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Abstract—In Thailand, the pineapple is a valuable crop 

whose price is determined by its sweetness. An optical 

refractometer or another technique that requires expert 

judgment can be used to determine a fruit's sweetness. 

Furthermore, determining the sweetness of each fruit takes 

time and effort. This study employed the Alexnet deep 

learning model to categorize pineapple sweetness levels based 

on physical attributes shown in images. The dataset was 

classified into four classes, i.e., M1 to M4, and sorted in 

ascending order by sweetness level. The dataset was divided 

into two parts: training and testing datasets. Training 

accounted for 80% of the dataset while testing accounted for 

20%. This study's experiments were repeated five times, each 

with a distinct epoch and working with data that had been 

prepared. According to the experiment, the Alexnet model 

produced the greatest results when trained with balancing 

data across 10 epochs and 120 figures per class. The model's 

accuracy and F1 score were 91.78% and 92.31%, respectively. 
  

Keywords—pineapple sweetness, deep learning, Alexnet, data 

augmentation, balanced data, fruit classification 

 

I. INTRODUCTION 

Pineapples are the economic crop of Thailand [1]. In 

2019, pineapple production is expected to be 1.8 tons, with 

the majority of the crop being grown in Thailand's central 

region (69%) [2]. Thailand exports pineapple juice and 

processed pineapple worth roughly 5.5 million baht and 

2.8 million baht, respectively [3]. Pineapples reign 

supreme among fruits [4] because of their deliciousness, 

health benefits, and versatility as fresh fruit, a cooking 

component, a juice, or a preserved food [5]. Determining 

pineapple sweetness is critical because customers prefer 

sweet pineapple over-acidic pineapple. The sweetness of 

pineapples is measured using a variety of methods, for 

example, sniffing, examining the color, freshness, and 

form of the leaves, texturing, or using a hand refractometer 

to measure. All these methods have numerous drawbacks, 
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such as requiring skilled personnel, being unstable, and 

taking time. Food waste sometimes occurs because of 

miscalculations in the maturity of fruits and vegetables. In 

this study, we propose Artificial Intelligence (AI) as a 

solution to these issues [6–8]. 

AI technology can help farmers solve challenges and 

produce high-quality products. Cassava, for example, has 

always been influenced by cassava infections. 

Sangbamrung et al. [9] suggested a new approach for 

classifying cassava infections that used deep learning to 

help farmers recognize the diseases and respond 

appropriately. Nasir et al. [10] depicted a fine-tunes pre-

trained model named VGG19 to classify fruits and their 

diseases. Furthermore, for the final classifications, they 

applied a relevance-based optimization strategy to select 

the best features from the fused vector. As a result, the 

accuracy increased to 99.6%. Vijayakumar et al. [11] 

proposed a deep learning method to detect dragon fruits’ 

mellowness. To determine the harvest time, they employed 

a pre-trained model named RESNET 152. The specific 

challenge with pineapples is determining their sweetness 

without causing damage to the fruit. Before harvesting the 

crop, the ripeness and sweetness of the fruit must be 

verified because flavor affects product quality. For 

example, TIPCO used Homsuwan pineapple as a raw 

material to create Homsuwan pineapple juice, therefore the 

sweetness was determined using a refractometer, which is 

time-intensive and requires expertise. However, as seen in 

Fig. 1, the pineapple's exterior features do not explicitly 

reflect its sweetness. It is therefore challenging to 

determine their sweetness level by consideration, even for 

specialists. To improve pineapple production efficiency, 

AI plays a critical role in determining pineapple sweetness 

by assessing pineapple's physical characteristics. 

Sangsongfa et al. [12] used CNN-PPSM to evaluate 

pineapple sweetness from 4,860 pictures using deep 

learning. According to the findings, the accuracy of 
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training and testing processes was 72.38% and 78.5%, 

respectively. Wan Nurul Suraya Wan Nazulan et al. [13] 

created the sweetness parameter, which was an algorithm 

for detecting and sorting watermelon color and shape to 

classify watermelon sweetness levels. They graded 

watermelon using K-means, with grade A denoting a high 

degree of sweetness, grade B denoting a medium level of 

sweetness, and grade C denoting a low level of sweetness. 

The results revealed that color and form detection had an 

accuracy of roughly 84.62 %. Lee et al. [7] created a non-

invasive classifier for the sweetness levels of apples that 

are sweet, normal, and not sweet using a convolution 

neural network model. The dataset includes 1506 photos 

of apples' appearances as well as 130 average sweetness 

statistics for apples. The highest validation accuracy result 

obtained is 81%. 

In this study, we proposed a method for determining 

pineapple sweetness based on its physical properties by 

using deep learning. The images of pineapples were 

employed in this study to identify biochemical properties 

that knew the sweetness level, and the pre-train model 

Alexnet was used. Alexnet is a model that learned data 

from Coco, which contains a wide range of fruit 

information. As a result, Alexnet has a high level of 

precision when it comes to working with fruits. The 

objective of this study was to create a deep learning 

method for classifying pineapple sweetness levels based 

on the physical properties of pineapples. 

II. METHODOLOGY 

A. Data Preparation 

The input dataset was a collection of pineapple image 

data (Fig. 1) from [14]. The original pineapple image data 

comprised 42 pineapples photographed in a lab, each in 

RGB color and with the JPG extension. To identify target 

classes, the pineapple data could be grouped with the 

corresponding pineapple chemical data (Table I). Table I 

demonstrates Degrees Brix (°Bx) representing a unit of 

sweetness that measures the amount of sugar in a liquid 

(solution), as well as pineapple acidic (Acidez) refers to 

the amount of acid in a liquid. 

Eq. (1) is used to calculate the IM (Maturity Index) 

value. The level of IM is exactly proportional to the 

sweetness of the pineapple. 

 

𝐈𝐌 =
°𝐁𝐫𝐢𝐱

𝐀𝐜𝐢𝐝𝐞𝐳
 (1) 

In this study, we divided pineapple sweetness into four 

categories based on the IM value. as follows: 

(1) Pineapple M1 represents the pineapple with IM 

values ranging from 0 to 19. 

(2) Pineapple M2 represents the pineapple with an IM 

value ranging from 20 to 29. 

(3) Pineapple M3 represents the pineapple with an IM 

value ranging from 30 to 39. 

(4) Pineapple M4 represents the pineapple with an IM 

value of 40 or more 

The M1, M2, M3, and M4 are in ascending sequence of 

pineapple’s sweetness. We divided them into four 

categories based on the level of sweetness used in the real 

market.  There were 88 pineapple images in M1, 20 images 

in M2, 32 images in M3, and 28 images in M4 categories. 

 

Figure 1.  The pineapples are classified as M1 (least sweet), M2, M3, 

or M4 (most sweet). 

TABLE I. EXAMPLES OF DATA ON PINEAPPLE CHEMISTRY WERE USED 

TO LINK THE CLASSES OF CORRESPONDING IMAGES 

Acidez  pH  oBrix  

IM Promedio DE Promedio DE Promedio DE 

0.5045 0.0081 3.3633 0.0153 16.1333 0.0577 31.98 

0.7328 0.0169 3.2900 0.0100 13.4000 0.1000 18.29 

0.8907 0.0092 3.2133 0.0058 15.3333 0.1528 17.22 

0.7989 0.7989 3.3267 0.0058 13.4333 0.1528 16.81 

0.6901 0.6901 3.2567 0.0058 12.7667 0.2082 18.50 

 

As presented in Fig. 1, each class’s pineapple image 

demonstrates the various physical qualities. The pineapple 

in the M1 class, which has the least sweet flavor, has a peel 

with a mixture of hues, such as green and yellow. In the 

M2 class, the pineapple has a slight sweetness. Its peel is 

simply yellow, similar to the pineapple in the M3 class. 

Finally, the M4 pineapple possesses traits that are similar 

to those of the M1 pineapple, with less green and more 

yellow on its skin. When it comes to the exterior qualities 

of pineapples, the external expression is only one of the 

key criteria used to determine the fruit's sweetness; the 

fruit's flavor is also determined by a chemical compound 

that is not visible from the outside. 

When the amount of data in each class was considered, 

the researcher discovered that the image data had an 

uncorrelated amount of data. The M1 class had 
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substantially higher images than the other classes, which 

was the main cause of the unbalanced dataset problem. The 

problem has a significant impact on the model's learning 

ability. Therefore, we utilized a technique called Data 

Augmentation to enhance the amount of picture data by 

rotating the image by 90 degrees, 180 degrees, and 270 

degrees. Finally, the amount of data in each class was 

roughly the same. As illustrated in Fig. 2, we added around 

120 images per class, for a total of 488 images that should 

be enough for classification. 

 

Figure 2. Data preparation. 

B. Method 

Once the data preparation was completed, the obtained 

dataset was separated into 80% for the training dataset and 

20% for the test dataset. The data separation is created 

using balanced data criteria. The training dataset was then 

fed into Alexnet, a pre-trained model constructed from A 

Convolutional Neural Network (CNN) with 25 layers and 

eight levels of depth that can accept input sizes of 

227×227×3.  

 

Figure 3. The structure of Alexnet [15]. 

The framework of Alexnet (Fig. 3) is divided into two 

parts: Feature learning and Classification. Feature learning 

takes data from the input and extracts the information 

needed for feature identification or classification. 

Classification is the procedure for categorizing data. The 

following are the sub-levels of feature learning: 

• The image’s attributes are extracted by the 

convolutional layer. 

• The most relevant properties from the data are 

extracted by the pooling layer. Alexnet employs a 

3×3 maximum pooling size, with only the highest 

value retained. 

• ReLU is a function that converts negative values to 

zero; thus, ReLu is always greater than or equal to 

0. 

• A normalization layer can be used to adjust the data 

range to the appropriate extent. 

• A fully connected layer connects all neurons on one 

layer to all neurons on the other. 

• The dropout layer is used to randomly reject 

Neurons at each layer of a Neural Network. To 

solve overfitting and overparameterization models, 

this strategy reduces the dependency on neural 

networks. 

• The Softmax layer is a function that accepts a 

vector of real numbers as input and produces a 

probability as an output. 

III. EXPERIMENT AND RESULTS 

A. Experiments 

The goal of this study was to develop a deep learning 

approach for classifying pineapple sweetness levels based 

on physical attributes. We conducted five experiments 

with two sets of data as follows: 

• Experiment 1 employed Alexnet with five epochs 

without any data augmentation (data A). 

• Experiment 2 employed the Alexnet six epochs, 

with 80 images per class for data augmentation 

(data B). 

• Experiment 3 employed the Alexnet 12 epochs, 

with 80 images per class in the data augmentation 

(data B). 

• Experiment 4 employed the Alexnet 11 epochs, 

with 120 images per class in the data augmentation 

(data C). 

• Experiment 5 employed the Alexnet 10 epochs, 

with 120 images per class in data augmentation 

(data C). 

 

Figure 4. Experiment 1’s confusion matrix. 
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Experiment 1 employed Alexnet with five epochs 

without any data augmentation (data A). Each class’s 

images were divided into 20%. Class M1 had 26, class M2 

had six, class M3 had 10, and class M4 had eight images. 

The training of the model is affected when the amount of 

data in each class is uncorrelated. As seen in Fig. 4, the 

model had a 60% accuracy rate. 

Experiment 2 employed the Alexnet six epochs, with 80 

images per class for data augmentation (data B). Fig. 5 

shows the total model evaluation accuracy when test data 

B was utilized to evaluate a trained Alexnet model of five 

epochs. 

 

Figure 5. Experiment 2’s confusion matrix. 

 

Figure 6. Experiment 3’s training process. 

Experiment 3 employed the Alexnet 12 epochs, with 80 

images per class in the data augmentation (data B). As the 

result, the accuracy of the model's prediction was 82.65%. 

However, The Alexnet model performed best at epoch 11 

when looking at the trained model performance (Fig. 6). 

Then, experiment 4 was conducted. 

Experiment 4 employed the Alexnet 11 epochs, with 

120 images per class in the data augmentation (data C). 

The accuracy of the experiment was found to be 89.73%. 

According to the findings in Fig. 7, switching to the 

Alexnet 10 epochs resulted in higher accuracy values. 

Experiment 5 employed the Alexnet 10 epochs, with 

120 images per class in data augmentation (data C). As a 

result, the accuracy was enhanced to 91.78 %, with an F1 

score of 92.31%, as illustrated in Fig. 8. Note that the F1 

score indicates how well the model can average precision 

and recall. 

 

Figure 7. Experiment 4’s training process. 

 

Figure 8. Experiment 5’s confusion matrix. 

IV. DISCUSSION 

The objective of this study was to develop a 

classification method to distinguish the pineapple 

sweetness level by analyzing the pineapple’s physical 

properties using Alexnet. Five experiments were designed 

to discover the best model for classifying pineapple 

sweetness. The Alexnet was used in each experiment, but 

the number of epochs was variable. The experiment used 

two sets of data: 1) Data A, which had not been augmented 

and was unbalanced, and 2) Data B, which had finished 

data augmentation and was balanced. 

From the experimental results in Experiment 1, we 

found that the experimental data were unbalanced, with the 

amount of training data affecting the model's accuracy and 

performance. As shown in Fig. 4, M1 was the class with 

the largest amount of data. The true positive of M1 was 

extremely high compared to the true positive of the M1, 
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M2, and M3 classes due to a short amount of data. The 

model had a low recall value for predicting these classes. 

The True positive value for the M3 class in the model was 

zero, indicating that the model was unable to predict the 

M3 class. The problem of unbalanced data can be solved 

by balancing the amount of data in each class. Additional 

data can be gathered from other sources or by employing 

the Data Augmentation approach. 

In Experiment 2, we trained five epochs with the model 

that works with balance data and achieved a 74.6% 

accuracy rate. The model's performance using balancing 

data was improved, but not good enough due to its low 

precision. As a result, the number of training epochs had 

been increased to 12, increasing the accuracy by 82.65%. 

Experiment 2 and Experiment 3 showed that the number 

of training epochs had a considerable impact on the 

model's learning efficiency. The model can learn better 

with a larger number of epochs. 

In Experiment 4, The number of epochs had been 

increased to 11. Experiment3's training process was 

examined, and it was discovered that a result at epoch 11 

generated better outcomes than a result at epoch 12. In 

addition, the number of images per class had been 

increased to 120. According to the findings, the accuracy 

was enhanced to 89.73%. The model training is affected 

not only by the proper number of epochs but also by the 

amount of data. When there is enough data, the models can 

learn data patterns to become more comprehensive. 

Experiment 5's findings revealed that the performance 

results were good after reducing the number of epochs to 

ten and working with a balanced dataset of 120 images per 

class. The model had an accuracy of 91.78% and an F1 

score of 92.31%. When compared to the findings of [14], 

the outcomes of this experiment were superior, although 

the amount of data in this study was 10 times lower than in 

the previous study. We simply needed to add pineapple 

pictures to the pre-trained model because it already had 

some learning to classify fruit images. 

Compared to the results of the existing [12] and this 

studies, Sangsongfa et al. developed a deep learning 

based-prediction model using CNN to predict the 

pineapple sweetness from images. The majority of the 

research settings were similar to ours, but they underlined 

the importance of experimenting with varied image 

resolutions. Their investigation gathered the pineapple 

photographs by photographing them in a lab and then 

cropping the zoomed-in pineapples that clearly showed 

pineapple buds (Fig. 9). Moreover, they used a 

refractometer to measure the sweetness and kept them as a 

training dataset. In this study, we collected the data from 

the existing study [14]. Ours and theirs were comparable 

after looking at the data aspects, including the approach 

they utilized, which was based on CNN. Therefore, ref. [12] 

was a good fit for comparison with our research. As the 

experimental results, the compared study [12] provided 

80.15% accuracy; meanwhile, ours received 91.78% 

accuracy, as shown in Table II. Our proposed method 

produced considerably superior results since we used the 

entire picture of pineapples as the data input, which 

included important pineapple attributes such as buds and 

leaves. When farmers use a refractometer to determine the 

sweetness of a pineapple, they must first rip it. However, 

as part of this study, we did not injure the pineapples to 

determine their sweetness level, instead of relying solely 

on their physical appearances. As a result, our technology 

assists farmers in improving the performance of a quality 

control process while also reducing processing time and 

labor. 

 

Figure 9. A) The image used in this study; B) The image used in the 
compared study [12]. 

TABLE II. RESULTS FROM THE COMPARED STUDY [12] AND OUR 

STUDY 

 

A limitation of this study is that the model works 

effectively with yellow pineapple data acquired in the lab 

with uniform color and light and no backdrop 

considerations. As a result, for this model to be useful in 

farming, it is important to establish the ability to 

distinguish the pineapple from the backdrop during the 

data preprocessing step. 

V. CONCLUSION 

Here, we used Alexnet to analyze pineapple photos to 

build a method for classifying the sweetness level. We 

created five experiments, each with a different number of 

epochs and data. Experiment 5 with 10 epochs working 

with balanced data and each class having 120 images 

yielded the best Alexnet model option. The model had an 

accuracy of 91.78% and an F1 score of 92.31%. This study 

can be expanded in the future to produce a more accurate 

model by expanding the quantity of the data and the 

number of epochs in applications. This technique can be 

adapted to other income crops for rapid and easy fruit 

classification based on physical factors without the need 

for additional tools to quantify sweetness. 
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