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Abstract—In pattern recognition fields, it is worthwhile to 

develop a pattern recognition system that hears one and 

knows ten. Recently, classification of printed characters that 

are the same fonts is almost possible, but classification of 

handwritten characters is still difficult. On the other hand, 

there are a large number of writing systems in the world, 

and there is a need for efficient character classification even 

with a small sample. Deep learning is one of the most 

effective approaches for image recognition. Despite this, 

deep learning causes overtrains easily, particularly when the 

number of training samples is small. For this reason, deep 

learning requires a large number of training samples. 

However, in a practical pattern recognition problem, the 

number of training samples is usually limited. One method 

for overcoming this situation is the use of transfer learning, 

which is pretrained by many samples. In this study, we 

evaluate the generalization performance of transfer learning 

for handwritten character classification using a small 

training sample size. We explore transfer learning using a 

fine-tuning to fit a small training sample. The experimental 

results show that transfer learning was more effective for 

handwritten character classification than convolution 

neural networks. Transfer learning is expected to be one 

method that can be used to design a pattern recognition 

system that works effectively even with a small sample.  
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I. INTRODUCTION 

A considerable amount of effort has been devoted to 

designing classifiers that use small training sample sizes 

[1−3]. It is known that the larger the training samples, the 

better the classification performance of a classifier. 

However, the sizes of the available samples are usually 

limited, and it is difficult to correct many samples in 

order properly to train a classifier, as this is a time-

consuming task. Therefore, a label or class name must be 

given for each sample. Because of this, it is desirable to 

develop a pattern recognition system that can work well 

even for small training samples. In this study, a situation 
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is defined to have a small training sample size if the ratio 

of the number of training samples to the dimensionality is 

less than 1. The larger the ratio, the greater the number of 

training samples, and the more convenient it is to develop 

a pattern classification system. Conversely, the smaller 

the ratio, the fewer the number of training samples, and 

the more difficult it is to develop a pattern classification 

system. In particular, when the ratio is less than 1, the 

inverse of the sample covariance matrix is impossible to 

compute, making it difficult to design a classifier such as, 

a Linear Discriminant Analysis (LDA) [2]. The ratio must 

be larger than five before the bias in the design-set error 

rate is sufficiently small [1].  

Convolutional Neural Networks (CNNs) originate 

from artificial neural networks [4]. CNNs have been 

successfully applied in the field of image recognition [5, 

6]. CNNs have been reported as having promising 

classification performance for handwritten digit 

classification problems [7, 8]. One advantage of CNNs is 

that they can automatically learn a relationship between 

input and output, which eliminates the need to know what 

features or classifier should be used. Instead of properly 

training many hyperparameters in a CNN, many training 

samples are required. There is a trade-off between 

generalization performance and overtraining. In a 

practical pattern recognition problem, the number of 

available samples is usually limited. Therefore, it is 

important to design a CNN to adapt to situations with 

small training sample sizes. Keshari et al. [9] have 

addressed this issue by focusing on learning the structure 

and strength of filters. 

Transfer learning, the deep net of which is pretrained 

by many samples, can be applied to other pattern 

recognition problems, particularly when the number of 

training samples is small. Thus far, various types of 

transfer learning have been developed [10, 11]. 

Handwritten character classification is one application 

of transfer learning. However, it is difficult to develop a 

handwritten character classification system because 

handwritten characters are not easily available and the 

number of samples is generally small. In particular, it is 

more difficult if the handwritten characters are highly 

distorted. Additionally, it is not clear which transfer 
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learning method is effective for handwritten character 

classification. In this study, we present the evaluation of 

transfer learning for handwritten character classification 

of Mixed National Institute of Standards and Technology 

Database (MNIST) [12] and Kuzushiji-MNIST 

(KMNIST) [13] datasets using a training sample with a 

small size. An example of research on KMNIST is the 

development of a U-Nets based model that predicts 

character position and character type from classical 

images using KuroNet [14]. There are also studies on 

generative adversarial networks (GANs) that generate 

new character types or styles [15−17]. The experimental 

results show that transfer learning is more effective for 

handwritten character classification with a small training 

sample size than CNNs. Our result suggests using transfer 

learning is helpful in pattern recognition problems with 

small training samples.  

II. METHODS 

A. Handwritten Characters 

In this study, we used the MNIST [12] and KMNIST 

(Kuzushiji-MNIST) image datasets [13]. The MNIST 

dataset consists of images of handwritten digit characters. 

The KMNIST dataset consists of handwritten classical 

Japanese character images and was developed by 

referring to the MNIST dataset. Fig. 1 shows examples of 

images in KMNIST. Compared to the handwritten digits 

in the MNIST dataset, the handwritten Kuzushijis in the 

KMNIST dataset have been heavily distorted because 

they were written by hand over 150 years ago. In general, 

even Japanese people cannot read the letters easily. This 

means the classification problem for the KMNIST dataset 

is more difficult than that of the MNIST. For each dataset, 

we used at most 20000 images. This was a 10-class 

problem. We assumed there were no imbalanced classes. 

Thus, we used 1000 test images and at most 1000 training 

images for each class. We used 100 training images for 

each class to ensure the training sample sizes were small. 

The image size was 28×28. Thus, the ratio of the training 

sample size to the dimensionality was 0.1276 (100/784). 

The number 784 was the dimensionality of the image size 

(28×28). Because the ratio was less than 1, this situation 

was considered to have a small training sample size. The 

images were in gray scale. Before feeding the training 

images to the deep net, the image size was changed from 

28×28 to 150×150 in order to fit the input requirement of 

the deep net. 

 

Figure 1. Examples of KMNIST images. 

B. CNN 

We evaluated the CNN in terms of its generalization 

performance for the handwritten digit characters from 

MNIST and the classical Japanese characters from 

KMNIST. The generalization performance of a CNN 

depends on its network structure and the parameters to be 

determined. Referring to the CNN [18], we determined 

that our CNN network structure was almost the same as 

the original CNN. Fig. 2 shows a network structure of the 

CNN we used. The initial sizes of the MNIST and the 

KMNIST images were 28 times 28. In the experiment, we 

changed the input image size to 150×150. First, we 

convolved the image by using 32 filters with a 3×3 filter 

size. The image size was then 148×148. Using 2×2 

maxpooling, we reduced the image size by half to 74×74. 

Second, we convolved the image by using 64 filters with 

a 3×3 filter, and performed maxpooling in the same 

manner. The image size changed forms 72×72 to 36×36. 

Third, we again convolved the image by using 64 filters 

with a 3×3 filter. The image size was then 34×34. Fourth, 

we flattened this image was then into 73984 dimensional 

(64×34×34) data. Finally, we constructed a fully 

connected artificial neural network. The network had one 

hidden layer. The number of the neurons also depended 

on the generalization performance of the CNN. In the 

experiment, we used 64 for simplicity. Then we used 

dropout, the rate of which was 0.25. The number of the 

outputs of the CNN was 10, because this was a 10-class 

problem, as mentioned above. Therefore, the structure of 

the fully connected artificial neural network was 73984-

64-10. All the activation functions were ReLU except for 

the output. In the output, we used softmax, and the 

learning optimizer was Adam. The epochs and batch size 

were 50 and 32, respectively.  
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Figure 2. CNN structure used in this study. 

C. Transfer Learning 

In general, transfer learning performs well for pattern 

recognition problems with small sample sizes. Therefore, 

we expected transfer learning to perform well when 

classifying handwritten digit and classical Japanese 

characters using a small training sample. Thus far, we 

have never seen a specific classifier outperforms others 

for every pattern recognition problem. Therefore, we 

investigated a variety of transfer learning methods. In this 

study, we used the following methods: VGG16, VGG19, 

InceptionV3, DenseNet121, DenseNet169, DenseNet201, 

and InceptionResNetV2 [11]. These were already pre-

trained by ImageNet [19] with large samples. In order to 

fit each of the MNIST and KMNIST classification 

problems to each network of the transfer learning 

methods, the fine-tuning technique was used. In general, 

the generalization performance of transfer learning 

depends on how the networks are tuned by the given 

training samples. Therefore, we conducted five types of 

fine-tuning, as described below. The fine-tuning 

techniques were denoted by levels 0, −1, −2, −3, and −4, 

for each network of transfer learning. For each deep net, 

each level was divided into two groups: freeze and tuned 

networks. Table I summarizes the numbers of overall and 

freeze networks for each fine-tuning level (“overall” 

means the total number of freeze and tuned networks). 

Level 0 represents the situation in which only the fully 

connected artificial neural network was tuned by our 

training samples. The smaller the value of the level, the 

larger the number of fine-tuned networks. The percentage 

of the tuned networks for level −1 was larger than that of 

level 0, and that of level −2 was larger still. Therefore, 

the effect of each level of fine-tuning in transfer learning 

needs to be investigated.  

TABLE I. NUMBERS OF OVERALL AND FREEZE NETWORKS FOR EACH 

FINE-TUNING LEVEL OF TRANSFER LEARNING 

 Level 0 −1 −2 −3 −4 

 overall freeze freeze freeze freeze freeze 

VGG16 23 19 15 11 7 4 

VGG19 26 22 17 12 7 4 

I.V3 315 311 280 249 229 197 

D.N.121 431 427 313 141 53 7 

D.N.169 599 595 369 141 53 7 

D.N.201 711 707 481 141 53 7 

I.R.N.V2 784 780 618 275 41 1 

 

III. RESULTS AND DISCUSSION 

We used at most 20000 available MNIST [12] and 

KMNIST [13] images. Both the dimensionalities are 784 

because the image size was 28 by 28. In the experiments, 

we used at most 1000 training images and 1000 test 

images per class for each dataset. We used 100 training 

images (a small sample size) for each class. As 

mentioned above, we assumed a situation in which the 

ratio of the number of training samples to the number of 

dimensions was smaller than 1. When we used 100 

training images per class, the ratio was 0.1276 (100/784), 

which is less than 1.  

We evaluated the generalization performance of the 

deep nets according to the error rate. The error rate was 

defined as the ratio of the number of misclassified test 

images to the total number of test images. For error rate 

estimation, the holdout method has been successful, 

because it maintains the statistical independence between 

the training and test images [20, 21]. To evaluate the 

generalization performance of the deep nets, the average 

error rate was obtained by using the holdout method. Fig. 

3 shows the flow of the error rate estimation computed 

using the holdout method. First, we randomly divided at 

most 20,000 available images into at most 10,000 training 

images and 10000 test images. Second, we trained the 

classifier with at most 10,000 training images. Next, 

using the classifier, we computed the error rate with 

10,000 test images. By repeating these steps five times, 

we obtained the average error rate and the standard 

deviation.  

 

Figure 3. Flow of the error rate estimation using the holdout method. 
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Next, we found a baseline of the generalization 

performance of the CNN for the MNIST and the 

KMNIST datasets in terms of the average error rate. For 

each class, we varied the training image sizes to 100, 200, 

500, and 1000. The ratios of the training sample sizes to 

the dimensionality were 0.1276 (100/784), 0.2551 

(200/784), 0.6376 (500/784), and 1.2755 (1000/784). We 

decided to fix the test image size as 1000 per class. Table 

II shows the average error rate of the CNN as a function 

of the number of training images per class. As expected, 

the larger the number of training images, the better the 

generalization performance of the CNN. The best average 

error rates were 3.11% for the MNIST dataset and 6.35% 

for the KMNIST dataset, both of which occurred when 

the number of training images per class was 1000. In 

contrast, the poorest average error rates were 9.82% for 

the MNIST and 19.84% for the KMNIST, both of which 

occurred when the training image size was 100 for each 

class. In the following experiments, we used 100 training 

images per class. We assumed this was a situation with a 

small training sample size. The distortion of the KMNIST 

was larger than that of the MNIST, not only by the 

appearance of images but also in terms of the average 

error rate. 

TABLE II. AVERAGE ERROR RATE OF THE CNN AS A FUNCTION OF THE 

NUMBER OF TRAINING IMAGES PER CLASS 

Upper rows: average error rate (%), lower rows: standard deviation 

(a) MNIST dataset 

 100 200 500 1000 

MNIST 9.82 
0.84 

6.63 
0.49 

4.41 
0.31 

3.11 
0.18 

(b) KMNIST dataset 

 100 200 500 1000 

KMNIST 19.84 

0.26 

13.60 

0.27 

9.26 

0.35 

6.35 

0.19 

 

Then, we examined the generalization performance of 

transfer learning using a small training sample size. We 

compared the following transfer learning methods to the 

baseline of the generalization performance of the CNN: 

VGG16, VGG19, InceptionV3, DenseNet121, 

DenseNet169, DenseNet201, and InceptionResNetV2 

[11]. Table III shows the average error rates of the deep 

nets for each fine-tuning level when the number of 

training images was 100 per class. For both the MNIST 

and KMNIST datasets, as the level of fine tuning was 

reduced (i.e., as the number of freeze networks was 

reduced), the average error rate decreased or was 

saturated. Therefore, in order to design transfer learning, 

the fine-tuning of the deep nets should be considered. As 

shown in Table III(a), we found the minimum average 

error rate for the MNIST data to be 2.67% when we used 

VGG16 with a fine-tuning level of −3. This deep net 

exhibited the best performance among our limited 

experiments with the MNIST dataset. The generalization 

performance of VGG16 with an average error rate of 

2.67% dramatically outperformed the CNN with an error 

rate of 9.82%. In contrast, as shown in Table III(b), the 

minimum average error rate for the KMNIST data was 

5.20% when we used InceptionResNetV2 with a fine-

tuning level of −4. This transfer learning method 

demonstrated the best performance among our limited 

experiments with the KMNIST dataset. The 

generalization performance of InceptionResNetV2 with 

an average error rate 5.20% was significantly higher than 

that of the CNN with an average error rate of 19.84%. 

TABLE III. AVERAGE ERROR RATES OF DEEP NETS FOR EACH FINE-
TUNING LEVEL WHEN THE NUMBER OF TRAINING IMAGES WAS 100 PER 

CLASS 

Upper rows: average error rate (%), lower rows: standard deviation 

(a) MNIST dataset 

Level 0 −1 −2 −3 −4 

VGG16 9.04 

0.31 

3.73 

0.22 

3.01 

0.24 

2.67 

0.28 

2.83 

0.32 

VGG19 8.95 
0.29 

3.35 
0.18 

2.69 
0.24 

2.75 
0.28 

2.80 
0.52 

I.V3 26.46 

8.84 

15.55 

5.60 

9.45 

0.67 

9.02 

0.17 

7.61 

3.69 

D.N.121 5.84 
0.17 

5.29 
0.48 

3.59 
0.46 

3.23 
0.40 

3.15 
0.21 

D.N.169 5.55 
0.21 

4.93 
0.40 

3.52 
0.19 

3.51 
0.36 

3.22 
0.38 

D.N.201 5.22 

0.17 

5.12 

0.28 

3.31 

0.38 

3.42 

0.36 

3.24 

0.27 

I.R.N.V2 10.16 
0.96 

5.74 
0.17 

3.23 
0.37 

2.75 
0.18 

2.68 
0.41 

(b) KMNIST dataset 

Level 0 −1 −2 −3 −4 

VGG16 24.42 

0.73 

7.95 

0.44 

7.22 

0.49 

6.19 

0.58 

6.32 

0.74 

VGG19 25.22 

0.80 

7.24 

0.26 

6.50 

0.59 

6.11 

0.49 

7.66 

2.46 

I.V3 37.36 
1.53 

25.12 
1.01 

17.99 
0.37 

16.76 
0.29 

13.52 
1.44 

D.N.121 14.67 

0.34 

11.76 

0.77 

8.54 

0.35 

7.78 

0.48 

7.78 

0.63 

D.N.169 13.90 

1.12 

10.26 

0.48 

8.41 

1.11 

7.35 

0.20 

7.43 

0.34 

D.N.201 12.32 
0.51 

10.87 
0.58 

7.49 
0.29 

7.31 
0.43 

7.19 
0.68 

I.R.N.V2 23.65 

1.87 

11.62 

0.99 

5.62 

0.52 

5.35 

0.40 

5.20 

0.44 

 

According to the results displayed in Tables II and III, 

the generalization performances of the VGG16 with a 

fine-tuning level of −3 and InceptionResNetV2 with a 

fine-tuning level of −4, both of which used small training 

samples sizes (100), were superior to that of the CNN 

with large training samples (1000). Therefore, in order to 

solve small training sample size problems, such as the 

one described in this study (i.e., the classification of 

handwritten digit and classical Japanese characters), the 

transfer learning approach should be used. The fine-

tuning of transfer learning should also be taken into 

account. We found that there are certain models of 

transfer learning that are more effective for different 

datasets. Therefore, it is important to carefully select the 

appropriate transfer learning model and fine-tune it to suit 

the data. 

IV. CONCLUSION 

In this paper, we presented the evaluation of transfer 

learning for classifying handwritten digit characters in the 

Journal of Image and Graphics, Vol. 11, No. 1, March 2023

24



MNIST dataset and handwritten classical Japanese 

characters in the KMNIST dataset using a small training 

sample. We defined situations with small training sample 

sizes as those with a ratio of the number of training 

samples to the dimensionality of less than 1. The 

experimental results showed that the transfer learning 

classified both the handwritten digit and classical 

Japanese characters more effectively than the CNNs. 

Thus, in order to design an effective handwritten 

character classification system, we recommend using 

transfer learning with fine-tuning. Transfer learning is 

expected to be one method that can be used to design a 

pattern recognition system that works effectively even 

with a small sample. Our study suggests that transfer 

learning is one highly effective method that can be used 

for practical pattern recognition problems. 

In future work, we will investigate applying transfer 

learning to another type of pattern recognition problem, 

such as recognizing Kanji characters [13]. Images of 

handwritten Kanji characters have feature much more 

distortion and have many classes that require 

classification. This may be a more challenging task, 

particularly with a small training sample. Furthermore, 

we will explore another type of image recognition 

problem with small samples to investigate the 

performance of transfer learning when applied to other 

images. 
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