for evaluation is 84.53%, but this 

higher value comes at the cost of a lowered precision rate 

of 65.45%. 

The filtered positive samples from stage 1 are passed to 

stage 2, which is the hard negative elimination stage, 

where positive patches obtained from the previous stage 

are taken into consideration for the training stage 2 model. 

With the help of ground truth, the positive sample was 

separated into true positive and false positive. Here, if the 

predicted nucleus centre is close enough to the ground 

truth nucleus centre with a pixel distance less than 𝑑, it is 

considered a true positive and a false positive the other 

way around.  

To maintain high recall in stage 1 and remove hard 

negative samples, another model with the same 

architecture as in Fig. 1 is used and trained for minimum 

validation loss with patience 10. In our case, 38,643 false-

positive and 100,000 true-positive samples are used for 

training in the second stage. To balance the data for 

training, negative samples are added by flipping them right 

and rotating them 90 degrees. 

The nuclei detection block is designed to accurately 

locate the nuclei location by retaining efficient positive 

patch samples at higher resolution. Nuclei detection is the 

last phase of the cascade pipeline. Binary classification is 

carried out in the last two phases, filtering most negative 

samples while maintaining higher precision and recall. 

With an intersection over union threshold of 0.30 and a 

maximum output bounding box size of 1200, the 

remaining positive samples with nuclei in the same place 

were put through a non-maximum suppression to get rid of 

duplicates. 

III. EXPERIMENT AND RESULTS 

A. Dataset and Implementation 

The dataset used consists of 100 H&E stained histology 

images of adenocarcinoma. This dataset is used for the 

CNN-based nucleus detection problem. Each image has a 

size of 500 × 500  pixels. These images contain some 

noise, for example, over-staining and failed autofocus. 

Annotation of the nuclei is marked by the experts, and 

there are 29756 nuclei centred for detection purposes in 

supervised learning. These slide images of size 500 × 500 

are used for the extraction of patches of size 27 × 27 for 

training and validation data for models. Fig. 3 shows the 
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(a) H & E image of size 500×500 

original image and extracted patches, each patched with a 

green colour box. Patches are extracted randomly where 

coordinates fall within a proximity radius 𝑑 ≤ 2 

categorised as a positive sample and negative elsewhere. 

 

 

(b) Patch 1 

 

(c) Patch 2 

 

(d) Patch 3 

Figure 3. Data Extraction. 3a, shows the original images of size 500×500 

obtained from the slides. Whereas 3b, 3c, 3d refers to extracted patched 
of size 27×27. 

Our model is implemented in Tensorflow 2.0 and Keras. 

The proposed model is trained and evaluated on a PC with 

an Intel i7 CPU and an NVIDIA GEFORCE GTX 1080Ti. 

For a fair comparison, the learning rate is set at 0.001 and 

the batch size is 100, and a dropout rate of 0.2 is used for 

CP-CNN and the proposed model GCN. We have also 

tested both with binary cross-entropy and focal loss to see 

the behaviour of both models in different loss 

environments. For SC-CNN implementation, we have set 

the learning rate at 0.01 and scheduled learning as 

suggested by Sirinukunwattana et al. [6]. 

B. Model Evaluation 

Fig. 4 shows the qualitative detection results on the 

unseen sample images. For quantitative analysis, we 

define the ground-truth areas as blue circular regions with 

8 pixels around every annotated nuclei centre. A detected 

nuclear centroid is considered a true positive (𝑇𝑃) only if 

it lies within the ground-truth areas; otherwise, it is 

considered a false positive (𝐹𝑃). Each 𝑇𝑃 is matched with 

the nearest ground-truth annotated nuclei centre. The 

ground-truth nuclei centres that are not matched by any 

detected results are considered false negatives (𝐹𝑁). We 

can calculate the precision(P), recall(R), and 𝐹1  score 

using the above definitions: 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, 𝑅 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 and 

𝐹1 =
2𝑃𝑅

𝑃+𝑅
 respectively. 

We evaluated the proposed model with CNN-based 

Pixel-Wise Classification (PWC) [7] , or Centre of Patch 

Convolutional Neural Network (CP-CNN) [6] which 

shares the same architecture as mentioned in the paper [6] 

except that it utilises the sigmoid activation in the last layer 

and no graph. 

 
(a). SC-CNN  

 
(b). CP-CNN 

 
(c). GCN 
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(d). Cascade-GCN 

Figure 4. Nuclei detection results on the sample image. Red dots represent 

the detected nuclei centre. The ground-truth annotations are represented 
by blue circles for better illustrations. 

  

  

Figure 5. Qualitative Comparison of Results. The figure shows the 2-fold 
training/validation curves. 4a. bluetr1, redva1, skytr2, pinkva2, 4b. redtr1, 

skyva1, pinktr2, greenva2, 4c. greentr1, grayva1, Orangetr2, blueva2, 4d. 
redtr1, skyva1, pinktr2, greenva2. 

TABLE I. QUANTITATIVE RESULTS 

Method Precision Recall F1 

SC-CNN (lr 0.01) 0.7183 ± 

0.0063 

0.6995 ± 

0.0579 

0.7078 ± 

0.0328 

SC-CNN (lr scheduled) 0.6355 ± 

0.1163 

0.7909 ± 

0.0416 

0.6951 ± 

0.0555 

CP-CNN (Bin cross) 0.7291 ± 

0.0677 

0.6930 ± 

0.0227 

0.7078 ± 

0.0203 

CP-CNN (Focal Loss) 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

GCN (Bin cross) 0.6832 ± 

0.0019 

0.6757 ± 

0.0141 

0.6793 ± 

0.0061 

GCN (Focal Loss) 0.7336 ± 

0.0055 

0.6077 ± 

0.0028 

0.6647 ± 

0.0005 

Cascade-GCN (Focal Loss) 0.7334 ± 

0.0004 

0.7927 ± 

0.0005 

0.7619 ± 

0.0005 

 

Fig. 5 shows the validation precision-recall curves with 

respect to the epochs of the GCN method and CP-CNN. 

These curves are generated over the maximum precision-

recall metric with patience 10. Fig. 4b demonstrates that 

the CP-CNN is unable to learn features over the focal loss, 

and their quantitative evaluation results are explained in 

Table I. While using the binary cross-entropy loss for CP-

CNN, there is a large deviation between the two folds as 

compared to the proposed model using GCN. The GCN-

based model can learn features better in focal loss, but it 

also works for binary cross-entropy loss, which is not true 

in the case of CP-CNN focal loss. Also, the deviation 

between the folds in the case of GCN is smaller compared 

to CP-CNN, which shows the stability of the GCN-based 

proposed model. 

C. Comparison with Other Works 

We also compared our model with the state-of-the-art 

proximity map-based nuclei detection regression model 

(SC-CNN) [13]. While comparing with SC-CNN, we have 

eliminated the preprocessing of augmentation and HSV 

space channel separation to keep training data the same for 

all methods for comparison. As shown in Table I, there is 

a huge difference between precision and recall value for 

SC-CNN with a stable learning rate and a scheduled 

learning rate. With careful observation of standard 

deviation values, we can see that the GCN-based proposed 

model performs better in precision, recall, and F1 score. 

While compared with the SC-CNN scheduled learning rate, 

the GCN precision value has increased by almost 10%. 

One of the advantages of our GCN model with focal loss, 

it learns features better while CP-CNN struggles to learn 

hardly any features, which proves the stability of the GCN-

based model. The value 0.0 ± 0.0 in Table I explains the 

testing results of the CP-CNN (Focal Loss) model’s 

learning ability over the focal loss function compared to 

binary cross-entropy loss. As shown in Table I, when using 

the GCN in a cascade fashion, the F1 score increases by 

almost 6%. While observing the Cascade qualitative 

results in Fig. 4d, it has a higher recall value than the others 

but at the expense of a lower precision, whereas two-fold 

quantitative evaluation results on 50 images in Table I, 

show overall precision, recall, and F1 score are higher. 

IV. CONCLUSION 

In this paper, we propose a cascaded graph 

convolution approach for the nuclei detection task. The 

proposed GCN classifier differs from the traditional CNN 

classifier by introducing a graph convolutional operator to 

learn features in the training data. We have experimentally 

demonstrated the superior performance of the cascaded 

architecture of the GCN classifier in terms of the stability 

and precision, recall, and F1 score compared with the 

CNN-based state-of-the-art and observed the validation 

behaviour of CPCNN and GCN with different loss 

functions. In the future, we hope to improve the 

performance by adding more classifiers and using other 

graph convolutional operators. 
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